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Introduction

This book contains all 29 examples from the classic book Model Building in Mathematical Programming by
H. Paul Williams. For each example, the problem statement is first repeated verbatim from Williams (1999)
for the first 24 chapters and from Williams (2013) for the remaining chapters.1 Then the problem is solved
using the OPTMODEL procedure in SAS/OR software.

The examples cover linear programming, mixed integer linear programming, and quadratic programming. In
most cases, the problem is solved with a single call to one of the mathematical programming solvers available
in PROC OPTMODEL. The purpose of this book is to supplement the SAS/OR User’s Guide: Mathematical
Programming with additional examples that demonstrate best practices.

Each chapter contains five sections, described as follows.

� Problem Statement:
Repeats verbatim the problem description, including any tables and figures, from Williams (1999) or
Williams (2013).

� Mathematical Programming Formulation:
Describes the index sets, parameters, decision variables, objectives, and constraints for one formulation
of the problem.

� Input Data:
Creates the input data sets and macro variables to be used by PROC OPTMODEL.

� PROC OPTMODEL Statements and Output:
Shows and discusses the PROC OPTMODEL statements that declare sets and parameters, read the
input data, formulate the mathematical programming problem, solve the problem, and output the
solution. Also shows the output that is created by PROC OPTMODEL and occasionally other SAS
procedures.

� Features Demonstrated:
Lists the important PROC OPTMODEL features demonstrated in this example.

1Figures and tables are numbered differently so that they match the chapter organization of this book. To be consistent with the
verbatim problem statement, all other sections use British spelling. However, for clarity, large numbers and decimals are punctuated
in American style (for example, 10,000 instead of 10 000 and 0.5 instead of 0�5), words are occasionally added or changed (with the
changes shown inside square brackets), and punctuation is occasionally changed.
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Although PROC OPTMODEL is case-insensitive, in the interest of clarity a few typographical conventions
are observed regarding capitalization of names:

OPTMODEL Expression Capitalization

Index set names All uppercase
Index set member names All lowercase
Parameter names All lowercase
Variable names (including implicit variables) First letter of each word
Objective names First letter of each word
Constraint names First letter

The examples shown here are small and not computationally challenging. Throughout, a separation between
data and model is maintained so that you can solve larger or more difficult instances without modifying the
PROC OPTMODEL statements. A user who learns the techniques demonstrated in these examples will
be well-prepared to use PROC OPTMODEL to tackle similar modeling challenges that arise in real-world
problems.
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Food Manufacture 1: When to Buy and How to
Blend

Contents
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Problem Statement
A food is manufactured by refining raw oils and blending them together.1 The raw oils come in two categories:

vegetable oils VEG 1
VEG 2

non-vegetable oils OIL 1
OIL 2
OIL 3

Each oil may be purchased for immediate delivery (January) or bought on the futures market for delivery in a
subsequent month. Prices now and in the futures market are given below (in £/ton):

VEG 1 VEG 2 OIL 1 OIL 2 OIL 3
January 110 120 130 110 115
February 130 130 110 90 115
March 110 140 130 100 95
April 120 110 120 120 125
May 100 120 150 110 105
June 90 100 140 80 135

The final product sells at £150 per ton.

Vegetable oils and non-vegetable oils require different production lines for refining. In any month it is not
possible to refine more than 200 tons of vegetable oils and more than 250 tons of non-vegetable oils. There is
no loss of weight in the refining process and the cost of refining may be ignored.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 231–232).
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It is possible to store up to 1000 tons of each raw oil for use later. The cost of storage for vegetable and
non-vegetable oil is £5 per ton per month. The final product cannot be stored, nor can refined oils be stored.

There is a technological restriction of hardness on the final product. In the units in which hardness is measured
this must lie between 3 and 6. It is assumed that hardness blends linearly and that the hardnesses of the raw
oils are

VEG 1 8.8
VEG 2 6.1

OIL 1 2.0
OIL 2 4.2
OIL 3 5.0

What buying and manufacturing policy should the company pursue in order to maximize profit?

At present there are 500 tons of each type of raw oil in storage. It is required that these stocks will also exist
at the end of June.

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� oil 2 OILS

� period 2 PERIODS

� VEG � OILS: vegetable oils

� NONVEG D OILS n VEG: non-vegetable oils
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Parameters
Table 1.1 shows the parameters that are used in this example.

Table 1.1 Parameters

Parameter Name Interpretation

cost[oil,period] Cost of raw oil per period
hardness[oil] Hardness of raw oil
revenue_per_ton Revenue per ton of final product
veg_ub Tons of vegetable oils that can be refined per period
nonveg_ub Tons of non-vegetable oils that can be refined per period
store_ub Tons of raw oil that can be stored per period
storage_cost_per_ton Storage cost per ton of raw oil per period
hardness_lb Lower bound on hardness of final product
hardness_ub Upper bound on hardness of final product
init_storage Initial tons of each type of raw oil in storage
hardness_sol[period] Hardness of final product per period

Variables
Table 1.2 shows the variables that are used in this example.

Table 1.2 Variables

Variable Name Interpretation

Buy[oil,period] Tons of raw oil to buy per period
Use[oil,period] Tons of raw oil to use per period
Manufacture[period] Tons of final product to manufacture per period
Store[oil,period] Tons of raw oil to store as inventory at the end of each period

Objective
The objective is to maximize the following profit function, where Revenue, RawCost, and StorageCost are
linear functions of Manufacture, Buy, and Store, respectively:

Profit D Revenue � RawCost � StorageCost
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Constraints
The following constraints are used in this example:

� bounds on decision variables

� for period 2 PERIODS,

Manufacture[period] D
X

oil2OILS

Use[oil,period]

� for period 2 PERIODS,X
oil2VEG

Use[oil,period] � veg_ub

� for period 2 PERIODS,X
oil2NONVEG

Use[oil,period] � nonveg_ub

� for oil 2 OILS and period 2 PERIODS,

Store[oil,period � 1]C Buy[oil,period] D Use[oil,period]C Store[oil,period]

� for period 2 PERIODS,

hardness_lb �

P
oil2OILS

hardness[oil] � Use[oil,period]

Manufacture[period]
� hardness_ub

Input Data
The following data sets contain the input data that are used in this example:

data cost_data;
input veg1-veg2 oil1-oil3;
datalines;

110 120 130 110 115
130 130 110 90 115
110 140 130 100 95
120 110 120 120 125
100 120 150 110 105
90 100 140 80 135

;

data hardness_data;
input oil $ hardness;
datalines;
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veg1 8.8
veg2 6.1
oil1 2.0
oil2 4.2
oil3 5.0
;

It is possible to store the other (scalar) parameters in an additional data set that contains one observation, with
one data set variable per parameter. But the SAS macro language is used instead, with one macro variable
per parameter.

%let revenue_per_ton = 150;
%let veg_ub = 200;
%let nonveg_ub = 250;
%let store_ub = 1000;
%let storage_cost_per_ton = 5;
%let hardness_lb = 3;
%let hardness_ub = 6;
%let init_storage = 500;

PROC OPTMODEL Statements and Output
The first READ DATA statement populates the OILS index set and reads the one-dimensional hardness data:

proc optmodel;
set <str> OILS;
num hardness {OILS};
read data hardness_data into OILS=[oil] hardness;
print hardness;

The PRINT statement results in the first section of output, shown in Figure 1.1.

Figure 1.1 hardness Parameter

The OPTMODEL Procedure

[1] hardness

oil1 2.0

oil2 4.2

oil3 5.0

veg1 8.8

veg2 6.1

The second READ DATA statement populates the PERIODS index set and uses the already-populated OILS
index set to loop across data set variables when reading the two-dimensional cost data. The PERIODS index
set is numeric and is populated by using the automatic variable _N_ from the cost_data data set, rather than
by using the month names.
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set PERIODS;
num cost {OILS, PERIODS};
read data cost_data into PERIODS=[_N_] {oil in OILS}

<cost[oil,_N_]=col(oil)>;
print cost;

The PRINT statement results in the second section of output, shown in Figure 1.2.

Figure 1.2 cost Parameter

cost

1 2 3 4 5 6

oil1 130 110 130 120 150 140

oil2 110 90 100 120 110 80

oil3 115 115 95 125 105 135

veg1 110 130 110 120 100 90

veg2 120 130 140 110 120 100

You can declare implicit variables with the IMPVAR statement, instead of defining explicit variables by using
the VAR statement with an additional constraint. When you use the IMPVAR statement, PROC OPTMODEL
performs an algebraic substitution, thereby reducing the number of variables and constraints passed to the
solver.

var Buy {OILS, PERIODS} >= 0;
var Use {OILS, PERIODS} >= 0;
impvar Manufacture {period in PERIODS} = sum {oil in OILS} Use[oil,period];

The initial and terminal storage constraints for each raw oil are imposed by using the FIX statement to fix the
values of the corresponding Store[oil,period] variables. An alternate approach is to use the CON statement to
explicitly declare an equality constraint that contains exactly one variable.

num last_period = max {period in PERIODS} period;
var Store {OILS, PERIODS union {0}} >= 0 <= &store_ub;
for {oil in OILS} do;

fix Store[oil,0] = &init_storage;
fix Store[oil,last_period] = &init_storage;

end;

The following SET statement uses the SAS function SUBSTR together with the colon operator (:) to select
the subset of oils whose name starts with “veg”:

set VEG = {oil in OILS: substr(oil,1,3) = 'veg'};

The following SET statement uses the DIFF operator to declare the non-vegetable oils to be the oils that do
not appear in the set VEG:

set NONVEG = OILS diff VEG;
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The following statements declare implicit variables, the objective, and constraints:

impvar Revenue =
sum {period in PERIODS} &revenue_per_ton * Manufacture[period];

impvar RawCost =
sum {oil in OILS, period in PERIODS} cost[oil,period] * Buy[oil,period];

impvar StorageCost =
sum {oil in OILS, period in PERIODS}

&storage_cost_per_ton * Store[oil,period];
max Profit = Revenue - RawCost - StorageCost;

con Veg_ub_con {period in PERIODS}:
sum {oil in VEG} Use[oil,period] <= &veg_ub;

con Nonveg_ub_con {period in PERIODS}:
sum {oil in NONVEG} Use[oil,period] <= &nonveg_ub;

con Flow_balance_con {oil in OILS, period in PERIODS}:
Store[oil,period-1] + Buy[oil,period]

= Use[oil,period] + Store[oil,period];

As expressed on page 6, the hardness of the final product is a ratio of linear functions of the decision variables.
To increase algorithmic performance and reliability, the following two CON statements take advantage of the
constant limits on hardness to linearize the nonlinear range constraint by clearing the denominator:

con Hardness_ub_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil,period]
>= &hardness_lb * Manufacture[period];

con Hardness_lb_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil,period]
<= &hardness_ub * Manufacture[period];

The following EXPAND statement displays the resulting model with all data populated, as shown in
Figure 1.3:

expand;

This optional statement is useful for debugging purposes, to make sure that the model that PROC OPTMODEL
creates is what you intended.
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Figure 1.3 Output from EXPAND Statement

                             The OPTMODEL Procedure                             
                                                                                
Var Buy[veg1,1] >= 0                                                            
Var Buy[veg1,2] >= 0                                                            
Var Buy[veg1,3] >= 0                                                            
Var Buy[veg1,4] >= 0                                                            
Var Buy[veg1,5] >= 0                                                            
Var Buy[veg1,6] >= 0                                                            
Var Buy[veg2,1] >= 0                                                            
Var Buy[veg2,2] >= 0                                                            
Var Buy[veg2,3] >= 0                                                            
Var Buy[veg2,4] >= 0                                                            
Var Buy[veg2,5] >= 0                                                            
Var Buy[veg2,6] >= 0                                                            
Var Buy[oil1,1] >= 0                                                            
Var Buy[oil1,2] >= 0                                                            
Var Buy[oil1,3] >= 0                                                            
Var Buy[oil1,4] >= 0                                                            
Var Buy[oil1,5] >= 0                                                            
Var Buy[oil1,6] >= 0                                                            
Var Buy[oil2,1] >= 0                                                            
Var Buy[oil2,2] >= 0                                                            
Var Buy[oil2,3] >= 0                                                            
Var Buy[oil2,4] >= 0                                                            
Var Buy[oil2,5] >= 0                                                            
Var Buy[oil2,6] >= 0                                                            
Var Buy[oil3,1] >= 0                                                            
Var Buy[oil3,2] >= 0                                                            
Var Buy[oil3,3] >= 0                                                            
Var Buy[oil3,4] >= 0                                                            
Var Buy[oil3,5] >= 0                                                            
Var Buy[oil3,6] >= 0                                                            
Var Use[veg1,1] >= 0                                                            
Var Use[veg1,2] >= 0                                                            
Var Use[veg1,3] >= 0                                                            
Var Use[veg1,4] >= 0                                                            
Var Use[veg1,5] >= 0                                                            
Var Use[veg1,6] >= 0                                                            
Var Use[veg2,1] >= 0                                                            
Var Use[veg2,2] >= 0                                                            
Var Use[veg2,3] >= 0                                                            
Var Use[veg2,4] >= 0                                                            
Var Use[veg2,5] >= 0                                                            
Var Use[veg2,6] >= 0                                                            
Var Use[oil1,1] >= 0                                                            
Var Use[oil1,2] >= 0                                                            
Var Use[oil1,3] >= 0                                                            
Var Use[oil1,4] >= 0                                                            
Var Use[oil1,5] >= 0                                                            
Var Use[oil1,6] >= 0                                                            
Var Use[oil2,1] >= 0                                                            
Var Use[oil2,2] >= 0                                                            
Var Use[oil2,3] >= 0                                                            
Var Use[oil2,4] >= 0                                                            
Var Use[oil2,5] >= 0                                                            
Var Use[oil2,6] >= 0                                                            
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Figure 1.3 continued

Var Use[oil3,1] >= 0                                                            
Var Use[oil3,2] >= 0                                                            
Var Use[oil3,3] >= 0                                                            
Var Use[oil3,4] >= 0                                                            
Var Use[oil3,5] >= 0                                                            
Var Use[oil3,6] >= 0                                                            
Var Store[veg1,1] >= 0 <= 1000                                                  
Var Store[veg1,2] >= 0 <= 1000                                                  
Var Store[veg1,3] >= 0 <= 1000                                                  
Var Store[veg1,4] >= 0 <= 1000                                                  
Var Store[veg1,5] >= 0 <= 1000                                                  
Fix Store[veg1,6] = 500                                                         
Fix Store[veg1,0] = 500                                                         
Var Store[veg2,1] >= 0 <= 1000                                                  
Var Store[veg2,2] >= 0 <= 1000                                                  
Var Store[veg2,3] >= 0 <= 1000                                                  
Var Store[veg2,4] >= 0 <= 1000                                                  
Var Store[veg2,5] >= 0 <= 1000                                                  
Fix Store[veg2,6] = 500                                                         
Fix Store[veg2,0] = 500                                                         
Var Store[oil1,1] >= 0 <= 1000                                                  
Var Store[oil1,2] >= 0 <= 1000                                                  
Var Store[oil1,3] >= 0 <= 1000                                                  
Var Store[oil1,4] >= 0 <= 1000                                                  
Var Store[oil1,5] >= 0 <= 1000                                                  
Fix Store[oil1,6] = 500                                                         
Fix Store[oil1,0] = 500                                                         
Var Store[oil2,1] >= 0 <= 1000                                                  
Var Store[oil2,2] >= 0 <= 1000                                                  
Var Store[oil2,3] >= 0 <= 1000                                                  
Var Store[oil2,4] >= 0 <= 1000                                                  
Var Store[oil2,5] >= 0 <= 1000                                                  
Fix Store[oil2,6] = 500                                                         
Fix Store[oil2,0] = 500                                                         
Var Store[oil3,1] >= 0 <= 1000                                                  
Var Store[oil3,2] >= 0 <= 1000                                                  
Var Store[oil3,3] >= 0 <= 1000                                                  
Var Store[oil3,4] >= 0 <= 1000                                                  
Var Store[oil3,5] >= 0 <= 1000                                                  
Fix Store[oil3,6] = 500                                                         
Fix Store[oil3,0] = 500                                                         
Impvar Manufacture[1] = Use[veg1,1] + Use[veg2,1] + Use[oil1,1] + Use[oil2,1] + 
Use[oil3,1]                                                                     
Impvar Manufacture[2] = Use[veg1,2] + Use[veg2,2] + Use[oil1,2] + Use[oil2,2] + 
Use[oil3,2]                                                                     
Impvar Manufacture[3] = Use[veg1,3] + Use[veg2,3] + Use[oil1,3] + Use[oil2,3] + 
Use[oil3,3]                                                                     
Impvar Manufacture[4] = Use[veg1,4] + Use[veg2,4] + Use[oil1,4] + Use[oil2,4] + 
Use[oil3,4]                                                                     
Impvar Manufacture[5] = Use[veg1,5] + Use[veg2,5] + Use[oil1,5] + Use[oil2,5] + 
Use[oil3,5]                                                                     
Impvar Manufacture[6] = Use[veg1,6] + Use[veg2,6] + Use[oil1,6] + Use[oil2,6] + 
Use[oil3,6]                                                                     
Impvar Revenue = 150*Manufacture[1] + 150*Manufacture[2] + 150*Manufacture[3] + 
150*Manufacture[4] + 150*Manufacture[5] + 150*Manufacture[6]                    
Impvar RawCost = 110*Buy[veg1,1] + 130*Buy[veg1,2] + 110*Buy[veg1,3] + 120*     
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Figure 1.3 continued

Buy[veg1,4] + 100*Buy[veg1,5] + 90*Buy[veg1,6] + 120*Buy[veg2,1] + 130*         
Buy[veg2,2] + 140*Buy[veg2,3] + 110*Buy[veg2,4] + 120*Buy[veg2,5] + 100*        
Buy[veg2,6] + 130*Buy[oil1,1] + 110*Buy[oil1,2] + 130*Buy[oil1,3] + 120*        
Buy[oil1,4] + 150*Buy[oil1,5] + 140*Buy[oil1,6] + 110*Buy[oil2,1] + 90*         
Buy[oil2,2] + 100*Buy[oil2,3] + 120*Buy[oil2,4] + 110*Buy[oil2,5] + 80*         
Buy[oil2,6] + 115*Buy[oil3,1] + 115*Buy[oil3,2] + 95*Buy[oil3,3] + 125*         
Buy[oil3,4] + 105*Buy[oil3,5] + 135*Buy[oil3,6]                                 
Impvar StorageCost = 5*Store[veg1,1] + 5*Store[veg1,2] + 5*Store[veg1,3] + 5*   
Store[veg1,4] + 5*Store[veg1,5] + 5*Store[veg1,6] + 5*Store[veg2,1] + 5*        
Store[veg2,2] + 5*Store[veg2,3] + 5*Store[veg2,4] + 5*Store[veg2,5] + 5*        
Store[veg2,6] + 5*Store[oil1,1] + 5*Store[oil1,2] + 5*Store[oil1,3] + 5*        
Store[oil1,4] + 5*Store[oil1,5] + 5*Store[oil1,6] + 5*Store[oil2,1] + 5*        
Store[oil2,2] + 5*Store[oil2,3] + 5*Store[oil2,4] + 5*Store[oil2,5] + 5*        
Store[oil2,6] + 5*Store[oil3,1] + 5*Store[oil3,2] + 5*Store[oil3,3] + 5*        
Store[oil3,4] + 5*Store[oil3,5] + 5*Store[oil3,6]                               
Maximize Profit=Revenue - RawCost - StorageCost                                 
Constraint Veg_ub_con[1]: Use[veg1,1] + Use[veg2,1] <= 200                      
Constraint Veg_ub_con[2]: Use[veg1,2] + Use[veg2,2] <= 200                      
Constraint Veg_ub_con[3]: Use[veg1,3] + Use[veg2,3] <= 200                      
Constraint Veg_ub_con[4]: Use[veg1,4] + Use[veg2,4] <= 200                      
Constraint Veg_ub_con[5]: Use[veg1,5] + Use[veg2,5] <= 200                      
Constraint Veg_ub_con[6]: Use[veg1,6] + Use[veg2,6] <= 200                      
Constraint Nonveg_ub_con[1]: Use[oil1,1] + Use[oil2,1] + Use[oil3,1] <= 250     
Constraint Nonveg_ub_con[2]: Use[oil1,2] + Use[oil2,2] + Use[oil3,2] <= 250     
Constraint Nonveg_ub_con[3]: Use[oil1,3] + Use[oil2,3] + Use[oil3,3] <= 250     
Constraint Nonveg_ub_con[4]: Use[oil1,4] + Use[oil2,4] + Use[oil3,4] <= 250     
Constraint Nonveg_ub_con[5]: Use[oil1,5] + Use[oil2,5] + Use[oil3,5] <= 250     
Constraint Nonveg_ub_con[6]: Use[oil1,6] + Use[oil2,6] + Use[oil3,6] <= 250     
Constraint Flow_balance_con[veg1,1]: Store[veg1,0] + Buy[veg1,1] - Use[veg1,1] -
Store[veg1,1] = 0                                                               
Constraint Flow_balance_con[veg1,2]: Store[veg1,1] + Buy[veg1,2] - Use[veg1,2] -
Store[veg1,2] = 0                                                               
Constraint Flow_balance_con[veg1,3]: Store[veg1,2] + Buy[veg1,3] - Use[veg1,3] -
Store[veg1,3] = 0                                                               
Constraint Flow_balance_con[veg1,4]: Store[veg1,3] + Buy[veg1,4] - Use[veg1,4] -
Store[veg1,4] = 0                                                               
Constraint Flow_balance_con[veg1,5]: Store[veg1,4] + Buy[veg1,5] - Use[veg1,5] -
Store[veg1,5] = 0                                                               
Constraint Flow_balance_con[veg1,6]: Store[veg1,5] + Buy[veg1,6] - Use[veg1,6] -
Store[veg1,6] = 0                                                               
Constraint Flow_balance_con[veg2,1]: Store[veg2,0] + Buy[veg2,1] - Use[veg2,1] -
Store[veg2,1] = 0                                                               
Constraint Flow_balance_con[veg2,2]: Store[veg2,1] + Buy[veg2,2] - Use[veg2,2] -
Store[veg2,2] = 0                                                               
Constraint Flow_balance_con[veg2,3]: Store[veg2,2] + Buy[veg2,3] - Use[veg2,3] -
Store[veg2,3] = 0                                                               
Constraint Flow_balance_con[veg2,4]: Store[veg2,3] + Buy[veg2,4] - Use[veg2,4] -
Store[veg2,4] = 0                                                               
Constraint Flow_balance_con[veg2,5]: Store[veg2,4] + Buy[veg2,5] - Use[veg2,5] -
Store[veg2,5] = 0                                                               
Constraint Flow_balance_con[veg2,6]: Store[veg2,5] + Buy[veg2,6] - Use[veg2,6] -
Store[veg2,6] = 0                                                               
Constraint Flow_balance_con[oil1,1]: Store[oil1,0] + Buy[oil1,1] - Use[oil1,1] -
Store[oil1,1] = 0                                                               
Constraint Flow_balance_con[oil1,2]: Store[oil1,1] + Buy[oil1,2] - Use[oil1,2] -
Store[oil1,2] = 0                                                               
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Figure 1.3 continued

Constraint Flow_balance_con[oil1,3]: Store[oil1,2] + Buy[oil1,3] - Use[oil1,3] -
Store[oil1,3] = 0                                                               
Constraint Flow_balance_con[oil1,4]: Store[oil1,3] + Buy[oil1,4] - Use[oil1,4] -
Store[oil1,4] = 0                                                               
Constraint Flow_balance_con[oil1,5]: Store[oil1,4] + Buy[oil1,5] - Use[oil1,5] -
Store[oil1,5] = 0                                                               
Constraint Flow_balance_con[oil1,6]: Store[oil1,5] + Buy[oil1,6] - Use[oil1,6] -
Store[oil1,6] = 0                                                               
Constraint Flow_balance_con[oil2,1]: Store[oil2,0] + Buy[oil2,1] - Use[oil2,1] -
Store[oil2,1] = 0                                                               
Constraint Flow_balance_con[oil2,2]: Store[oil2,1] + Buy[oil2,2] - Use[oil2,2] -
Store[oil2,2] = 0                                                               
Constraint Flow_balance_con[oil2,3]: Store[oil2,2] + Buy[oil2,3] - Use[oil2,3] -
Store[oil2,3] = 0                                                               
Constraint Flow_balance_con[oil2,4]: Store[oil2,3] + Buy[oil2,4] - Use[oil2,4] -
Store[oil2,4] = 0                                                               
Constraint Flow_balance_con[oil2,5]: Store[oil2,4] + Buy[oil2,5] - Use[oil2,5] -
Store[oil2,5] = 0                                                               
Constraint Flow_balance_con[oil2,6]: Store[oil2,5] + Buy[oil2,6] - Use[oil2,6] -
Store[oil2,6] = 0                                                               
Constraint Flow_balance_con[oil3,1]: Store[oil3,0] + Buy[oil3,1] - Use[oil3,1] -
Store[oil3,1] = 0                                                               
Constraint Flow_balance_con[oil3,2]: Store[oil3,1] + Buy[oil3,2] - Use[oil3,2] -
Store[oil3,2] = 0                                                               
Constraint Flow_balance_con[oil3,3]: Store[oil3,2] + Buy[oil3,3] - Use[oil3,3] -
Store[oil3,3] = 0                                                               
Constraint Flow_balance_con[oil3,4]: Store[oil3,3] + Buy[oil3,4] - Use[oil3,4] -
Store[oil3,4] = 0                                                               
Constraint Flow_balance_con[oil3,5]: Store[oil3,4] + Buy[oil3,5] - Use[oil3,5] -
Store[oil3,5] = 0                                                               
Constraint Flow_balance_con[oil3,6]: Store[oil3,5] + Buy[oil3,6] - Use[oil3,6] -
Store[oil3,6] = 0                                                               
Constraint Hardness_ub_con[1]: 8.8*Use[veg1,1] + 6.1*Use[veg2,1] + 2*Use[oil1,1]
+ 4.2*Use[oil2,1] + 5*Use[oil3,1] - 3*Manufacture[1] >= 0                       
Constraint Hardness_ub_con[2]: 8.8*Use[veg1,2] + 6.1*Use[veg2,2] + 2*Use[oil1,2]
+ 4.2*Use[oil2,2] + 5*Use[oil3,2] - 3*Manufacture[2] >= 0                       
Constraint Hardness_ub_con[3]: 8.8*Use[veg1,3] + 6.1*Use[veg2,3] + 2*Use[oil1,3]
+ 4.2*Use[oil2,3] + 5*Use[oil3,3] - 3*Manufacture[3] >= 0                       
Constraint Hardness_ub_con[4]: 8.8*Use[veg1,4] + 6.1*Use[veg2,4] + 2*Use[oil1,4]
+ 4.2*Use[oil2,4] + 5*Use[oil3,4] - 3*Manufacture[4] >= 0                       
Constraint Hardness_ub_con[5]: 8.8*Use[veg1,5] + 6.1*Use[veg2,5] + 2*Use[oil1,5]
+ 4.2*Use[oil2,5] + 5*Use[oil3,5] - 3*Manufacture[5] >= 0                       
Constraint Hardness_ub_con[6]: 8.8*Use[veg1,6] + 6.1*Use[veg2,6] + 2*Use[oil1,6]
+ 4.2*Use[oil2,6] + 5*Use[oil3,6] - 3*Manufacture[6] >= 0                       
Constraint Hardness_lb_con[1]: 8.8*Use[veg1,1] + 6.1*Use[veg2,1] + 2*Use[oil1,1]
+ 4.2*Use[oil2,1] + 5*Use[oil3,1] - 6*Manufacture[1] <= 0                       
Constraint Hardness_lb_con[2]: 8.8*Use[veg1,2] + 6.1*Use[veg2,2] + 2*Use[oil1,2]
+ 4.2*Use[oil2,2] + 5*Use[oil3,2] - 6*Manufacture[2] <= 0                       
Constraint Hardness_lb_con[3]: 8.8*Use[veg1,3] + 6.1*Use[veg2,3] + 2*Use[oil1,3]
+ 4.2*Use[oil2,3] + 5*Use[oil3,3] - 6*Manufacture[3] <= 0                       
Constraint Hardness_lb_con[4]: 8.8*Use[veg1,4] + 6.1*Use[veg2,4] + 2*Use[oil1,4]
+ 4.2*Use[oil2,4] + 5*Use[oil3,4] - 6*Manufacture[4] <= 0                       
Constraint Hardness_lb_con[5]: 8.8*Use[veg1,5] + 6.1*Use[veg2,5] + 2*Use[oil1,5]
+ 4.2*Use[oil2,5] + 5*Use[oil3,5] - 6*Manufacture[5] <= 0                       
Constraint Hardness_lb_con[6]: 8.8*Use[veg1,6] + 6.1*Use[veg2,6] + 2*Use[oil1,6]
+ 4.2*Use[oil2,6] + 5*Use[oil3,6] - 6*Manufacture[6] <= 0                       
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By using the .sol suffix, the numeric parameter hardness_sol computes hardness of the final product from
the optimal decision variable values returned by the solver:

num hardness_sol {period in PERIODS} =
(sum {oil in OILS} hardness[oil] * Use[oil,period].sol)

/ Manufacture[period].sol;

You can declare hardness_sol even before the solver is called. Because the declaration includes an equals
sign, the values are automatically updated each time the right-hand side changes. The following statements
call the solver and print the solution:

solve;
print Buy Use Store Manufacture hardness_sol;

Multiple CREATE DATA statements, with the variables of interest grouped according to their index sets,
create multiple output data sets (not shown):

create data sol_data1 from [oil period] Buy Use Store;
create data sol_data2 from [period] Manufacture;

In this example, all variables are real, the objective function is linear, and all constraints are linear. So
PROC OPTMODEL automatically recognizes that this model is a linear programming problem, and the first
SOLVE statement calls the default linear programming algorithm, which is the dual simplex algorithm. To
invoke a non-default algorithm (such as primal simplex, interior point, or network simplex), you can use the
ALGORITHM= option in the SOLVE statement:

solve with lp / algorithm=ps;
print Buy Use Store Manufacture hardness_sol;
solve with lp / algorithm=ip;
print Buy Use Store Manufacture hardness_sol;
solve with lp / algorithm=ns;
print Buy Use Store Manufacture hardness_sol;

quit;

Each algorithm returns an optimal solution with a profit of £107,843, although the optimal solutions differ
from each other, as shown in Figure 1.4 through Figure 1.7.
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Figure 1.4 shows the output when you use the (default) dual simplex algorithm.

Figure 1.4 Output from Dual Simplex Algorithm

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 95

Bounded Above 0

Bounded Below 60

Bounded Below and Above 25

Free 0

Fixed 10

Number of Constraints 54

Linear LE (<=) 18

Linear EQ (=) 30

Linear GE (>=) 6

Linear Range 0

Constraint Coefficients 210

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Profit

Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 5.684342E-13

Dual Infeasibility 1.421085E-14

Bound Infeasibility 1.136868E-13

Iterations 70

Presolve Time 0.00

Solution Time 0.02
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Figure 1.4 continued

[1] [2] Buy Use Store

oil1 0 500.000

oil1 1 0.00 0.000 500.000

oil1 2 0.00 0.000 500.000

oil1 3 0.00 0.000 500.000

oil1 4 0.00 0.000 500.000

oil1 5 0.00 0.000 500.000

oil1 6 0.00 0.000 500.000

oil2 0 500.000

oil2 1 0.00 250.000 250.000

oil2 2 0.00 0.000 250.000

oil2 3 0.00 250.000 0.000

oil2 4 0.00 0.000 0.000

oil2 5 0.00 0.000 0.000

oil2 6 750.00 250.000 500.000

oil3 0 500.000

oil3 1 0.00 -0.000 500.000

oil3 2 0.00 250.000 250.000

oil3 3 750.00 0.000 1000.000

oil3 4 0.00 250.000 750.000

oil3 5 0.00 250.000 500.000

oil3 6 0.00 0.000 500.000

veg1 0 500.000

veg1 1 0.00 159.259 340.741

veg1 2 0.00 85.185 255.556

veg1 3 0.00 85.185 170.370

veg1 4 0.00 85.185 85.185

veg1 5 0.00 85.185 0.000

veg1 6 659.26 159.259 500.000

veg2 0 500.000

veg2 1 0.00 40.741 459.259

veg2 2 0.00 114.815 344.444

veg2 3 0.00 114.815 229.630

veg2 4 0.00 114.815 114.815

veg2 5 0.00 114.815 0.000

veg2 6 540.74 40.741 500.000

[1] Manufacture hardness_sol

1 450 6.0000

2 450 6.0000

3 450 5.5556

4 450 6.0000

5 450 6.0000

6 450 6.0000
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Figure 1.5 shows the output when you use the ALGORITHM=PS option to invoke the primal simplex
algorithm.

Figure 1.5 Output from Primal Simplex Algorithm

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 95

Bounded Above 0

Bounded Below 60

Bounded Below and Above 25

Free 0

Fixed 10

Number of Constraints 54

Linear LE (<=) 18

Linear EQ (=) 30

Linear GE (>=) 6

Linear Range 0

Constraint Coefficients 210

Solution Summary

Solver LP

Algorithm Primal Simplex

Objective Function Profit

Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 1.136868E-13

Dual Infeasibility 3.552714E-15

Bound Infeasibility 0

Iterations 71

Presolve Time 0.00

Solution Time 0.00
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Figure 1.5 continued

[1] [2] Buy Use Store

oil1 0 500.000

oil1 1 0.00 0.000 500.000

oil1 2 0.00 0.000 500.000

oil1 3 0.00 0.000 500.000

oil1 4 0.00 0.000 500.000

oil1 5 0.00 0.000 500.000

oil1 6 0.00 0.000 500.000

oil2 0 500.000

oil2 1 0.00 0.000 500.000

oil2 2 0.00 0.000 500.000

oil2 3 0.00 0.000 500.000

oil2 4 0.00 250.000 250.000

oil2 5 0.00 250.000 0.000

oil2 6 750.00 250.000 500.000

oil3 0 500.000

oil3 1 0.00 250.000 250.000

oil3 2 0.00 250.000 0.000

oil3 3 250.00 250.000 0.000

oil3 4 0.00 0.000 0.000

oil3 5 500.00 0.000 500.000

oil3 6 0.00 0.000 500.000

veg1 0 500.000

veg1 1 0.00 85.185 414.815

veg1 2 0.00 85.185 329.630

veg1 3 0.00 85.185 244.444

veg1 4 0.00 159.259 85.185

veg1 5 0.00 85.185 0.000

veg1 6 659.26 159.259 500.000

veg2 0 500.000

veg2 1 0.00 114.815 385.185

veg2 2 0.00 114.815 270.370

veg2 3 0.00 114.815 155.556

veg2 4 0.00 40.741 114.815

veg2 5 0.00 114.815 0.000

veg2 6 540.74 40.741 500.000

[1] Manufacture hardness_sol

1 450 6.0000

2 450 6.0000

3 450 6.0000

4 450 6.0000

5 450 5.5556

6 450 6.0000
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Figure 1.6 shows the output when you use the ALGORITHM=IP option to invoke the interior point algorithm.

Figure 1.6 Output from Interior Point Algorithm

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 95

Bounded Above 0

Bounded Below 60

Bounded Below and Above 25

Free 0

Fixed 10

Number of Constraints 54

Linear LE (<=) 18

Linear EQ (=) 30

Linear GE (>=) 6

Linear Range 0

Constraint Coefficients 210

Solution Summary

Solver LP

Algorithm Interior Point

Objective Function Profit

Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 1.705303E-13

Dual Infeasibility 8.526513E-14

Bound Infeasibility 5.684342E-14

Duality Gap 0

Complementarity 0

Iterations 7

Iterations2 98

Presolve Time 0.00

Solution Time 0.01
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Figure 1.6 continued

[1] [2] Buy Use Store

oil1 0 500.00

oil1 1 0.00 0.000 500.00

oil1 2 0.00 0.000 500.00

oil1 3 0.00 0.000 500.00

oil1 4 0.00 0.000 500.00

oil1 5 0.00 0.000 500.00

oil1 6 0.00 0.000 500.00

oil2 0 500.00

oil2 1 0.00 250.000 250.00

oil2 2 750.00 250.000 750.00

oil2 3 0.00 250.000 500.00

oil2 4 0.00 250.000 250.00

oil2 5 0.00 250.000 0.00

oil2 6 750.00 250.000 500.00

oil3 0 500.00

oil3 1 0.00 0.000 500.00

oil3 2 0.00 0.000 500.00

oil3 3 -0.00 0.000 500.00

oil3 4 0.00 0.000 500.00

oil3 5 0.00 0.000 500.00

oil3 6 0.00 0.000 500.00

veg1 0 500.00

veg1 1 0.00 22.222 477.78

veg1 2 0.00 159.259 318.52

veg1 3 0.00 159.259 159.26

veg1 4 0.00 159.259 0.00

veg1 5 0.00 0.000 0.00

veg1 6 659.26 159.259 500.00

veg2 0 500.00

veg2 1 0.00 177.778 322.22

veg2 2 0.00 40.741 281.48

veg2 3 0.00 40.741 240.74

veg2 4 0.00 40.741 200.00

veg2 5 0.00 200.000 0.00

veg2 6 540.74 40.741 500.00

[1] Manufacture hardness_sol

1 450 5.1778

2 450 6.0000

3 450 6.0000

4 450 6.0000

5 450 5.0444

6 450 6.0000
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Figure 1.7 shows the output when you use the ALGORITHM=NS option to invoke the network simplex
algorithm.

Figure 1.7 Output from Network Simplex Algorithm

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 95

Bounded Above 0

Bounded Below 60

Bounded Below and Above 25

Free 0

Fixed 10

Number of Constraints 54

Linear LE (<=) 18

Linear EQ (=) 30

Linear GE (>=) 6

Linear Range 0

Constraint Coefficients 210

Solution Summary

Solver LP

Algorithm Network Simplex

Objective Function Profit

Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 1.705303E-13

Dual Infeasibility 2.842171E-14

Bound Infeasibility 9.214851E-14

Iterations 38

Iterations2 42

Presolve Time 0.00

Solution Time 0.01
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Figure 1.7 continued

[1] [2] Buy Use Store

oil1 0 500.000

oil1 1 0.00 0.000 500.000

oil1 2 0.00 0.000 500.000

oil1 3 0.00 0.000 500.000

oil1 4 0.00 0.000 500.000

oil1 5 0.00 0.000 500.000

oil1 6 0.00 0.000 500.000

oil2 0 500.000

oil2 1 0.00 0.000 500.000

oil2 2 250.00 0.000 750.000

oil2 3 0.00 250.000 500.000

oil2 4 0.00 250.000 250.000

oil2 5 0.00 250.000 0.000

oil2 6 750.00 250.000 500.000

oil3 0 500.000

oil3 1 0.00 250.000 250.000

oil3 2 0.00 250.000 0.000

oil3 3 0.00 0.000 -0.000

oil3 4 0.00 -0.000 0.000

oil3 5 500.00 0.000 500.000

oil3 6 0.00 0.000 500.000

veg1 0 500.000

veg1 1 0.00 85.185 414.815

veg1 2 0.00 85.185 329.630

veg1 3 0.00 159.259 170.370

veg1 4 0.00 11.111 159.259

veg1 5 -0.00 159.259 0.000

veg1 6 659.26 159.259 500.000

veg2 0 500.000

veg2 1 0.00 114.815 385.185

veg2 2 0.00 114.815 270.370

veg2 3 0.00 40.741 229.630

veg2 4 0.00 188.889 40.741

veg2 5 0.00 40.741 0.000

veg2 6 540.74 40.741 500.000

[1] Manufacture hardness_sol

1 450 6.0000

2 450 6.0000

3 450 6.0000

4 450 5.1111

5 450 6.0000

6 450 6.0000
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming

� numeric and string index sets

� reading dense two-dimensional data

� bounds in the VAR statement

� FIX statement

� IMPVAR statement

� MAX aggregation operator

� SUBSTR function

� using a colon (:) to select members of a set

� set operators DIFF and UNION

� linearizing a ratio constraint

� range constraint

� EXPAND statement

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� multiple input and output data sets

� ALGORITHM= option
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Problem Statement
It is wished to impose the following extra conditions on the food manufacture problem:1

(1) The food may never be made up of more than three oils in any month.

(2) If an oil is used in a month at least 20 tons must be used.

(3) If either of VEG 1 or VEG 2 is used in a month then OIL 3 must also be used.

Extend the food manufacture model to encompass these restrictions and find the new optimal solution.

Mathematical Programming Formulation
This formulation builds on the formulation used in Chapter 1. This section includes only the new elements of
the formulation.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 232).
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Parameters
Table 2.1 shows the additional parameters that are used in this example.

Table 2.1 Parameters

Parameter Name Interpretation

max_num_oils_used Maximum number of oils used per period
min_oil_used_threshold Minimum tons of oil used per period if used in that period
Use[oil,period].ub Upper bound on Use[oil,period]

Variables
Table 2.2 shows the additional variables that are used in this example.

Table 2.2 Variables

Variable Name Interpretation

IsUsed[oil,period] 1 if Use[oil,period] is positive; 0 otherwise

Objective
The objective is the same as in Chapter 1.

Constraints
The following additional constraints are used in this example:

� for oil 2 OILS and period 2 PERIODS,

Use[oil,period] � Use[oil,period].ub � IsUsed[oil,period]

� for period 2 PERIODS,X
oil2OILS

IsUsed[oil,period] � max_num_oils_used

� for oil 2 OILS and period 2 PERIODS,

Use[oil,period] � min_oil_used_threshold � IsUsed[oil,period]

� for oil 2 f’veg1’; ’veg2’g and period 2 PERIODS,

IsUsed[oil,period] � IsUsed[’oil3’,period]
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Input Data
The following macro variables contain the additional input data that are used in this example:

%let max_num_oils_used = 3;
%let min_oil_used_threshold = 20;

PROC OPTMODEL Statements and Output
For completeness, all statements are shown. Statements that are new or changed from Chapter 1 are indicated.

proc optmodel;
set <str> OILS;
num hardness {OILS};
read data hardness_data into OILS=[oil] hardness;

set PERIODS;
num cost {OILS, PERIODS};
read data cost_data into PERIODS=[_N_] {oil in OILS}

<cost[oil,_N_]=col(oil)>;

var Buy {OILS, PERIODS} >= 0;
var Use {OILS, PERIODS} >= 0;
impvar Manufacture {period in PERIODS} = sum {oil in OILS} Use[oil,period];

num last_period = max {period in PERIODS} period;
var Store {OILS, PERIODS union {0}} >= 0 <= &store_ub;
for {oil in OILS} do;

fix Store[oil,0] = &init_storage;
fix Store[oil,last_period] = &init_storage;

end;

set VEG = {oil in OILS: substr(oil,1,3) = 'veg'};
set NONVEG = OILS diff VEG;

impvar Revenue =
sum {period in PERIODS} &revenue_per_ton * Manufacture[period];

impvar RawCost =
sum {oil in OILS, period in PERIODS} cost[oil,period] * Buy[oil,period];

impvar StorageCost =
sum {oil in OILS, period in PERIODS}

&storage_cost_per_ton * Store[oil,period];
max Profit = Revenue - RawCost - StorageCost;

con Veg_ub_con {period in PERIODS}:
sum {oil in VEG} Use[oil,period] <= &veg_ub;

con Nonveg_ub_con {period in PERIODS}:
sum {oil in NONVEG} Use[oil,period] <= &nonveg_ub;
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con Flow_balance_con {oil in OILS, period in PERIODS}:
Store[oil,period-1] + Buy[oil,period]

= Use[oil,period] + Store[oil,period];

con Hardness_ub_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil,period]
>= &hardness_lb * Manufacture[period];

con Hardness_lb_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil,period]
<= &hardness_ub * Manufacture[period];

The remaining statements are new in this example. The BINARY option in the following VAR statement
declares IsUsed to be a binary variable:

var IsUsed {OILS, PERIODS} binary;

The .ub variable suffix imposes an upper bound on the Use variable, in preparation for the subsequent Link
constraint. The validity of this upper bound follows from the Veg_ub_con and Nonveg_ub_con constraints.

for {period in PERIODS} do;
for {oil in VEG} Use[oil,period].ub = &veg_ub;
for {oil in NONVEG} Use[oil,period].ub = &nonveg_ub;

end;

The following Link constraint enforces the rule that Use[oil,period] > 0 implies that IsUsed[oil,period] D 1:

con Link {oil in OILS, period in PERIODS}:
Use[oil,period] <= Use[oil,period].ub * IsUsed[oil,period];

The following Logical1, Logical2, and Logical3 constraints correspond directly to the three extra conditions
in the problem statement:

con Logical1 {period in PERIODS}:
sum {oil in OILS} IsUsed[oil,period] <= &max_num_oils_used;

con Logical2 {oil in OILS, period in PERIODS}:
Use[oil,period] >= &min_oil_used_threshold * IsUsed[oil,period];

con Logical3 {oil in {'veg1','veg2'}, period in PERIODS}:
IsUsed[oil,period] <= IsUsed['oil3',period];

num hardness_sol {period in PERIODS} =
(sum {oil in OILS} hardness[oil] * Use[oil,period].sol)

/ Manufacture[period].sol;

Because PROC OPTMODEL automatically recognizes that this model is a mixed integer linear programming
problem, the following SOLVE statement calls the MILP solver, as shown in Figure 2.1:

solve;
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Figure 2.1 Summaries from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 125

Bounded Above 0

Bounded Below 30

Bounded Below and Above 85

Free 0

Fixed 10

Binary 30

Integer 0

Number of Constraints 132

Linear LE (<=) 66

Linear EQ (=) 30

Linear GE (>=) 36

Linear Range 0

Constraint Coefficients 384

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Profit

Solution Status Optimal

Objective Value 100278.7037

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.273737E-13

Bound Infeasibility 2.273737E-13

Integer Infeasibility 8.881784E-16

Best Bound 100278.7037

Nodes 427

Iterations 4760

Presolve Time 0.51

Solution Time 0.60
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The following PRINT statement creates the output shown in Figure 2.2:

print Buy Use Store IsUsed Manufacture hardness_sol Logical1.body;

The .body constraint suffix accesses the left-hand side value of the Logical1 constraint. For each period, the
solution uses no more than three oils, as shown in Figure 2.2. The following CREATE DATA statements
create multiple output data sets, as in Chapter 1:

create data sol_data1 from [oil period] Buy Use Store IsUsed;
create data sol_data2 from [period] Manufacture;

quit;

Figure 2.2 Output from Mixed Integer Linear Programming Solver

[1] [2] Buy Use Store IsUsed

oil1 0 500.00

oil1 1 0.00 0.000 500.00 0

oil1 2 0.00 -0.000 500.00 0

oil1 3 0.00 0.000 500.00 0

oil1 4 -0.00 0.000 500.00 0

oil1 5 0.00 0.000 500.00 0

oil1 6 0.00 0.000 500.00 0

oil2 0 500.00

oil2 1 0.00 40.000 460.00 1

oil2 2 0.00 0.000 460.00 0

oil2 3 0.00 -0.000 460.00 -0

oil2 4 0.00 230.000 230.00 1

oil2 5 0.00 230.000 0.00 1

oil2 6 730.00 230.000 500.00 1

oil3 0 500.00

oil3 1 0.00 210.000 290.00 1

oil3 2 0.00 250.000 40.00 1

oil3 3 770.00 250.000 560.00 1

oil3 4 0.00 20.000 540.00 1

oil3 5 0.00 20.000 520.00 1

oil3 6 0.00 20.000 500.00 1

veg1 0 500.00

veg1 1 0.00 0.000 500.00 0

veg1 2 0.00 85.185 414.81 1

veg1 3 0.00 85.185 329.63 1

veg1 4 0.00 155.000 174.63 1

veg1 5 -0.00 155.000 19.63 1

veg1 6 480.37 0.000 500.00 0

veg2 0 500.00

veg2 1 0.00 200.000 300.00 1

veg2 2 0.00 114.815 185.19 1

veg2 3 -0.00 114.815 70.37 1

veg2 4 0.00 0.000 70.37 0

veg2 5 0.00 0.000 70.37 0

veg2 6 629.63 200.000 500.00 1
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Figure 2.2 continued

[1] Manufacture hardness_sol Logical1.BODY

1 450 5.4178 3

2 450 6.0000 3

3 450 6.0000 3

4 405 6.0000 3

5 405 6.0000 3

6 450 5.0800 3

Note that the maximum profit of £100,279 is smaller than in Chapter 1. This result is expected because this
model contains additional constraints.

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� numeric and string index sets

� reading dense two-dimensional data

� bounds in the VAR statement

� FIX statement

� IMPVAR statement

� MAX aggregation operator

� SUBSTR function

� using a colon (:) to select members of a set

� set operators DIFF and UNION

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� multiple input and output data sets

� BINARY option

� .ub variable suffix

� .body constraint suffix
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Problem Statement
An engineering factory makes seven products (PROD 1 to PROD 7) on the following machines: four
grinders, two vertical drills, three horizontal drills, one borer, and one planer.1 Each product yields a certain
contribution to profit (defined as £/unit selling price minus cost of raw materials). These quantities (in £/unit)
together with the unit production times (hours) required on each process are given below. A dash indicates
that a product does not require a process.

PROD PROD PROD PROD PROD PROD PROD
1 2 3 4 5 6 7

Contribution to 10 6 8 4 11 9 3
profit

Grinding 0.5 0.7 — — 0.3 0.2 0.5
Vertical drilling 0.1 0.2 — 0.3 — 0.6 —
Horizontal drilling 0.2 — 0.8 — — — 0.6
Boring 0.05 0.03 — 0.07 0.1 — 0.08
Planing — — 0.01 — 0.05 — 0.05

In the present month (January) and the five subsequent months certain machines will be down for maintenance.
These machines will be:

January 1 grinder
February 2 horizontal drills
March 1 borer
April 1 vertical drill
May 1 grinder and 1 vertical drill
June 1 planer and 1 horizontal drill

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 233–234).
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There are marketing limitations on each product in each month. These are:

1 2 3 4 5 6 7
January 500 1000 300 300 800 200 100
February 600 500 200 0 400 300 150
March 300 600 0 0 500 400 100
April 200 300 400 500 200 0 100
May 0 100 500 100 1000 300 0
June 500 500 100 300 1100 500 60

It is possible to store up to 100 of each product at a time at a cost of £0.5 per unit per month. There are no
stocks at present but it is desired to have a stock of 50 of each type of product at the end of June.

The factory works a 6 day week with two shifts of 8 hours each day.

No sequencing problems need to be considered.

When and what should the factory make in order to maximize the total profit? Recommend any price
increases and the value of acquiring any new machines.

N.B. It may be assumed that each month consists of only 24 working days.

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� product 2 PRODUCTS

� machine_type 2 MACHINE_TYPES

� period 2 PERIODS
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Parameters
Table 3.1 shows the parameters that are used in this example.

Table 3.1 Parameters

Parameter Name Interpretation

profit[product] Profit per unit of product
demand[product,period] Demand for each product per period
num_machines[machine_type] Total number of machines for each machine type
num_machines_per_period[machine_type,period] For each machine type, the number of machines

available per period
num_machines_down_per_period[machine_type,period] For each machine type, the number of machines

down per period
production_time[product,machine_type] Production time per unit of product on each

machine type
store_ub Number of units that can be stored for each

product per period
storage_cost_per_unit Storage cost per unit per period
final_storage Number of units of each product in storage at the

end of the last period
num_hours_per_period Number of working hours per period (month)

Variables
Table 3.2 shows the variables that are used in this example.

Table 3.2 Variables

Variable Name Interpretation

Make[product,period] Number of units of each product to make per period
Sell[product,period] Number of units of each product to sell per period
Store[product,period] Number of units of each product to store as inventory at the end of each period

Objective
The objective is to maximize the following function, where StorageCost is a linear function of Store:

TotalProfit D
X

product2PRODUCTS

X
period2PERIODS

profit[product] � Sell[product,period] � StorageCost
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Constraints
The following constraints are used in this example:

� bounds on decision variables

� for machine_type 2 MACHINE_TYPES and period 2 PERIODS,X
product2PRODUCTS

production_time[product,machine_type] �Make[product,period]

� num_hours_per_period � num_machines_per_period[machine_type,period]

� for product 2 PRODUCTS and period 2 PERIODS,

(if period � 1 2 PERIODS, then Store[product,period � 1]I else 0/

CMake[product,period]

D Sell[product,period]C Store[product,period]

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data product_data;
input product $ profit;
datalines;

prod1 10
prod2 6
prod3 8
prod4 4
prod5 11
prod6 9
prod7 3
;

data demand_data;
input prod1-prod7;
datalines;

500 1000 300 300 800 200 100
600 500 200 0 400 300 150
300 600 0 0 500 400 100
200 300 400 500 200 0 100

0 100 500 100 1000 300 0
500 500 100 300 1100 500 60
;

data machine_type_data;
input machine_type $ num_machines;
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datalines;
grinder 4
vdrill 2
hdrill 3
borer 1
planer 1
;

data machine_type_period_data;
input machine_type $ period num_down;
datalines;

grinder 1 1
hdrill 2 2
borer 3 1
vdrill 4 1
grinder 5 1
vdrill 5 1
planer 6 1
hdrill 6 1
;

data machine_type_product_data;
input machine_type $ prod1-prod7;
datalines;

grinder 0.5 0.7 0 0 0.3 0.2 0.5
vdrill 0.1 0.2 0 0.3 0 0.6 0
hdrill 0.2 0 0.8 0 0 0 0.6
borer 0.05 0.03 0 0.07 0.1 0 0.08
planer 0 0 0.01 0 0.05 0 0.05
;

%let store_ub = 100;
%let storage_cost_per_unit = 0.5;
%let final_storage = 50;
%let num_hours_per_period = 24 * 2 * 8;

PROC OPTMODEL Statements and Output
This example uses both one-dimensional and dense two-dimensional data, as in Chapter 1 and Chapter 2:

proc optmodel;
set <str> PRODUCTS;
num profit {PRODUCTS};
read data product_data into PRODUCTS=[product] profit;

set PERIODS;
num demand {PRODUCTS, PERIODS};
read data demand_data into PERIODS=[_N_]

{product in PRODUCTS} <demand[product,_N_]=col(product)>;

set <str> MACHINE_TYPES;
num num_machines {MACHINE_TYPES};
read data machine_type_data into MACHINE_TYPES=[machine_type] num_machines;
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But this problem also has sparse two-dimensional data: for most .machine_type; period/ pairs, the number
of machines down is 0. In the following statements, the INIT option in the second NUM statement initializes
num_machines_down_per_period to 0. The read of the sparse data set machine_type_period_data populates
only the nonzero values. The subsequent computation of num_machines_per_period[machine_type,period]
then uses the initial value of num_machines_down_per_period[machine_type,period] when no other value
has been supplied:

num num_machines_per_period {machine_type in MACHINE_TYPES, PERIODS}
init num_machines[machine_type];

num num_machines_down_per_period {MACHINE_TYPES, PERIODS} init 0;
read data machine_type_period_data into [machine_type period]

num_machines_down_per_period=num_down;
for {machine_type in MACHINE_TYPES, period in PERIODS}

num_machines_per_period[machine_type,period] =
num_machines_per_period[machine_type,period]

- num_machines_down_per_period[machine_type,period];
print num_machines_per_period;

Figure 3.1 shows the resulting values of num_machines_per_period.

Figure 3.1 num_machines_per_period Parameter

The OPTMODEL Procedure

num_machines_per_period

1 2 3 4 5 6

borer 1 1 0 1 1 1

grinder 3 4 4 4 3 4

hdrill 3 1 3 3 3 2

planer 1 1 1 1 1 0

vdrill 2 2 2 1 1 2

The following statements declare and read dense two-dimensional data:

num production_time {PRODUCTS, MACHINE_TYPES};
read data machine_type_product_data into [machine_type]

{product in PRODUCTS}
<production_time[product,machine_type]=col(product)>;
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The following statements are straightforward:

var Make {PRODUCTS, PERIODS} >= 0;
var Sell {product in PRODUCTS, period in PERIODS} >= 0

<= demand[product,period];

num last_period = max {period in PERIODS} period;
var Store {PRODUCTS, PERIODS} >= 0 <= &store_ub;
for {product in PRODUCTS}

fix Store[product,last_period] = &final_storage;

impvar StorageCost =
sum {product in PRODUCTS, period in PERIODS}

&storage_cost_per_unit * Store[product,period];
max TotalProfit =

sum {product in PRODUCTS, period in PERIODS}
profit[product] * Sell[product,period]

- StorageCost;

con Machine_hours_con {machine_type in MACHINE_TYPES, period in PERIODS}:
sum {product in PRODUCTS}

production_time[product,machine_type] * Make[product,period]
<= &num_hours_per_period * num_machines_per_period[machine_type,period];

The following Flow_balance_con constraint uses an IF-THEN/ELSE expression to handle the boundary
conditions: if a previous period exists, the units in storage at the end of the previous period are available to
be sold in the current period. (Because ELSE 0 is the default, you could use just an IF-THEN expression
instead.)

con Flow_balance_con {product in PRODUCTS, period in PERIODS}:
(if period - 1 in PERIODS then Store[product,period-1] else 0)

+ Make[product,period]
= Sell[product,period] + Store[product,period];

solve;
print Make Sell Store;



40 F Chapter 3: Factory Planning 1

The maximum total profit is £93,715, as shown in Figure 3.2.

Figure 3.2 Output from Linear Programming Solver

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 126

Bounded Above 0

Bounded Below 42

Bounded Below and Above 71

Free 0

Fixed 13

Number of Constraints 72

Linear LE (<=) 30

Linear EQ (=) 42

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 281

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalProfit

Solution Status Optimal

Objective Value 93715.178571

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 31

Presolve Time 0.00

Solution Time 0.01
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Figure 3.2 continued

[1] [2] Make Sell Store

prod1 1 500.00 500.00 0.0

prod1 2 700.00 600.00 100.0

prod1 3 0.00 100.00 0.0

prod1 4 200.00 200.00 0.0

prod1 5 0.00 0.00 0.0

prod1 6 550.00 500.00 50.0

prod2 1 888.57 888.57 0.0

prod2 2 600.00 500.00 100.0

prod2 3 0.00 100.00 0.0

prod2 4 300.00 300.00 0.0

prod2 5 100.00 100.00 0.0

prod2 6 550.00 500.00 50.0

prod3 1 382.50 300.00 82.5

prod3 2 117.50 200.00 0.0

prod3 3 0.00 0.00 0.0

prod3 4 400.00 400.00 0.0

prod3 5 600.00 500.00 100.0

prod3 6 0.00 50.00 50.0

prod4 1 300.00 300.00 0.0

prod4 2 0.00 0.00 0.0

prod4 3 0.00 0.00 0.0

prod4 4 500.00 500.00 0.0

prod4 5 100.00 100.00 0.0

prod4 6 350.00 300.00 50.0

prod5 1 800.00 800.00 0.0

prod5 2 500.00 400.00 100.0

prod5 3 0.00 100.00 0.0

prod5 4 200.00 200.00 0.0

prod5 5 1100.00 1000.00 100.0

prod5 6 0.00 50.00 50.0

prod6 1 200.00 200.00 0.0

prod6 2 300.00 300.00 0.0

prod6 3 400.00 400.00 0.0

prod6 4 0.00 0.00 0.0

prod6 5 300.00 300.00 0.0

prod6 6 550.00 500.00 50.0

prod7 1 0.00 0.00 0.0

prod7 2 250.00 150.00 100.0

prod7 3 0.00 100.00 0.0

prod7 4 100.00 100.00 0.0

prod7 5 100.00 0.00 100.0

prod7 6 0.00 50.00 50.0
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You can use the .dual constraint suffix to access the optimal dual variables returned by the solver:

print Machine_hours_con.dual;
create data sol_data1 from [product period] Make Sell Store;

quit;

These values, shown in Figure 3.3, suggest the change in optimal objective value if the factory acquires
an additional machine in that period. For this test instance, it turns out that the positive dual variables all
correspond to machines that are down.

Figure 3.3 Optimal Dual Variables

Machine_hours_con.DUAL

1 2 3 4 5 6

borer 0.0000 0.0000 200.0000 0.0000 0.0000 0.0000

grinder 8.5714 0.0000 0.0000 0.0000 0.0000 0.0000

hdrill 0.0000 0.6250 0.0000 0.0000 0.0000 0.0000

planer 0.0000 0.0000 0.0000 0.0000 0.0000 800.0000

vdrill 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming

� numeric and string index sets

� reading dense two-dimensional data

� reading sparse two-dimensional data

� INIT option

� bounds in the VAR statement

� FIX statement

� IMPVAR statement

� MAX aggregation operator

� IF-THEN/ELSE expression

� .dual constraint suffix
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Problem Statement
Instead of stipulating when each machine is down for maintenance in the factory planning problem, it is
desired to find the best month for each machine to be down.1

Each machine must be down for maintenance in one month of the six apart from the grinding machines, only
two of which need be down in any six months.

Extend the model to allow it to make these extra decisions. How much is the extra flexibility of allowing
down times to be chosen worth?

Mathematical Programming Formulation
This formulation builds on the formulation used in Chapter 3. This section includes only the new elements of
the formulation.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 234).
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Parameters
Table 4.1 shows the additional parameters that are used in this example.

Table 4.1 Parameters

Parameter Name Interpretation

num_machines_needing_maintenance[machine_type] For each machine type, the number of machines that
need maintenance

Variables
Table 4.2 shows the additional variables that are used in this example.

Table 4.2 Variables

Variable Name Interpretation

NumMachinesDown[machine_type,period] For each machine type, the number of machines down per period

Objective
The objective is the same as in Chapter 3.

Constraints
The following additional constraints are used in this example:

� for machine_type 2 MACHINE_TYPES and period 2 PERIODS,

X
product2PRODUCTS

production_time[product,machine_type] �Make[product,period]

� num_hours_per_period � .num_machines[machine_type] � NumMachinesDown[machine_type,period]/

� for machine_type 2 MACHINE_TYPES,X
period2PERIODS

NumMachinesDown[machine_type,period] D num_machines_needing_maintenance[machine_type]
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Input Data
Ignore machine_type_period_data from Chapter 3, and replace machine_type_data as follows:

data machine_type_data;
input machine_type $ num_machines num_machines_needing_maintenance;
datalines;

grinder 4 2
vdrill 2 2
hdrill 3 3
borer 1 1
planer 1 1
;

PROC OPTMODEL Statements and Output
For completeness, all statements are shown. Statements that are new or changed from Chapter 3 are indicated.

proc optmodel;
set <str> PRODUCTS;
num profit {PRODUCTS};
read data product_data into PRODUCTS=[product] profit;

set PERIODS;
num demand {PRODUCTS, PERIODS};
read data demand_data into PERIODS=[_N_]

{product in PRODUCTS} <demand[product,_N_]=col(product)>;

set <str> MACHINE_TYPES;
num num_machines {MACHINE_TYPES};

The following statements declare and populate the num_machines_needing_maintenance parameter:

num num_machines_needing_maintenance {MACHINE_TYPES};
read data machine_type_data into MACHINE_TYPES=[machine_type]

num_machines num_machines_needing_maintenance;

The following statements are the same as in Chapter 3:

num production_time {PRODUCTS, MACHINE_TYPES};
read data machine_type_product_data into [machine_type]

{product in PRODUCTS}
<production_time[product,machine_type]=col(product)>;

var Make {PRODUCTS, PERIODS} >= 0;
var Sell {product in PRODUCTS, period in PERIODS} >= 0

<= demand[product,period];

num last_period = max {period in PERIODS} period;
var Store {PRODUCTS, PERIODS} >= 0 <= &store_ub;
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for {product in PRODUCTS}
fix Store[product,last_period] = &final_storage;

impvar StorageCost =
sum {product in PRODUCTS, period in PERIODS}

&storage_cost_per_unit * Store[product,period];
max TotalProfit =

sum {product in PRODUCTS, period in PERIODS}
profit[product] * Sell[product,period]

- StorageCost;

Most of the remaining statements are new or modified from Chapter 3. The INTEGER option in the following
VAR statement declares NumMachinesDown to be an integer variable:

var NumMachinesDown {MACHINE_TYPES, PERIODS} >= 0 integer;

con Machine_hours_con {machine_type in MACHINE_TYPES, period in PERIODS}:
sum {product in PRODUCTS}

production_time[product,machine_type] * Make[product,period]
<= &num_hours_per_period *

(num_machines[machine_type] - NumMachinesDown[machine_type,period]);

con Maintenance_con {machine_type in MACHINE_TYPES}:
sum {period in PERIODS} NumMachinesDown[machine_type,period]

= num_machines_needing_maintenance[machine_type];

con Flow_balance_con {product in PRODUCTS, period in PERIODS}:
(if period - 1 in PERIODS then Store[product,period-1] else 0)

+ Make[product,period]
= Sell[product,period] + Store[product,period];

Because the problem contains integer variables, the SOLVE statement automatically invokes the MILP solver:

solve;
print Make best4. Sell best4. Store best4.;
print NumMachinesDown best4.;
create data sol_data1 from [product period] Make Sell Store;
create data sol_data2 from [machine_type period] NumMachinesDown;

quit;

The solver determines when machines should be down and obtains a total profit of £108,855, as shown in
Figure 4.1. This objective value represents an increase of £15,140 from the optimal objective in Chapter 3.
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Figure 4.1 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 156

Bounded Above 0

Bounded Below 72

Bounded Below and Above 71

Free 0

Fixed 13

Binary 0

Integer 30

Number of Constraints 77

Linear LE (<=) 30

Linear EQ (=) 47

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 341

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalProfit

Solution Status Optimal

Objective Value 108855.00605

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.719513E-12

Bound Infeasibility 4.320339E-16

Integer Infeasibility 9.2010167E-6

Best Bound 108855.00605

Nodes 1

Iterations 315

Presolve Time 0.01

Solution Time 0.06
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Figure 4.1 continued

[1] [2] Make Sell Store

prod1 1 500 500 0

prod1 2 600 600 0

prod1 3 400 300 100

prod1 4 0 100 0

prod1 5 0 0 0

prod1 6 550 500 50

prod2 1 1000 1000 0

prod2 2 500 500 0

prod2 3 700 600 100

prod2 4 0 100 0

prod2 5 100 100 0

prod2 6 550 500 50

prod3 1 300 300 0

prod3 2 200 200 0

prod3 3 100 0 100

prod3 4 0 100 0

prod3 5 500 500 0

prod3 6 150 100 50

prod4 1 300 300 0

prod4 2 0 0 0

prod4 3 100 0 100

prod4 4 0 100 0

prod4 5 100 100 0

prod4 6 350 300 50

prod5 1 800 800 0

prod5 2 400 400 0

prod5 3 600 500 100

prod5 4 0 100 0

prod5 5 1000 1000 0

prod5 6 1150 1100 50

prod6 1 200 200 0

prod6 2 300 300 0

prod6 3 400 400 0

prod6 4 0 0 0

prod6 5 300 300 0

prod6 6 550 500 50

prod7 1 100 100 0

prod7 2 150 150 0

prod7 3 200 100 100

prod7 4 0 100 0

prod7 5 0 0 0

prod7 6 110 60 50
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Figure 4.1 continued

NumMachinesDown

1 2 3 4 5 6

borer 0 0 0 1 0 0

grinder 0 0 0 0 2 0

hdrill 1 2 0 0 0 0

planer 0 0 0 1 0 0

vdrill 0 0 0 2 0 0

As expected, the optimal numbers of machines down differ from the num_machines_down_per_period
parameter values in Chapter 3.

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� numeric and string index sets

� reading dense two-dimensional data

� bounds in the VAR statement

� FIX statement

� IMPVAR statement

� MAX aggregation operator

� IF-THEN/ELSE expression

� multiple input and output data sets

� INTEGER option



50



Chapter 5

Manpower Planning: How to Recruit, Retrain,
Make Redundant, or Overman

Contents
Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Mathematical Programming Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PROC OPTMODEL Statements and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Features Demonstrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Problem Statement
A company is undergoing a number of changes which will affect its manpower requirements in future years.1

Owing to the installation of new machinery, fewer unskilled but more skilled and semi-skilled workers will
be required. In addition to this a downturn in trade is expected in the next year which will reduce the need for
workers in all categories. The estimated manpower requirements for the next three years are as follows:

Unskilled Semi-skilled Skilled
Current strength 2000 1500 1000
Year 1 1000 1400 1000
Year 2 500 2000 1500
Year 3 0 2500 2000

The company wishes to decide its policy with regard to the following over the next three years:

(1) Recruitment

(2) Retraining

(3) Redundancy

(4) Short-time working.

There is a natural wastage of labour. A fairly large number of workers leave during their first year. After this
the rate is much smaller. Taking this into account, the wastage rates can be taken as below:

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 234–236).
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Unskilled Semi-skilled Skilled
Less than one year’s service 25% 20% 10%
More than one year’s service 10% 5% 5%

There has been no recent recruitment and all workers in the current labour force have been employed for
more than one year.

Recruitment
It is possible to recruit a limited number of workers from outside. In any one year the numbers which can be
recruited in each category are:

Unskilled Semi-skilled Skilled
500 800 500

Retraining
It is possible to retrain up to 200 unskilled workers per year to make them semi-skilled. This costs £400 per
worker. The retraining of semi-skilled workers to make them skilled is limited to no more than one quarter of
the skilled labour at the time as some training is done on the job. To retrain a semi-skilled worker in this way
costs £500.

Downgrading of workers to a lower skill is possible but 50% of such workers leave, although it costs the
company nothing. (This wastage is additional to the ‘natural wastage’ described above.)

Redundancy
The redundancy payment to an unskilled worker is £200 and to a semi-skilled or skilled worker £500.

Overmanning
It is possible to employ up to 150 more workers over the whole company than are needed but the extra costs
per employee per year are:

Unskilled Semi-skilled Skilled
£1500 £2000 £3000
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Short-time Working
Up to 50 workers in each category of skill can be put on short-time working. The cost of this (per employee
per year) is:

Unskilled Semi-skilled Skilled
£500 £400 £400

An employee on short-time working meets the production requirements of half an employee.

The company’s declared objective is to minimize redundancy. How should they operate in order to do this?

If their policy were to minimize costs, how much extra would this save? Deduce the cost of saving each type
of job each year.

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� worker 2WORKERS

� period 2 PERIODS0

� period 2 PERIODS D PERIODS0 n f0g

� .i; j / 2 RETRAIN_PAIRS: worker i retrained as worker j

� .i; j / 2 DOWNGRADE_PAIRS: worker i downgraded to worker j
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Parameters
Table 5.1 shows the parameters that are used in this example.

Table 5.1 Parameters

Parameter Name Interpretation

waste_new[worker] Fraction of workers who leave during their first year
waste_old[worker] Fraction of workers who leave after their first year
recruit_ub[worker] Upper bound on number of workers who are recruited from outside
redundancy_cost[worker] Cost per worker made redundant
overmanning_cost[worker] Cost per excess worker
shorttime_ub[worker] Upper bound on number of short-time workers
shorttime_cost[worker] Cost per short-time worker
demand[worker,period] Manpower requirements
retrain_ub[i,j] Upper bound on number of workers who can be retrained from i to j per

year
retrain_cost[i,j] Cost to retrain worker i as worker j
semiskill_retrain_frac_ub Upper bound on fraction of semi-skilled workers who can be retrained to

skilled
downgrade_leave_frac Fraction of downgraded workers who leave
overmanning_ub Upper bound on number of excess workers
shorttime_frac Fraction of production requirements of a full-time employee that is met by

each short-time employee

Variables
Table 5.2 shows the variables that are used in this example.

Table 5.2 Variables

Variable Name Interpretation

NumWorkers[worker,period] Number of workers per period
NumRecruits[worker,period] Number of recruited workers per period
NumRedundant[worker,period] Number of workers made redundant per period
NumShortTime[worker,period] Number of short-time workers per period
NumExcess[worker,period] Number of excess workers per period
NumRetrain[i,j,period] Number of workers retrained from i to j per period
NumDowngrade[i,j,period] Number of workers downgraded from i to j per period
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Objectives
One objective is to minimize the following function:

Redundancy D
X

worker2WORKERS

X
period2PERIODS

NumRedundant[worker,period]

A second objective is to minimize the following function:

Cost D
XX

redundancy_cost[worker] � NumRedundant[worker,period]

C

XX
shorttime_cost[worker] � NumShorttime[worker,period]

C

XX
overmanning_cost[worker] � NumExcess[worker,period]

C

X
.i;j/2RETRAIN_PAIRS

X
period2PERIODS

retrain_cost[i,j] � NumRetrain[i,j,period]

Constraints
The following constraints are used in this example:

� bounds on variables

� for worker 2WORKERS and period 2 PERIODS,

NumWorkers[worker,period]

� .1 � shorttime_frac/ � NumShortTime[worker,period]

� NumExcess[worker,period]

D demand[worker,period]

� for worker 2WORKERS and period 2 PERIODS,

NumWorkers[worker,period]

D .1 � waste_old[worker]/ � NumWorkers[worker,period � 1]

C .1 � waste_new[worker]/ � NumRecruits[worker,period]

C .1 � waste_old[worker]/ �
X

.i;worker/2RETRAIN_PAIRS

NumRetrain[i,worker,period]

C .1 � downgrade_leave_frac/ �
X

.i;worker/2DOWNGRADE_PAIRS

NumDowngrade[i,worker,period]

�

X
.worker;j/2RETRAIN_PAIRS

NumRetrain[worker,j,period]

�

X
.worker;j/2DOWNGRADE_PAIRS

NumDowngrade[worker,j,period]

� NumRedundant[worker,period]
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� for period 2 PERIODS,

NumRetrain[’semiskilled’,’skilled’,period] � semiskill_retrain_frac_ub �NumWorkers[’skilled’,period]

� for period 2 PERIODS,X
worker2WORKERS

NumExcess[worker,period] � overmanning_ub

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data demand_data;
input period unskilled semiskilled skilled;
datalines;

0 2000 1500 1000
1 1000 1400 1000
2 500 2000 1500
3 0 2500 2000
;

data worker_data;
input worker $12. waste_new waste_old recruit_ub redundancy_cost

overmanning_cost shorttime_ub shorttime_cost;
datalines;

unskilled 0.25 0.10 500 200 1500 50 500
semiskilled 0.20 0.05 800 500 2000 50 400
skilled 0.10 0.05 500 500 3000 50 400
;

data retrain_data;
input worker1 $12. worker2 $12. retrain_ub retrain_cost;
datalines;

unskilled semiskilled 200 400
semiskilled skilled . 500
;

data downgrade_data;
input worker1 $12. worker2 $12.;
datalines;

semiskilled unskilled
skilled semiskilled
skilled unskilled
;

%let semiskill_retrain_frac_ub = 0.25;
%let downgrade_leave_frac = 0.5;
%let overmanning_ub = 150;
%let shorttime_frac = 0.5;
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PROC OPTMODEL Statements and Output
The first several index sets are one-dimensional, as in all the previous examples:

proc optmodel;
set <str> WORKERS;
num waste_new {WORKERS};
num waste_old {WORKERS};
num recruit_ub {WORKERS};
num redundancy_cost {WORKERS};
num overmanning_cost {WORKERS};
num shorttime_ub {WORKERS};
num shorttime_cost {WORKERS};
read data worker_data into WORKERS=[worker]

waste_new waste_old recruit_ub redundancy_cost overmanning_cost
shorttime_ub shorttime_cost;

set PERIODS0;
num demand {WORKERS, PERIODS0};
read data demand_data into PERIODS0=[period]

{worker in WORKERS} <demand[worker,period]=col(worker)>;

var NumWorkers {WORKERS, PERIODS0} >= 0;
for {worker in WORKERS} fix NumWorkers[worker,0] = demand[worker,0];

set PERIODS = PERIODS0 diff {0};
var NumRecruits {worker in WORKERS, PERIODS} >= 0 <= recruit_ub[worker];
var NumRedundant {WORKERS, PERIODS} >= 0;
var NumShortTime {worker in WORKERS, PERIODS} >= 0 <= shorttime_ub[worker];
var NumExcess {WORKERS, PERIODS} >= 0;

Both RETRAIN_PAIRS and DOWNGRADE_PAIRS are two-dimensional index sets, declared by using the
optional <STR,STR> specification in the SET statement so that these sets contain pairs of strings. In general,
a set can consist of tuples of any length and any combination of NUM and STR scalar-types.

set <str,str> RETRAIN_PAIRS;
num retrain_ub {RETRAIN_PAIRS};
num retrain_cost {RETRAIN_PAIRS};
read data retrain_data into RETRAIN_PAIRS=[worker1 worker2]

retrain_ub retrain_cost;

var NumRetrain {RETRAIN_PAIRS, PERIODS} >= 0;
for {<i,j> in RETRAIN_PAIRS: retrain_ub[i,j] ne .}

for {period in PERIODS} NumRetrain[i,j,period].ub = retrain_ub[i,j];

set <str,str> DOWNGRADE_PAIRS;
read data downgrade_data into DOWNGRADE_PAIRS=[worker1 worker2];
var NumDowngrade {DOWNGRADE_PAIRS, PERIODS} >= 0;

con Demand_con {worker in WORKERS, period in PERIODS}:
NumWorkers[worker,period]

- (1 - &shorttime_frac) * NumShortTime[worker,period]
- NumExcess[worker,period]
= demand[worker,period];
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The following Flow_balance_con constraint uses an implicit slice to express a few of the summations
compactly:

con Flow_balance_con {worker in WORKERS, period in PERIODS}:
NumWorkers[worker,period]

= (1 - waste_old[worker]) * NumWorkers[worker,period-1]
+ (1 - waste_new[worker]) * NumRecruits[worker,period]
+ (1 - waste_old[worker]) *

sum {<i,(worker)> in RETRAIN_PAIRS} NumRetrain[i,worker,period]
+ (1 - &downgrade_leave_frac) *

sum {<i,(worker)> in DOWNGRADE_PAIRS} NumDowngrade[i,worker,period]
- sum {<(worker),j> in RETRAIN_PAIRS} NumRetrain[worker,j,period]
- sum {<(worker),j> in DOWNGRADE_PAIRS} NumDowngrade[worker,j,period]
- NumRedundant[worker,period];

For example,

<i,(worker)> in RETRAIN_PAIRS

is equivalent to

i in slice(<*,worker>,RETRAIN_PAIRS)

which is equivalent to

i in WORKERS: <i,worker> in RETRAIN_PAIRS

The remaining two constraints are straightforward:

con Semiskill_retrain_con {period in PERIODS}:
NumRetrain['semiskilled','skilled',period]

<= &semiskill_retrain_frac_ub * NumWorkers['skilled',period];

con Overmanning_con {period in PERIODS}:
sum {worker in WORKERS} NumExcess[worker,period] <= &overmanning_ub;

This example uses two objectives, Redundancy and Cost, declared in the following MIN statements:

min Redundancy =
sum {worker in WORKERS, period in PERIODS} NumRedundant[worker,period];

min Cost =
sum {worker in WORKERS, period in PERIODS} (

redundancy_cost[worker] * NumRedundant[worker,period]
+ shorttime_cost[worker] * NumShorttime[worker,period]
+ overmanning_cost[worker] * NumExcess[worker,period])

+ sum {<i,j> in RETRAIN_PAIRS, period in PERIODS}
retrain_cost[i,j] * NumRetrain[i,j,period];

The LP solver is called twice, and each SOLVE statement includes the OBJ option to specify which objective
to optimize. The first PRINT statement after each SOLVE statement reports the values of both objectives
even though only one objective is optimized at a time:

solve obj Redundancy;
print Redundancy Cost;
print NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
print NumRetrain;
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print NumDowngrade;
create data sol_data1 from [worker period]

NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
create data sol_data2 from [worker1 worker2 period] NumRetrain NumDowngrade;

solve obj Cost;
print Redundancy Cost;
print NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
print NumRetrain;
print NumDowngrade;
create data sol_data3 from [worker period]

NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
create data sol_data4 from [worker1 worker2 period] NumRetrain NumDowngrade;

quit;

Figure 5.1 shows the output that results from the first SOLVE statement.

Figure 5.1 Output from First SOLVE Statement, Minimizing Redundancy

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function Redundancy

Objective Type Linear

Number of Variables 63

Bounded Above 0

Bounded Below 39

Bounded Below and Above 21

Free 0

Fixed 3

Number of Constraints 24

Linear LE (<=) 6

Linear EQ (=) 18

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 108
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Figure 5.1 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Redundancy

Solution Status Optimal

Objective Value 841.796875

Primal Infeasibility 1.421085E-14

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 13

Presolve Time 0.00

Solution Time 0.01

Redundancy Cost

841.8 1462048

[1] [2] NumWorkers NumRecruits NumRedundant NumShortTime NumExcess

semiskilled 0 1500

semiskilled 1 1443 0.00 0.00 50 17.969

semiskilled 2 2000 682.20 0.00 0 0.000

semiskilled 3 2500 645.72 0.00 0 0.000

skilled 0 1000

skilled 1 1025 0.00 0.00 50 0.000

skilled 2 1525 500.00 0.00 50 0.000

skilled 3 2000 500.00 0.00 0 0.000

unskilled 0 2000

unskilled 1 1157 0.00 442.97 50 132.031

unskilled 2 675 0.00 166.33 50 150.000

unskilled 3 175 0.00 232.50 50 150.000

[1] [2] [3] NumRetrain

semiskilled skilled 1 256.25

semiskilled skilled 2 106.58

semiskilled skilled 3 106.58

unskilled semiskilled 1 200.00

unskilled semiskilled 2 200.00

unskilled semiskilled 3 200.00
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Figure 5.1 continued

[1] [2] [3] NumDowngrade

semiskilled unskilled 1 0.00

semiskilled unskilled 2 0.00

semiskilled unskilled 3 0.00

skilled semiskilled 1 168.44

skilled semiskilled 2 0.00

skilled semiskilled 3 0.00

skilled unskilled 1 0.00

skilled unskilled 2 0.00

skilled unskilled 3 0.00

Figure 5.2 shows the output that results from the second SOLVE statement.

Figure 5.2 Output from Second SOLVE Statement, Minimizing Cost

Problem Summary

Objective Sense Minimization

Objective Function Cost

Objective Type Linear

Number of Variables 63

Bounded Above 0

Bounded Below 39

Bounded Below and Above 21

Free 0

Fixed 3

Number of Constraints 24

Linear LE (<=) 6

Linear EQ (=) 18

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 108
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Figure 5.2 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Cost

Solution Status Optimal

Objective Value 498677.28532

Primal Infeasibility 2.842171E-14

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 8

Presolve Time 0.00

Solution Time 0.01

Redundancy Cost

1423.7 498677

[1] [2] NumWorkers NumRecruits NumRedundant NumShortTime NumExcess

semiskilled 0 1500

semiskilled 1 1400 0.000 0.00 0 0

semiskilled 2 2000 800.000 0.00 0 0

semiskilled 3 2500 800.000 0.00 0 0

skilled 0 1000

skilled 1 1000 55.556 0.00 0 0

skilled 2 1500 500.000 0.00 0 0

skilled 3 2000 500.000 0.00 0 0

unskilled 0 2000

unskilled 1 1000 0.000 812.50 0 0

unskilled 2 500 0.000 257.62 0 0

unskilled 3 0 0.000 353.60 0 0

[1] [2] [3] NumRetrain

semiskilled skilled 1 0.000

semiskilled skilled 2 105.263

semiskilled skilled 3 131.579

unskilled semiskilled 1 0.000

unskilled semiskilled 2 142.382

unskilled semiskilled 3 96.399
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Figure 5.2 continued

[1] [2] [3] NumDowngrade

semiskilled unskilled 1 25

semiskilled unskilled 2 0

semiskilled unskilled 3 0

skilled semiskilled 1 0

skilled semiskilled 2 0

skilled semiskilled 3 0

skilled unskilled 1 0

skilled unskilled 2 0

skilled unskilled 3 0

Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming

� numeric and string index sets

� reading dense two-dimensional data

� reading sparse two-dimensional data

� sets of tuples

� bounds in the VAR statement

� .ub variable suffix

� FIX statement

� using a colon (:) to select members of a set

� set operator DIFF

� SLICE expression

� implicit slice

� multiple objectives and the OBJ option

� multiple input and output data sets
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Problem Statement
An oil refinery purchases two crude oils (crude 1 and crude 2).1 These crude oils are put through four
processes: distillation, reforming, cracking, and blending, to produce petrols and fuels which are sold.

Distillation
Distillation separates each crude oil into fractions known as light naphtha, medium naphtha, heavy naphtha,
light oil, heavy oil and residuum according to their boiling points. Light, medium and heavy naphthas have
octane numbers of 90, 80 and 70 respectively. The fractions into which one barrel of each type of crude splits
are given in the table:

Light Medium Heavy Light Heavy
naphtha naphtha naphtha oil oil Residuum

Crude 1 0.1 0.2 0.2 0.12 0.2 0.13
Crude 2 0.15 0.25 0.18 0.08 0.19 0.12

N.B. There is a small amount of wastage in distillation.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 236–238).
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Reforming
The naphthas can be used immediately for blending into different grades of petrol or can go through a process
known as reforming. Reforming produces a product known as reformed gasoline with an octane number of
115. The yields of reformed gasoline from each barrel of the different naphthas are given below:

1 barrel of light naphtha yields 0.6 barrels of reformed gasoline;
1 barrel of medium naphtha yields 0.52 barrels of reformed gasoline;
1 barrel of heavy naphtha yields 0.45 barrels of reformed gasoline.

Cracking
The oils (light and heavy) can either be used directly for blending into jet fuel or fuel oil or be put through
a process known as catalytic cracking. The catalytic cracker produces cracked oil and cracked gasoline.
Cracked gasoline has an octane number of 105.

1 barrel of light oil yields 0.68 barrels of cracked oil and 0.28 barrels of
cracked gasoline;
1 barrel of heavy oil yields 0.75 barrels of cracked oil and 0.2 barrels of
cracked gasoline.

Cracked oil is used for blending fuel oil and jet fuel; cracked gasoline is used for blending petrol.

Residuum can be used for either producing lube-oil or blending into jet fuel and fuel oil:

1 barrel of residuum yields 0.5 barrels of lube-oil.

Blending

Petrols (Motor Fuel)

There are two sorts of petrol, regular and premium, obtained by blending the naphtha, reformed gasoline and
cracked gasoline. The only stipulations concerning them are that regular must have an octane number of
at least 84 and that premium must have an octane number of at least 94. It is assumed that octane numbers
blend linearly by volume.

Jet Fuel

The stipulation concerning jet fuel is that its vapour pressure must not exceed 1 kilogram per square centimetre.
The vapour pressures for light, heavy and cracked oils and residuum are 1.0, 0.6, 1.5 and 0.05 kilograms per
square centimetre respectively. It may again be assumed that vapour pressures blend linearly by volume.
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Fuel Oil

To produce fuel oil, light oil, cracked oil, heavy oil and residuum must be blended in the ratio 10:4:3:1.

There are availability and capacity limitations on the quantities and processes used:

(a) The daily availability of crude 1 is 20,000 barrels.

(b) The daily availability of crude 2 is 30,000 barrels.

(c) At most 45,000 barrels of crude can be distilled per day.

(d) At most 10,000 barrels of naphtha can be reformed per day.

(e) At most 8000 barrels of oil can be cracked per day.

(f) The daily production of lube oil must be between 500 and 1000 barrels.

(g) Premium motor fuel production must be at least 40% of regular motor fuel production.

The profit contributions from the sale of the final products are (in pence per barrel)

Premium petrol 700
Regular petrol 600
Jet fuel 400
Fuel oil 350
Lube-oil 150

How should the operations of the refinery be planned in order to maximize total profit?

Mathematical Programming Formulation
The problem is represented as a generalized network flow problem with side constraints. Each node
corresponds to a material, and each arc represents conversion of one material to another via one of the
four processes, as shown in Figure 6.1. The arc multiplier values 6 and 2, together with the Distillation
and Cracking constraints specified later, are used to split the flow into equal parts at the head nodes of the
corresponding arcs.
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Figure 6.1 Generalized Network with Arc Multipliers

Index Sets and Their Members
The following index sets and their members are used in this example:

� i 2 NODES

� .i; j / 2 ARCS

� product 2 FINAL_PRODUCTS

� crude 2 CRUDES

� oil 2 OILS

� oil 2 CRACKED_OILS

� petrol 2 PETROLS
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Parameters
Table 6.1 shows the parameters that are used in this example.

Table 6.1 Parameters

Parameter Name Interpretation

arc_mult[arc] Arc multiplier (default value of 1)
profit[product] Profit from sale of final product (in pounds per barrel)
octane[i] Octane per node
octane_lb[petrol] Lower bound on octane
vapour_pressure[i] Vapour pressure per node
fuel_oil_coefficient[i] Fuel oil blending coefficient per node
sum_fuel_oil_coefficient

P
.i;’fuel_oil’/2ARCS fuel_oil_coefficient[i]

vapour_pressure_ub Upper bound on vapour pressure
crude_total_ub Upper bound on number of barrels of crude distilled per day
naphtha_ub Upper bound on number of barrels of naphtha reformed per day
cracked_oil_ub Upper bound on number of barrels of oil cracked per day
lube_oil_lb Lower bound on number of barrels of lube oil produced per day
lube_oil_ub Upper bound on number of barrels of lube oil produced per day
premium_ratio Lower bound on ratio of premium motor fuel production to regular motor

fuel production

Variables
Table 6.2 shows the variables that are used in this example.

Table 6.2 Variables

Variable Name Interpretation

Flow[i,j] Flow across arc .i; j /

CrudeDistilled[crude] Barrels of crude oil distilled
OilCracked[oil] Barrels of oil cracked

Objective
The objective is to maximize the following function:

TotalProfit D
X

i2FINAL_PRODUCTS

profit[i] � Flow[i,’sink’]
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Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 NODES n f’source’; ’sink’g,X
.i;j /2ARCS

Flow[i,j] D
X

.j;i/2ARCS

arc_mult[j,i] � Flow[j,i]

� for .i; j / 2 ARCS such that i 2 CRUDES,

Flow[i,j] D CrudeDistilled[i]

� for .i; j / 2 ARCS such that i 2 CRACKED_OILS,

Flow[i,j] D OilCracked[i]

� for petrol 2 PETROLS,P
.i;petrol/2ARCS

octane[i] � arc_mult[i,petrol] � Flow[i,petrol]P
.i;petrol/2ARCS

arc_mult[i,petrol] � Flow[i,petrol]
� octane_lb[petrol]

�

P
.i;’jet_fuel’/2ARCS

vapour_pressure[i] � arc_mult[i,’jet_fuel’] � Flow[i,’jet_fuel’]P
.i;’jet_fuel’/2ARCS arc_mult[i,’jet_fuel’] � Flow[i,’jet_fuel’]

� vapour_pressure_ub

� for .i; ’fuel_oil’/ 2 ARCS,

Flow[i,’fuel_oil’]P
.j;’fuel_oil’/2ARCS

Flow[j,’fuel_oil’]
D

fuel_oil_coefficient[i]
sum_fuel_oil_coefficient

�

X
i2CRUDES

CrudeDistilled[i] � crude_total_ub

�

X
.i;’reformed_gasoline’/2ARCSW

index(i ,’naphtha’)>0

Flow[i,’reformed_gasoline’] � naphtha_ub

�

X
.i;’cracked_oil’/2ARCS

Flow[i,’cracked_oil’] � cracked_oil_ub

� lube_oil_lb � Flow[’lube_oil’,’sink’] � lube_oil_ub

�

P
.’premium_petrol’;j /2ARCS

Flow[’premium_petrol’,j]P
.’regular_petrol’;j /2ARCS

Flow[’regular_petrol’,j]
� premium_ratio
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Input Data
The following data sets and macro variables contain the input data that are used in this example:

data crude_data;
input crude $ crude_ub;
datalines;

crude1 20000
crude2 30000
;

data arc_data;
input i $18. j $18. multiplier;
datalines;

source crude1 6
source crude2 6
crude1 light_naphtha 0.1
crude1 medium_naphtha 0.2
crude1 heavy_naphtha 0.2
crude1 light_oil 0.12
crude1 heavy_oil 0.2
crude1 residuum 0.13
crude2 light_naphtha 0.15
crude2 medium_naphtha 0.25
crude2 heavy_naphtha 0.18
crude2 light_oil 0.08
crude2 heavy_oil 0.19
crude2 residuum 0.12
light_naphtha regular_petrol .
light_naphtha premium_petrol .
medium_naphtha regular_petrol .
medium_naphtha premium_petrol .
heavy_naphtha regular_petrol .
heavy_naphtha premium_petrol .
light_naphtha reformed_gasoline 0.6
medium_naphtha reformed_gasoline 0.52
heavy_naphtha reformed_gasoline 0.45
light_oil jet_fuel .
light_oil fuel_oil .
heavy_oil jet_fuel .
heavy_oil fuel_oil .
light_oil light_oil_cracked 2
light_oil_cracked cracked_oil 0.68
light_oil_cracked cracked_gasoline 0.28
heavy_oil heavy_oil_cracked 2
heavy_oil_cracked cracked_oil 0.75
heavy_oil_cracked cracked_gasoline 0.2
cracked_oil jet_fuel .
cracked_oil fuel_oil .
reformed_gasoline regular_petrol .
reformed_gasoline premium_petrol .
cracked_gasoline regular_petrol .
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cracked_gasoline premium_petrol .
residuum lube_oil 0.5
residuum jet_fuel .
residuum fuel_oil .
;

data octane_data;
input i $18. octane;
datalines;

light_naphtha 90
medium_naphtha 80
heavy_naphtha 70
reformed_gasoline 115
cracked_gasoline 105
;

data petrol_data;
input petrol $15. octane_lb;
datalines;

regular_petrol 84
premium_petrol 94
;

data vapour_pressure_data;
input oil $12. vapour_pressure;
datalines;

light_oil 1.0
heavy_oil 0.6
cracked_oil 1.5
residuum 0.05
;

data fuel_oil_ratio_data;
input oil $12. coefficient;
datalines;

light_oil 10
cracked_oil 4
heavy_oil 3
residuum 1
;

data final_product_data;
input product $15. profit;
datalines;

premium_petrol 700
regular_petrol 600
jet_fuel 400
fuel_oil 350
lube_oil 150
;

%let vapour_pressure_ub = 1;
%let crude_total_ub = 45000;
%let naphtha_ub = 10000;
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%let cracked_oil_ub = 8000;
%let lube_oil_lb = 500;
%let lube_oil_ub = 1000;
%let premium_ratio = 0.40;

PROC OPTMODEL Statements and Output
The NOMISS option in the first READ DATA statement ensures that only nonmissing values of the variable
multiplier in the arc_data data set populate the arc_mult parameter. Because arc_mult is declared with an
initial value of 1, parameters with no value default to 1.

proc optmodel;
set <str,str> ARCS;
num arc_mult {ARCS} init 1;
read data arc_data nomiss into ARCS=[i j] arc_mult=multiplier;
var Flow {ARCS} >= 0;

set <str> FINAL_PRODUCTS;
num profit {FINAL_PRODUCTS};
read data final_product_data into FINAL_PRODUCTS=[product] profit;

The following FOR loop converts profit from pence per barrel to pounds per barrel, without altering the input
data set:

for {product in FINAL_PRODUCTS} profit[product] = profit[product] / 100;

Most arcs appear in the arc_data data set, but the following assignment statement uses the set operators
UNION and CROSS to augment the ARCS set with an arc from each final product to the sink node:

ARCS = ARCS union (FINAL_PRODUCTS cross {'sink'});

set NODES = union {<i,j> in ARCS} {i,j};

max TotalProfit = sum {i in FINAL_PRODUCTS} profit[i] * Flow[i,'sink'];

con Flow_balance {i in NODES diff {'source','sink'}}:
sum {<(i),j> in ARCS} Flow[i,j]

= sum {<j,(i)> in ARCS} arc_mult[j,i] * Flow[j,i];

set <str> CRUDES;
var CrudeDistilled {CRUDES} >= 0;

Because the decision variable CrudeDistilled automatically contains the .ub suffix, you can populate
CrudeDistilled.ub directly by using the following READ DATA statement, without having to declare an
additional parameter to store this upper bound:

read data crude_data into CRUDES=[crude] CrudeDistilled.ub=crude_ub;
con Distillation {<i,j> in ARCS: i in CRUDES}:

Flow[i,j] = CrudeDistilled[i];

The SETOF operator, used together with the concatenation operator (jj) in the following statements, enables
you to create one index set from another:
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set OILS = {'light_oil','heavy_oil'};
set CRACKED_OILS = setof {i in OILS} i||'_cracked';
var OilCracked {CRACKED_OILS} >= 0;
con Cracking {<i,j> in ARCS: i in CRACKED_OILS}:

Flow[i,j] = OilCracked[i];

num octane {NODES} init .;
read data octane_data nomiss into [i] octane;

set <str> PETROLS;
num octane_lb {PETROLS};
read data petrol_data into PETROLS=[petrol] octane_lb;

num vapour_pressure {NODES} init .;
read data vapour_pressure_data nomiss into [oil] vapour_pressure;

As expressed on page 70, both octane numbers and vapour pressures of the blended fuels are ratios of linear
functions of the decision variables. To increase algorithmic performance and reliability, the following two
CON statements linearize the nonlinear ratio constraints by clearing the denominators:

con Blending_petrol {petrol in PETROLS}:
sum {<i,(petrol)> in ARCS}

octane[i] * arc_mult[i,petrol] * Flow[i,petrol]
>= octane_lb[petrol] *

sum {<i,(petrol)> in ARCS} arc_mult[i,petrol] * Flow[i,petrol];

con Blending_jet_fuel:
sum {<i,'jet_fuel'> in ARCS}

vapour_pressure[i] * arc_mult[i,'jet_fuel'] * Flow[i,'jet_fuel']
<= &vapour_pressure_ub *

sum {<i,'jet_fuel'> in ARCS} arc_mult[i,'jet_fuel'] * Flow[i,'jet_fuel'];

Similarly, the following CON statement linearizes the fuel oil ratio constraints by clearing the denominators:

num fuel_oil_coefficient {NODES} init 0;
read data fuel_oil_ratio_data nomiss into [oil]

fuel_oil_coefficient=coefficient;
num sum_fuel_oil_coefficient

= sum {<i,'fuel_oil'> in ARCS} fuel_oil_coefficient[i];
con Blending_fuel_oil {<i,'fuel_oil'> in ARCS}:

sum_fuel_oil_coefficient * Flow[i,'fuel_oil']
= fuel_oil_coefficient[i] * sum {<j,'fuel_oil'> in ARCS} Flow[j,'fuel_oil'];

con Crude_total_ub_con:
sum {i in CRUDES} CrudeDistilled[i] <= &crude_total_ub;
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The following CON statement uses the SAS function INDEX together with the colon operator (:) to select
the subset of arcs whose tail node contains “naphtha” in its name:

con Naphtha_ub_con:
sum {<i,'reformed_gasoline'> in ARCS: index(i,'naphtha') > 0}

Flow[i,'reformed_gasoline']
<= &naphtha_ub;

con Cracked_oil_ub_con:
sum {<i,'cracked_oil'> in ARCS} Flow[i,'cracked_oil'] <= &cracked_oil_ub;

con Lube_oil_range_con:
&lube_oil_lb <= Flow['lube_oil','sink'] <= &lube_oil_ub;

As expressed on page 70, the premium ratio constraint involves a ratio of linear functions of the decision
variables. The following CON statement linearizes the nonlinear ratio constraint by clearing the denominator:

con Premium_ratio_con:
sum {<'premium_petrol',j> in ARCS} Flow['premium_petrol',j]

>= &premium_ratio *
sum {<'regular_petrol',j> in ARCS} Flow['regular_petrol',j];

num octane_sol {petrol in PETROLS} =
(sum {<i,(petrol)> in ARCS}

octane[i] * arc_mult[i,petrol] * Flow[i,petrol].sol) /
(sum {<i,(petrol)> in ARCS} arc_mult[i,petrol] * Flow[i,petrol].sol);

num vapour_pressure_sol =
(sum {<i,'jet_fuel'> in ARCS} vapour_pressure[i] *

arc_mult[i,'jet_fuel'] * Flow[i,'jet_fuel'].sol)
/ (sum {<i,'jet_fuel'> in ARCS} arc_mult[i,'jet_fuel'] *

Flow[i,'jet_fuel'].sol);

num fuel_oil_ratio_sol {<i,'fuel_oil'> in ARCS} =
(arc_mult[i,'fuel_oil'] * Flow[i,'fuel_oil'].sol) /
(sum {<j,'fuel_oil'> in ARCS} arc_mult[j,'fuel_oil'] *

Flow[j,'fuel_oil'].sol);

solve;
print CrudeDistilled;
print OilCracked Flow;
print octane_sol octane_lb;

Although the previous PRINT statements print all values of the given parameters, the following two PRINT
statements use an index set to print a specified subset of the values:

print {<i,'jet_fuel'> in ARCS} vapour_pressure vapour_pressure_sol;
print {<i,'fuel_oil'> in ARCS} fuel_oil_coefficient fuel_oil_ratio_sol;
create data sol_data1 from [i j] Flow;

quit;
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Figure 6.2 shows the output from the linear programming solver. For this test instance, it turns out that the
optimal solution contains no fuel oil.

Figure 6.2 Output from Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 51

Bounded Above 0

Bounded Below 49

Bounded Below and Above 2

Free 0

Fixed 0

Number of Constraints 46

Linear LE (<=) 4

Linear EQ (=) 38

Linear GE (>=) 3

Linear Range 1

Constraint Coefficients 158

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalProfit

Solution Status Optimal

Objective Value 211365.13477

Primal Infeasibility 2.910383E-11

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 21

Presolve Time 0.00

Solution Time 0.01

[1] CrudeDistilled

crude1 15000

crude2 30000

[1] OilCracked

heavy_oil_cracked 3800

light_oil_cracked 4200
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Figure 6.2 continued

[1] [2] Flow

cracked_gasoline premium_petrol 0.0

cracked_gasoline regular_petrol 1936.0

cracked_oil fuel_oil 0.0

cracked_oil jet_fuel 5706.0

crude1 heavy_naphtha 15000.0

crude1 heavy_oil 15000.0

crude1 light_naphtha 15000.0

crude1 light_oil 15000.0

crude1 medium_naphtha 15000.0

crude1 residuum 15000.0

crude2 heavy_naphtha 30000.0

crude2 heavy_oil 30000.0

crude2 light_naphtha 30000.0

crude2 light_oil 30000.0

crude2 medium_naphtha 30000.0

crude2 residuum 30000.0

fuel_oil sink 0.0

heavy_naphtha premium_petrol 1677.8

heavy_naphtha reformed_gasoline 5406.9

heavy_naphtha regular_petrol 1315.3

heavy_oil fuel_oil 0.0

heavy_oil heavy_oil_cracked 3800.0

heavy_oil jet_fuel 4900.0

heavy_oil_cracked cracked_gasoline 3800.0

heavy_oil_cracked cracked_oil 3800.0

jet_fuel sink 15156.0

light_naphtha premium_petrol 2706.9

light_naphtha reformed_gasoline 0.0

light_naphtha regular_petrol 3293.1

light_oil fuel_oil 0.0

light_oil jet_fuel 0.0

light_oil light_oil_cracked 4200.0

light_oil_cracked cracked_gasoline 4200.0

light_oil_cracked cracked_oil 4200.0

lube_oil sink 500.0

medium_naphtha premium_petrol 0.0

medium_naphtha reformed_gasoline 0.0

medium_naphtha regular_petrol 10500.0

premium_petrol sink 6817.8

reformed_gasoline premium_petrol 2433.1

reformed_gasoline regular_petrol 0.0

regular_petrol sink 17044.4

residuum fuel_oil 0.0

residuum jet_fuel 4550.0

residuum lube_oil 1000.0

source crude1 15000.0

source crude2 30000.0
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Figure 6.2 continued

[1] octane_sol octane_lb

premium_petrol 94 94

regular_petrol 84 84

[1] vapour_pressure

cracked_oil 1.50

heavy_oil 0.60

light_oil 1.00

residuum 0.05

vapour_pressure_sol

0.77372

[1] fuel_oil_coefficient fuel_oil_ratio_sol

cracked_oil 4 .

heavy_oil 3 .

light_oil 10 .

residuum 1 .
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming (generalized network flow with side constraints)

� numeric and string index sets

� reading sparse two-dimensional data

� NOMISS option

� sets of tuples

� bounds in the VAR statement

� .ub variable suffix

� using a colon (:) to select members of a set

� set operators UNION, DIFF, CROSS, and SETOF

� linearizing a ratio constraint

� range constraint

� INDEX function

� implicit slice

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� index set in the PRINT statement
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Mining: Which Pits to Work and When to
Close Them Down
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Problem Statement
A mining company is going to continue operating in a certain area for the next five years.1 There are four
mines in this area but it can operate at most three in any one year. Although a mine may not operate in a
certain year it is still necessary to keep it ‘open’, in the sense that royalties are payable, should it be operated
in a future year. Clearly if a mine is not going to be worked again it can be closed down permanently and no
more royalties need be paid. The yearly royalties payable on each mine kept ‘open’ are

Mine 1 £5 million
Mine 2 £4 million
Mine 3 £4 million
Mine 4 £5 million

There is an upper limit to the amount of ore which can be extracted from each mine in a year. These upper
limits are:

Mine 1 2 � 106 tons
Mine 2 2:5 � 106 tons
Mine 3 1:3 � 106 tons
Mine 4 3 � 106 tons

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 238–239).
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The ore from the different mines is of varying quality. This quality is measured on a scale so that blending
ores together results in a linear combination of the quality measurements, e.g. if equal quantities of two ores
were combined the resultant ore would have a quality measurement half way between that of the ingredient
ores. Measured in these units the qualities of the ores from the mines are given below:

Mine 1 1.0
Mine 2 0.7
Mine 3 1.5
Mine 4 0.5

In each year it is necessary to combine the total outputs from each mine to produce a blended ore of exactly
some stipulated quality. For each year these qualities are

Year 1 0.9
Year 2 0.8
Year 3 1.2
Year 4 0.6
Year 5 1.0

The final blended ore sells for £10 per ton each year. Revenue and expenditure for future years must be
discounted at a rate of 10% per annum.

Which mines should be operated each year and how much should they produce?

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� mine 2 MINES

� year 2 YEARS
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Parameters
Table 7.1 shows the parameters that are used in this example.

Table 7.1 Parameters

Parameter Name Interpretation

cost[mine] Yearly royalties payable on each mine kept open
extract_ub[mine] Upper bound on amount of ore extracted from each mine in a year
quality[mine] Quality of ore from each mine
quality_required[year] Required quality of blended ore per year
max_num_worked_per_year Maximum number of mines worked per year
revenue_per_ton Revenue per ton of blended ore
discount_rate Annual discount rate for future years
Extract[mine,year].ub Upper bound on Extract[mine,year]
quality_sol[year] Quality of blended ore per year

Variables
Table 7.2 shows the variables that are used in this example.

Table 7.2 Variables

Variable Name Interpretation

IsOpen[mine,year] 1 if mine is open in that year; 0 otherwise
IsWorked[mine,year] 1 if mine is worked in that year; 0 otherwise
Extract[mine,year] Amount of ore extracted per mine per year
ExtractedPerYear[year] Amount of ore extracted per year

Objective
The objective is to maximize the following function, where TotalRevenue is a linear function of Extracted-
PerYear, and TotalCost is a linear function of IsOpen:

TotalProfit D TotalRevenue � TotalCost

Constraints
The following constraints are used in this example:

� bounds on variables
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� for year 2 YEARS,

ExtractedPerYear[year] D
X

mine2MINES

Extract[mine,year]

� for mine 2 MINES and year 2 YEARS,

Extract[mine,year] � Extract[mine,year].ub � IsWorked[mine,year]

� for year 2 YEARS,X
mine2MINES

IsWorked[mine,year] � max_num_worked_per_year

� for mine 2 MINES and year 2 YEARS,

IsWorked[mine,year] � IsOpen[mine,year]

� for mine 2 MINES and year 2 YEARS n f1g,

IsOpen[mine,year] � IsOpen[mine,year � 1]

� for year 2 YEARS,P
mine2MINES

quality[mine] � Extract[mine,year]

ExtractedPerYear[year]
D quality_required[year]

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data mine_data;
input mine $ cost extract_ub quality;
datalines;

mine1 5 2 1.0
mine2 4 2.5 0.7
mine3 4 1.3 1.5
mine4 5 3 0.5
;

data year_data;
input year quality_required;
datalines;

1 0.9
2 0.8
3 1.2
4 0.6
5 1.0
;

%let max_num_worked_per_year = 3;
%let revenue_per_ton = 10;
%let discount_rate = 0.10;
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PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements are straightforward declarations of index sets, parameters,
and variables:

proc optmodel;
set <str> MINES;
num cost {MINES};
num extract_ub {MINES};
num quality {MINES};
read data mine_data into MINES=[mine] cost extract_ub quality;

set YEARS;
num quality_required {YEARS};
read data year_data into YEARS=[year] quality_required;

var IsOpen {MINES, YEARS} binary;
var IsWorked {MINES, YEARS} binary;
var Extract {mine in MINES, YEARS} >= 0 <= extract_ub[mine];

The following IMPVAR statement declares ExtractedPerYear as an implicit variable. Using the IMPVAR
statement is an alternative to using a VAR statement and an additional constraint.

impvar ExtractedPerYear {year in YEARS}
= sum {mine in MINES} Extract[mine,year];

The following NUM statement uses a formula to compute the discount (shown in Figure 7.1) that is used in
the objective function:

num discount {year in YEARS} = 1 / (1 + &discount_rate)^(year - 1);
print discount;

impvar TotalRevenue =
&revenue_per_ton * sum {year in YEARS} discount[year] *

ExtractedPerYear[year];
impvar TotalCost =

sum {mine in MINES, year in YEARS} discount[year] * cost[mine] *
IsOpen[mine,year];

max TotalProfit = TotalRevenue - TotalCost;

Figure 7.1 discount Parameter

The OPTMODEL Procedure

[1] discount

1 1.00000

2 0.90909

3 0.82645

4 0.75131

5 0.68301
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The following Link constraint enforces the rule that Extract[mine,year] > 0 implies that
IsWorked[mine,year] D 1 (as in Chapter 2):

con Link {mine in MINES, year in YEARS}:
Extract[mine,year] <= Extract[mine,year].ub * IsWorked[mine,year];

The following Cardinality constraint enforces the limit on number of mines worked per year:

con Cardinality {year in YEARS}:
sum {mine in MINES} IsWorked[mine,year] <= &max_num_worked_per_year;

The following Worked_implies_open constraint enforces the rule that IsWorked[mine,year] D 1 implies that
IsOpen[mine,year] D 1:

con Worked_implies_open {mine in MINES, year in YEARS}:
IsWorked[mine,year] <= IsOpen[mine,year];

The following Continuity constraint enforces the rule that IsOpen[mine,year] D 1 implies that
IsOpen[mine,year � 1] D 1:

con Continuity {mine in MINES, year in YEARS diff {1}}:
IsOpen[mine,year] <= IsOpen[mine,year-1];

As expressed on page 84, the quality of the blended ore for each year is a ratio of linear functions of the
decision variables. The following CON statement linearizes the nonlinear ratio constraint by clearing the
denominator:

con Quality_con {year in YEARS}:
sum {mine in MINES} quality[mine] * Extract[mine,year]

= quality_required[year] * ExtractedPerYear[year];

By using the .sol suffix, the numeric parameter quality_sol computes the quality of the blended ore from
the optimal decision variable values that are returned by the solver:

num quality_sol {year in YEARS} =
(sum {mine in MINES} quality[mine] * Extract[mine,year].sol) /

ExtractedPerYear[year].sol;

solve;
print IsOpen IsWorked Extract;
print ExtractedPerYear quality_sol quality_required;
create data sol_data1 from [mine year] IsOpen IsWorked Extract;
create data sol_data2 from [year] ExtractedPerYear;

quit;
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Figure 7.2 shows the output from the mixed integer linear programming solver. The values of quality_sol and
quality_required agree, as enforced by the Quality_con constraint.

Figure 7.2 Output from Mixed Integer Linear Programming Solver

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 60

Bounded Above 0

Bounded Below 0

Bounded Below and Above 60

Free 0

Fixed 0

Binary 40

Integer 0

Number of Constraints 66

Linear LE (<=) 61

Linear EQ (=) 5

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 151

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalProfit

Solution Status Optimal

Objective Value 146.86197857

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 3.108624E-15

Bound Infeasibility 3.108624E-15

Integer Infeasibility 1.5384592E-6

Best Bound 146.86197857

Nodes 1

Iterations 83

Presolve Time 0.03

Solution Time 0.06
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Figure 7.2 continued

[1] [2] IsOpen IsWorked Extract

mine1 1 1 1 2.0000

mine1 2 1 0 0.0000

mine1 3 1 1 1.9500

mine1 4 1 1 0.1250

mine1 5 1 1 2.0000

mine2 1 1 0 0.0000

mine2 2 1 1 2.5000

mine2 3 1 0 0.0000

mine2 4 1 1 2.5000

mine2 5 1 1 2.1667

mine3 1 1 1 1.3000

mine3 2 1 1 1.3000

mine3 3 1 1 1.3000

mine3 4 1 0 0.0000

mine3 5 1 1 1.3000

mine4 1 1 1 2.4500

mine4 2 1 1 2.2000

mine4 3 1 0 0.0000

mine4 4 1 1 3.0000

mine4 5 0 0 0.0000

[1] ExtractedPerYear quality_sol quality_required

1 5.7500 0.9 0.9

2 6.0000 0.8 0.8

3 3.2500 1.2 1.2

4 5.6250 0.6 0.6

5 5.4667 1.0 1.0
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� numeric and string index sets

� calculated numeric parameter

� bounds in the VAR statement

� IMPVAR statement

� .ub variable suffix

� set operator DIFF

� linearizing a ratio constraint

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� multiple input and output data sets
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Chapter 8

Farm Planning: How Much to Grow and Rear
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Problem Statement
A farmer wishes to plan production on his 200 acre farm over the next five years.1

At present he has a herd of 120 cows. This is made up of 20 heifers and 100 milk-producing cows. Each
heifer needs 2/3 acre to support it and each dairy cow 1 acre. A dairy cow produces an average of 1.1 calves
per year. Half of these calves will be bullocks which are sold almost immediately for an average of £30 each.
The remaining heifers can be either sold almost immediately for £40 or reared to become milk-producing
cows at two years old. It is intended that all dairy cows be sold at 12 years old for an average of £120 each,
although there will probably be an annual loss of 5% per year among heifers and 2% among dairy cows. At
present there are 10 cows of each age from newborn to 11 years old. The decision of how many heifers to
sell in the current year has already been taken and implemented.

The milk from a cow yields an annual revenue of £370. A maximum of 130 cows can be housed at the present
time. To provide accommodation for each cow beyond this number will entail a capital outlay of £200 per
cow. Each milk-producing cow requires 0.6 tons of grain and 0.7 tons of sugar beet per year. Grain and sugar
beet can both be grown on the farm. Each acre yields 1.5 tons of sugar beet. Only 80 acres are suitable for
growing grain. They can be divided into four groups whose yields are as follows:

group 1 20 acres 1.1 tons per acre
group 2 30 acres 0.9 tons per acre
group 3 20 acres 0.8 tons per acre
group 4 10 acres 0.65 tons per acre

Grain can be bought for £90 per ton and sold for £75 per ton. Sugar beet can be bought for £70 per ton and
sold for £58 per ton.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 239–240).
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The labour requirements are:

each heifer 10 hours per year
each milk-producing cow 42 hours per year
each acre put to grain 4 hours per year
each acre put to sugar beet 14 hours per year

Other costs are:

each heifer £50 per year
each milk-producing cow £100 per year
each acre put to grain £15 per year
each acre put to sugar beet £10 per year

Labour costs for the farm are at present £4000 per year and provide 5500 hours labour. Any labour needed
above this will cost £1.20 per hour.

How should the farmer operate over the next five years to maximize profit? Any capital expenditure would
be financed by a 10 year loan at 15% annual interest. The interest and capital repayment would be paid in 10
equally sized yearly instalments. In no year can the cash flow be negative. Lastly, the farmer would not wish
to reduce the total number of dairy cows at the end of the five year period by more than 50% nor increase the
number by more than 75%.

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� age 2 AGES

� year 2 YEARS

� year 2 YEARS0 D f0g [ YEARS

� group 2 GROUPS
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Parameters
Table 8.1 shows the parameters that are used in this example.

Table 8.1 Parameters

Parameter Name Interpretation

init_num_cows[age] Initial number of cows of each age
acres_needed[age] Number of acres needed to support a cow of each age
annual_loss[age] Annual percentage loss per cow of each age
bullock_yield[age] Number of bullocks yielded per year per cow of each age
heifer_yield[age] Number of heifers yielded per year per cow of each age
milk_revenue[age] Milk revenue per year per cow of each age
grain_req[age] Tons of grain required per year per cow of each age
sugar_beet_req[age] Tons of sugar beet required per year per cow of each age
cow_labour_req[age] Number of labour hours required per year per cow of each age
cow_other_costs[age] Other costs per year per cow of each age
acres[group] Number of acres per group
grain_yield[group] Tons of grain yielded per acre by each group
yearly_loan_payment Amount of yearly loan payment per capital outlay
num_years Number of years in planning horizon
num_acres Number of acres in farm
bullock_revenue Revenue for selling a bullock
heifer_revenue Revenue for selling a heifer
dairy_cow_selling_age Age by which a dairy cow is sold
dairy_cow_selling_revenue Revenue for selling a dairy cow
max_num_cows Maximum number of cows that can be housed at present
sugar_beet_yield Tons of sugar beet yielded per acre
grain_cost Cost per ton of grain bought
grain_revenue Revenue per ton of grain sold
grain_labour_req Number of labour hours required per year per acre of grain
grain_other_costs Other costs per year per acre of grain
sugar_beet_cost Cost per ton of sugar beet bought
sugar_beet_revenue Revenue per ton of sugar beet sold
sugar_beet_labour_req Number of labour hours required per year per acre of sugar beet
sugar_beet_other_costs Other costs per year per acre of sugar beet
nominal_labour_cost Present labour costs for farm per year
nominal_labour_hours Maximum number of labour hours available without incurring additional

labour costs
excess_labour_cost Cost per hour of additional labour
capital_outlay_unit Capital outlay per additional cow beyond max_num_cows
num_loan_years Number of years for loan
annual_interest_rate Annual interest rate for loan
max_decrease_ratio Maximum relative decrease in total number of cows at end of planning

horizon
max_increase_ratio Maximum relative increase in total number of cows at end of planning

horizon
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Variables
Table 8.2 shows the variables that are used in this example.

Table 8.2 Variables

Variable Name Interpretation

NumCows[age,year] Number of cows of each age per year
NumBullocksSold[year] Number of bullocks sold per year
NumHeifersSold[year] Number of heifers sold per year
GrainAcres[group,year] Acres of grain per group and year
GrainBought[year] Tons of grain bought per year
GrainSold[year] Tons of grain sold per year
SugarBeetAcres[year] Acres of sugar beet per year
SugarBeetBought[year] Tons of sugar beet bought per year
SugarBeetSold[year] Tons of sugar beet sold per year
NumExcessLabourHours[year] Number of additional labour hours per year
CapitalOutlay[year] Number of capital outlays per year
GrainGrown[group,year] Tons of grain grown per group and year
SugarBeetGrown[year] Tons of sugar beet grown per year
Revenue[year] Revenue per year
Cost[year] Cost per year
Profit[year] Profit per year

Objective
The objective is to maximize the following function, where Profit[year] D Revenue[year] � Cost[year] and
Revenue and Cost are linear functions of other variables:

TotalProfit DX
year2YEARS

�
Profit[year] � yearly_loan_payment � .num_years � 1C year/ � CapitalOutlay[year]

�

Constraints
The following constraints are used in this example:

� bounds on variables
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� for year 2 YEARS,X
age2AGES

acres_needed[age] � NumCows[age,year]

C

X
group2GROUPS

GrainAcres[group,year]C SugarBeetAcres[year]

� num_acres

� for age 2 AGES n fdairy_cow_selling_ageg and year 2 YEARS0 n fnum_yearsg,

NumCows[ageC 1; yearC 1] D .1 � annual_loss[age]/ � NumCows[age,year]

� for year 2 YEARS,

NumBullocksSold[year] D
X

age2AGES

bullock_yield[age] � NumCows[age,year]

� for year 2 YEARS,

NumCows[0,year] D
X

age2AGES

heifer_yield[age] � NumCows[age,year] � NumHeifersSold[year]

� for year 2 YEARS,X
age2AGES

NumCows[age,year] � max_num_cowsC
X

y2YEARSW
y�year

CapitalOutlay[y]

� for group 2 GROUPS and year 2 YEARS,

GrainGrown[group,year] D grain_yield[group] � GrainAcres[group,year]

� for year 2 YEARS,X
age2AGES

grain_req[age] � NumCows[age,year]

�

X
group2GROUPS

GrainGrown[group,year]C GrainBought[year] � GrainSold[year]

� for year 2 YEARS,

SugarBeetGrown[year] D sugar_beet_yield � SugarBeetAcres[year]

� for year 2 YEARS,X
age2AGES

sugar_beet_req[age] � NumCows[age,year]

� SugarBeetGrown[year]C SugarBeetBought[year] � SugarBeetSold[year]
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� for year 2 YEARS,X
age2AGES

cow_labour_req[age] � NumCows[age,year]

C

X
group2GROUPS

grain_labour_req � GrainAcres[group,year]

C sugar_beet_labour_req � SugarBeetAcres[year]

� nominal_labour_hoursC NumExcessLabourHours[year]

� for year 2 YEARS,

Profit[year] � 0

� 1 � max_decrease_ratio �

P
age2AGESW

age�2

NumCows[age,num_years]

P
age2AGESW

age�2

init_num_cows[age]
� 1C max_increase_ratio

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data cow_data;
do age = 0 to 11;

init_num_cows = 10;
if age < 2 then do;

acres_needed = 2/3;
annual_loss = 0.05;
bullock_yield = 0;
heifer_yield = 0;
milk_revenue = 0;
grain_req = 0;
sugar_beet_req = 0;
labour_req = 10;
other_costs = 50;

end;
else do;

acres_needed = 1;
annual_loss = 0.02;
bullock_yield = 1.1/2;
heifer_yield = 1.1/2;
milk_revenue = 370;
grain_req = 0.6;
sugar_beet_req = 0.7;
labour_req = 42;
other_costs = 100;

end;
output;

end;
run;
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data grain_data;
input group $ acres yield;
datalines;

group1 20 1.1
group2 30 0.9
group3 20 0.8
group4 10 0.65
;

%let num_years = 5;
%let num_acres = 200;
%let bullock_revenue = 30;
%let heifer_revenue = 40;
%let dairy_cow_selling_age = 12;
%let dairy_cow_selling_revenue = 120;
%let max_num_cows = 130;
%let sugar_beet_yield = 1.5;
%let grain_cost = 90;
%let grain_revenue = 75;
%let grain_labour_req = 4;
%let grain_other_costs = 15;
%let sugar_beet_cost = 70;
%let sugar_beet_revenue = 58;
%let sugar_beet_labour_req = 14;
%let sugar_beet_other_costs = 10;
%let nominal_labour_cost = 4000;
%let nominal_labour_hours = 5500;
%let excess_labour_cost = 1.2;
%let capital_outlay_unit = 200;
%let num_loan_years = 10;
%let annual_interest_rate = 0.15;
%let max_decrease_ratio = 0.50;
%let max_increase_ratio = 0.75;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements are straightforward declarations of index sets, parameters,
and variables:

proc optmodel;
set AGES;
num init_num_cows {AGES};
num acres_needed {AGES};
num annual_loss {AGES};
num bullock_yield {AGES};
num heifer_yield {AGES};
num milk_revenue {AGES};
num grain_req {AGES};
num sugar_beet_req {AGES};
num cow_labour_req {AGES};
num cow_other_costs {AGES};
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read data cow_data into AGES=[age]
init_num_cows acres_needed annual_loss bullock_yield heifer_yield
milk_revenue grain_req sugar_beet_req cow_labour_req=labour_req
cow_other_costs=other_costs;

num num_years = &num_years;
set YEARS = 1..num_years;
set YEARS0 = {0} union YEARS;

var NumCows {AGES union {&dairy_cow_selling_age}, YEARS0} >= 0;
for {age in AGES} fix NumCows[age,0] = init_num_cows[age];
fix NumCows[&dairy_cow_selling_age,0] = 0;

var NumBullocksSold {YEARS} >= 0;
var NumHeifersSold {YEARS} >= 0;

set <str> GROUPS;
num acres {GROUPS};
num grain_yield {GROUPS};
var GrainAcres {GROUPS, YEARS} >= 0;

In Chapter 6, the READ DATA statement was used to populate the .ub suffix for a one-dimensional variable.
The following READ DATA statement populates .ub for the two-dimensional variable GrainAcres:

read data grain_data into GROUPS=[group]
{year in YEARS} <GrainAcres[group,year].ub=acres>
grain_yield=yield;

var GrainBought {YEARS} >= 0;
var GrainSold {YEARS} >= 0;

var SugarBeetAcres {YEARS} >= 0;
var SugarBeetBought {YEARS} >= 0;
var SugarBeetSold {YEARS} >= 0;

var NumExcessLabourHours {YEARS} >= 0;
var CapitalOutlay {YEARS} >= 0;

The following NUM statement uses the FINANCE function to calculate the yearly loan payment per capital
outlay:

num yearly_loan_payment =
-finance('pmt', &annual_interest_rate, &num_loan_years,

&capital_outlay_unit);
print yearly_loan_payment;

The resulting value of yearly_loan_payment (shown in Figure 8.1) differs from the value given in Williams
(1999), perhaps because of rounding in intermediate calculations by Williams. The formula

yearly_loan_payment D
annual_interest_rate � capital_outlay_unit

1 � .1C annual_interest_rate/�num_loan_years

yields the same value as the FINANCE function. For the given input data, it turns out that the optimal solution
has no capital outlay and agrees with the solution reported in Williams (1999).
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Figure 8.1 yearly_loan_payment Parameter

The OPTMODEL Procedure

yearly_loan_payment

39.85

The following IMPVAR statements declare Revenue, Cost, and Profit as linear functions of the decision
variables:

impvar Revenue {year in YEARS} =
&bullock_revenue * NumBullocksSold[year]

+ &heifer_revenue * NumHeifersSold[year]
+ &dairy_cow_selling_revenue * NumCows[&dairy_cow_selling_age,year]
+ sum {age in AGES} milk_revenue[age] * NumCows[age,year]
+ &grain_revenue * GrainSold[year]
+ &sugar_beet_revenue * SugarBeetSold[year]

;
impvar Cost {year in YEARS} =

&grain_cost * GrainBought[year]
+ &sugar_beet_cost * SugarBeetBought[year]
+ &nominal_labour_cost
+ &excess_labour_cost * NumExcessLabourHours[year]
+ sum {age in AGES} cow_other_costs[age] * NumCows[age,year]
+ sum {group in GROUPS} &grain_other_costs * GrainAcres[group,year]
+ &sugar_beet_other_costs * SugarBeetAcres[year]
+ sum {y in YEARS: y <= year} yearly_loan_payment * CapitalOutlay[y]

;
impvar Profit {year in YEARS} = Revenue[year] - Cost[year];

The following objective declaration accounts for loan repayments beyond the planning horizon, as described
in Williams (1999):

max TotalProfit =
sum {year in YEARS} (Profit[year]

- yearly_loan_payment * (num_years - 1 + year) * CapitalOutlay[year]);

The following model declaration statements are straightforward:

con Num_acres_con {year in YEARS}:
sum {age in AGES} acres_needed[age] * NumCows[age,year]

+ sum {group in GROUPS} GrainAcres[group,year]
+ SugarBeetAcres[year]

<= &num_acres;

con Aging {age in AGES diff {&dairy_cow_selling_age},
year in YEARS0 diff {num_years}}:

NumCows[age+1,year+1] = (1 - annual_loss[age]) * NumCows[age,year];

con NumBullocksSold_def {year in YEARS}:
NumBullocksSold[year]

= sum {age in AGES} bullock_yield[age] * NumCows[age,year];

con NumHeifersSold_def {year in YEARS}:
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NumCows[0,year]
= sum {age in AGES} heifer_yield[age] * NumCows[age,year]
- NumHeifersSold[year];

con Max_num_cows_def {year in YEARS}:
sum {age in AGES} NumCows[age,year]

<= &max_num_cows + sum {y in YEARS: y <= year} CapitalOutlay[y];

impvar GrainGrown {group in GROUPS, year in YEARS} =
grain_yield[group] * GrainAcres[group,year];

con Grain_req_def {year in YEARS}:
sum {age in AGES} grain_req[age] * NumCows[age,year]

<= sum {group in GROUPS} GrainGrown[group,year]
+ GrainBought[year] - GrainSold[year];

impvar SugarBeetGrown {year in YEARS} =
&sugar_beet_yield * SugarBeetAcres[year];

con Sugar_beet_req_def {year in YEARS}:
sum {age in AGES} sugar_beet_req[age] * NumCows[age,year]

<= SugarBeetGrown[year] + SugarBeetBought[year] - SugarBeetSold[year];

con Labour_req_def {year in YEARS}:
sum {age in AGES} cow_labour_req[age] * NumCows[age,year]

+ sum {group in GROUPS} &grain_labour_req * GrainAcres[group,year]
+ &sugar_beet_labour_req * SugarBeetAcres[year]

<= &nominal_labour_hours + NumExcessLabourHours[year];

con Cash_flow {year in YEARS}:
Profit[year] >= 0;

The following CON statement declares a range constraint:

con Final_dairy_cows_range:
1 - &max_decrease_ratio

<= (sum {age in AGES: age >= 2} NumCows[age,num_years])
/ (sum {age in AGES: age >= 2} init_num_cows[age])

<= 1 + &max_increase_ratio;

solve;

print NumCows NumBullocksSold NumHeifersSold CapitalOutlay
NumExcessLabourHours Revenue Cost Profit;

print GrainAcres;
print GrainGrown;
print GrainBought GrainSold SugarBeetAcres SugarBeetGrown SugarBeetBought

SugarBeetSold;
print Num_acres_con.body Max_num_cows_def.body Final_dairy_cows_range.body;
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The following CREATE DATA statement writes dense two-dimensional data to a data set:

create data sol_data1 from [age]=AGES
{year in YEARS} <col('NumCows_year'||year)=NumCows[age,year].sol>;

You could instead use the following CREATE DATA statement to interchange the roles of age and year:

create data sol_data1 from [year]=YEARS
{age in AGES} <col('NumCows_age'||age)=NumCows[age,year].sol>;

The following CREATE DATA statement writes sparse two-dimensional data to a data set:

create data sol_data2 from [group year] GrainAcres GrainGrown;

The final CREATE DATA statement writes one-dimensional data to a data set, as in previous examples:

create data sol_data3 from [year]
NumBullocksSold NumHeifersSold CapitalOutlay NumExcessLabourHours
Revenue Cost Profit GrainBought GrainSold
SugarBeetAcres SugarBeetGrown SugarBeetBought SugarBeetSold;

quit;

Figure 8.2 shows the output from the linear programming solver.

Figure 8.2 Output from Linear Programming Solver

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 143

Bounded Above 0

Bounded Below 110

Bounded Below and Above 20

Free 0

Fixed 13

Number of Constraints 101

Linear LE (<=) 25

Linear EQ (=) 70

Linear GE (>=) 5

Linear Range 1

Constraint Coefficients 780
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Figure 8.2 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalProfit

Solution Status Optimal

Objective Value 121719.17286

Primal Infeasibility 1.818989E-12

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 55

Presolve Time 0.00

Solution Time 0.01

NumCows

0 1 2 3 4 5

0 10.0000 22.8000 11.5844 0.0000 0.0000 0.0000

1 10.0000 9.5000 21.6600 11.0052 0.0000 0.0000

2 10.0000 9.5000 9.0250 20.5770 10.4549 0.0000

3 10.0000 9.8000 9.3100 8.8445 20.1655 10.2458

4 10.0000 9.8000 9.6040 9.1238 8.6676 19.7622

5 10.0000 9.8000 9.6040 9.4119 8.9413 8.4943

6 10.0000 9.8000 9.6040 9.4119 9.2237 8.7625

7 10.0000 9.8000 9.6040 9.4119 9.2237 9.0392

8 10.0000 9.8000 9.6040 9.4119 9.2237 9.0392

9 10.0000 9.8000 9.6040 9.4119 9.2237 9.0392

10 10.0000 9.8000 9.6040 9.4119 9.2237 9.0392

11 10.0000 9.8000 9.6040 9.4119 9.2237 9.0392

12 0.0000 9.8000 9.6040 9.4119 9.2237 9.0392

[1] NumBullocksSold NumHeifersSold CapitalOutlay NumExcessLabourHours Revenue Cost Profit

1 53.735 30.935 0 0 41495 19588 21906

2 52.342 40.757 0 0 41153 19265 21889

3 57.436 57.436 0 0 45212 19396 25816

4 56.964 56.964 0 0 45860 19034 26826

5 50.853 50.853 0 0 42717 17434 25283

GrainAcres

1 2 3 4 5

group1 20.0000 20.0000 20.0000 20.0000 20.0000

group2 0.0000 0.0000 3.1342 0.0000 0.0000

group3 0.0000 0.0000 0.0000 0.0000 0.0000

group4 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 8.2 continued

GrainGrown

1 2 3 4 5

group1 22.0000 22.0000 22.0000 22.0000 22.0000

group2 0.0000 0.0000 2.8207 0.0000 0.0000

group3 0.0000 0.0000 0.0000 0.0000 0.0000

group4 0.0000 0.0000 0.0000 0.0000 0.0000

[1] GrainBought GrainSold SugarBeetAcres SugarBeetGrown SugarBeetBought SugarBeetSold

1 36.620 0 60.767 91.150 0 22.760

2 35.100 0 62.670 94.005 0 27.388

3 37.837 0 65.100 97.650 0 24.550

4 40.143 0 76.429 114.643 0 42.143

5 33.476 0 87.539 131.309 0 66.586

[1] Num_acres_con.BODY Max_num_cows_def.BODY

1 200 130.000

2 200 128.411

3 200 115.434

4 200 103.571

5 200 92.461

Final_dairy_cows_range.BODY

0.92461
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming

� numeric and string index sets

� bounds in the VAR statement

� FIX statement

� IMPVAR statement

� .ub variable suffix

� set operators UNION and DIFF

� using a colon (:) to select members of a set

� FINANCE function

� range constraint

� multiple input and output data sets

� writing dense two-dimensional data

� writing sparse two-dimensional data
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Problem Statement
An economy consists of three industries: coal, steel and transport.1 Each unit produced by one of the
industries (a unit will be taken as £l’s worth of value of production) requires inputs from possibly its own
industry as well as other industries. The required inputs as well as the manpower requirements (also measured
in £) are given in Table 9.1. There is a time lag in the economy so that output in year t C 1 requires an input
in year t.

Output from an industry may also be used to build productive capacity for itself or other industries in future
years. The inputs required to give unit increases (capacity for £l’s worth of extra production) in productive
capacity are given in Table 9.2. Input from an industry in year t results in a (permanent) increase in productive
capacity in year t C 2.

Table 9.1

Outputs (year t C 1), production
Inputs (year t) Coal Steel Transport

Coal 0.1 0.5 0.4
Steel 0.1 0.1 0.2
Transport 0.2 0.1 0.2
Manpower 0.6 0.3 0.2

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 240–241).
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Table 9.2

Outputs (year t C 2), productive capacity
Inputs (year t) Coal Steel Transport

Coal 0.0 0.7 0.9
Steel 0.1 0.1 0.2
Transport 0.2 0.1 0.2
Manpower 0.4 0.2 0.1

Table 9.3

Year 0
Stocks Productive capacity

Coal 150 300
Steel 80 350
Transport 100 280

Stocks of goods may be held from year to year. At present (year 0) the stocks and productive capacities (per
year) are given in Table 9.3 (in £m). There is a limited yearly manpower capacity of £470m.

It is wished to investigate different possible growth patterns for the economy over the next five years.
In particular it is desirable to know the growth patterns which would result from pursuing the following
objectives:

(i) Maximizing total productive capacity at the end of the five years while meeting an exogenous con-
sumption requirement of £60m of coal, £60m of steel, and £30m of transport in every year (apart from
year 0).

(ii) Maximizing total production (rather than productive capacity) in the fourth and fifth years, but ignoring
exogenous demand in each year.

(iii) Maximizing the total manpower requirement (ignoring the manpower capacity limitation) over the
period while meeting the yearly exogenous demands of (i).

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� year 2 YEARS
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� year 2 YEARS0 D f0g [ YEARS

� i; j 2 INDUSTRIES

� i 2 INPUTS

Parameters
Table 9.4 shows the parameters that are used in this example.

Table 9.4 Parameters

Parameter Name Interpretation

num_years Number of years in planning horizon
init_stocks[i] Initial stocks per industry (in £m)
init_productive_capacity[i] Initial productive capacity per industry (in £m)
demand[i] Yearly exogenous demand per industry (in £m) for years 1 through

num_years
final_demand[i] Yearly exogenous demand per industry (in £m) for years

num_yearsC 1 and later
production_coeff[i,j] Production coefficient for input i and industry j
productive_capacity_coeff[i,j] Productive capacity coefficient for input i and industry j
manpower_capacity Yearly manpower capacity (in £m)

Variables
Table 9.5 shows the variables that are used in this example.

Table 9.5 Variables

Variable Name Interpretation

StaticProduction[i] Static production of industry i
Production[i,year] Production of industry i per year
Stock[i,year] Stock level of industry i at beginning of each year
ExtraCapacity[i,year] Incremental productive capacity of industry i available per year
ProductiveCapacity[i,year] Permanent productive capacity of industry i available per year

Objectives
The first objective is to maximize the following function:

TotalProductiveCapacity D
X

i2INDUSTRIES

ProductiveCapacity[i,num_years]
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The second objective is to maximize the following function:

TotalProduction D
X

i2INDUSTRIES

5X
yearD4

Production[i,year]

The third objective is to maximize the following function:

TotalManpower D
X

i2INDUSTRIES

X
year2YEARS

�
production_coeff[’manpower’,i] � Production[i,yearC 1]

Cproductive_capacity_coeff[’manpower’,i] � ExtraCapacity[i,yearC 2]
�

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 INDUSTRIES,

StaticProduction[i] D demand[i]C
X

j2INDUSTRIES

production_coeff[i,j] � StaticProduction[j]

� for i 2 INDUSTRIES and year 2 f1; : : : ; num_yearsC 1g,

ProductiveCapacity[i,year] D init_productive_capacity[i]C
yearX
yD2

ExtraCapacity[i,y]

� for i 2 INDUSTRIES and year 2 YEARS0,

Stock[i,year]C Production[i,year]

D .if year 2 YEARS then demand[i] else 0/

C

X
j2INDUSTRIES

production_coeff[i,j] � Production[j,yearC 1]

C

X
j2INDUSTRIES

productive_capacity_coeff[i,j] � ExtraCapacity[j,yearC 2]

C Stock[i,yearC 1]

� for year 2 f1; : : : ; num_yearsC 1g,X
j2INDUSTRIES

production_coeff[’manpower’,j] � Production[j,year]

C

X
j2INDUSTRIES

productive_capacity_coeff[’manpower’,j] � ExtraCapacity[j,yearC 1]

� manpower_capacity

� for i 2 INDUSTRIES and year 2 f1; : : : ; num_yearsC 1g,

Production[i,year] � ProductiveCapacity[i,year]
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Input Data
The following data sets and macro variables contain the input data that are used in this example:

data industry_data;
input industry $9. init_stocks init_productive_capacity demand;
datalines;

coal 150 300 60
steel 80 350 60
transport 100 280 30
;

data production_data;
input input $9. coal steel transport;
datalines;

coal 0.1 0.5 0.4
steel 0.1 0.1 0.2
transport 0.2 0.1 0.2
manpower 0.6 0.3 0.2
;

data productive_capacity_data;
input input $9. coal steel transport;
datalines;

coal 0.0 0.7 0.9
steel 0.1 0.1 0.2
transport 0.2 0.1 0.2
manpower 0.4 0.2 0.1
;

%let manpower_capacity = 470;
%let num_years = 5;

PROC OPTMODEL Statements and Output
The following PROC OPTMODEL statements declare index sets and parameters and then read the input data:

proc optmodel;
num num_years = &num_years;
set YEARS = 1..num_years;
set YEARS0 = {0} union YEARS;

set <str> INDUSTRIES;
num init_stocks {INDUSTRIES};
num init_productive_capacity {INDUSTRIES};
num demand {INDUSTRIES};
read data industry_data into INDUSTRIES=[industry]

init_stocks init_productive_capacity demand;
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set <str> INPUTS;
num production_coeff {INPUTS, INDUSTRIES};
read data production_data into INPUTS=[input]

{j in INDUSTRIES} <production_coeff[input,j]=col(j)>;

num productive_capacity_coeff {INPUTS, INDUSTRIES};
read data productive_capacity_data into INPUTS=[input]

{j in INDUSTRIES} <productive_capacity_coeff[input,j]=col(j)>;

The following PROC OPTMODEL statements declare variables, a constant objective, and constraints for the
static Leontief input-output model that is described on page 282 of Williams (1999):

var StaticProduction {INDUSTRIES} >= 0;
min Zero = 0;
con Static_con {i in INDUSTRIES}:

StaticProduction[i]
= demand[i] + sum {j in INDUSTRIES} production_coeff[i,j] *

StaticProduction[j];

The following SOLVE statement invokes the linear programming solver to solve this system of equations:

solve;
print StaticProduction;

Figure 9.1 shows the output from the linear programming solver for the static model.

Figure 9.1 Output from Linear Programming Solver for Static Leontief Input-Output Model

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function Zero

Objective Type Constant

Number of Variables 3

Bounded Above 0

Bounded Below 3

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 3

Linear LE (<=) 0

Linear EQ (=) 3

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 9
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Figure 9.1 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Zero

Solution Status Optimal

Objective Value 0

Primal Infeasibility 1.421085E-14

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 0

Presolve Time 0.01

Solution Time 0.01

[1] StaticProduction

coal 166.397

steel 105.668

transport 92.308

The following NUM and assignment statements declare the final_demand parameter and use the .sol

variable suffix to populate final_demand with the solution from the static model:

num final_demand {INDUSTRIES};
for {i in INDUSTRIES} final_demand[i] = StaticProduction[i].sol;

The following statements declare variables, implicit variables, objectives, and constraints to be used in all
three parts of the business problem:

var Production {INDUSTRIES, 0..num_years+1} >= 0;
var Stock {INDUSTRIES, 0..num_years+1} >= 0;
var ExtraCapacity {INDUSTRIES, 1..num_years+2} >= 0;
impvar ProductiveCapacity {i in INDUSTRIES, year in 1..num_years+1} =

init_productive_capacity[i] + sum {y in 2..year} ExtraCapacity[i,y];
for {i in INDUSTRIES} do;

Production[i,0].ub = 0;
Stock[i,0].lb = init_stocks[i];
Stock[i,0].ub = init_stocks[i];

end;

max TotalProductiveCapacity =
sum {i in INDUSTRIES} ProductiveCapacity[i,num_years];

max TotalProduction =
sum {i in INDUSTRIES, year in 4..5} Production[i,year];

max TotalManpower =
sum {i in INDUSTRIES, year in YEARS} (

production_coeff['manpower',i] * Production[i,year+1]
+ productive_capacity_coeff['manpower',i] * ExtraCapacity[i,year+2]);
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con Continuity_con {i in INDUSTRIES, year in YEARS0}:
Stock[i,year] + Production[i,year]

= (if year in YEARS then demand[i] else 0)
+ sum {j in INDUSTRIES} (

production_coeff[i,j] * Production[j,year+1]
+ productive_capacity_coeff[i,j] * ExtraCapacity[j,year+2])

+ Stock[i,year+1];

con Manpower_con {year in 1..num_years+1}:
sum {j in INDUSTRIES} (

production_coeff['manpower',j] * Production[j,year]
+ productive_capacity_coeff['manpower',j] * ExtraCapacity[j,year+1])

<= &manpower_capacity;

con Capacity_con {i in INDUSTRIES, year in 1..num_years+1}:
Production[i,year] <= ProductiveCapacity[i,year];

for {i in INDUSTRIES}
Production[i,num_years+1].lb = final_demand[i];

for {i in INDUSTRIES, year in num_years+1..num_years+2}
ExtraCapacity[i,year].ub = 0;

The following PROBLEM statement specifies the variables, objective, and constraints for Problem1:

problem Problem1 include
Production Stock ExtraCapacity
TotalProductiveCapacity
Continuity_con Manpower_con Capacity_con;

Because Problem1 and Problem2 have the same variables and constraints, the following PROBLEM statement
uses the FROM option to copy these common parts from Problem1 and uses the INCLUDE option to specify
only the new objective:

problem Problem2 from Problem1 include
TotalProduction;

The following PROBLEM statement specifies the variables, objective, and constraints for Problem3 (omitting
the Manpower_con constraint):

problem Problem3 include
Production Stock ExtraCapacity
TotalManpower
Continuity_con Capacity_con;

Note that implicit variables are not included in the PROBLEM statements. Including them would yield an
ERROR message.

The following USE PROBLEM statement switches the focus to the desired problem:

use problem Problem1;
solve;
print Production Stock ExtraCapacity ProductiveCapacity Manpower_con.body;
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Figure 9.2 shows the output from the linear programming solver for Problem1.

Figure 9.2 Output from Linear Programming Solver for Problem1

Problem Summary

Objective Sense Maximization

Objective Function TotalProductiveCapacity

Objective Type Linear

Number of Variables 63

Bounded Above 0

Bounded Below 51

Bounded Below and Above 0

Free 0

Fixed 12

Number of Constraints 42

Linear LE (<=) 24

Linear EQ (=) 18

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 255

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalProductiveCapacity

Solution Status Optimal

Objective Value 2141.8751967

Primal Infeasibility 7.673862E-13

Dual Infeasibility 0

Bound Infeasibility 7.105427E-15

Iterations 38

Presolve Time 0.00

Solution Time 0.00
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Figure 9.2 continued

[1] [2] Production Stock ExtraCapacity ProductiveCapacity

coal 0 0.000 150.0000

coal 1 260.403 0.0000 0.0 300.0

coal 2 293.406 0.0000 0.0 300.0

coal 3 300.000 0.0000 0.0 300.0

coal 4 17.949 148.4480 189.2 489.2

coal 5 166.397 0.0000 1022.7 1511.9

coal 6 166.397 0.0000 0.0 1511.9

coal 7 0.0

steel 0 0.000 80.0000

steel 1 135.342 12.2811 0.0 350.0

steel 2 181.660 0.0000 0.0 350.0

steel 3 193.090 0.0000 0.0 350.0

steel 4 105.668 0.0000 0.0 350.0

steel 5 105.668 0.0000 0.0 350.0

steel 6 105.668 0.0000 0.0 350.0

steel 7 0.0

transport 0 0.000 100.0000

transport 1 140.722 6.2408 0.0 280.0

transport 2 200.580 0.0000 0.0 280.0

transport 3 267.152 0.0000 0.0 280.0

transport 4 92.308 0.0000 0.0 280.0

transport 5 92.308 0.0000 0.0 280.0

transport 6 92.308 -0.0000 0.0 280.0

transport 7 0.0

[1] Manpower_con.BODY

1 224.99

2 270.66

3 367.04

4 470.00

5 150.00

6 150.00

For Problem2, the right-hand side of each Continuity_con constraint changes to 0:

use problem Problem2;
for {i in INDUSTRIES, year in YEARS} do;

Continuity_con[i,year].lb = 0;
Continuity_con[i,year].ub = 0;

end;
solve;
print Production Stock ExtraCapacity ProductiveCapacity Manpower_con.body;
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Figure 9.3 shows the output from the linear programming solver for Problem2.

Figure 9.3 Output from Linear Programming Solver for Problem2

Problem Summary

Objective Sense Maximization

Objective Function TotalProduction

Objective Type Linear

Number of Variables 63

Bounded Above 0

Bounded Below 51

Bounded Below and Above 0

Free 0

Fixed 12

Number of Constraints 42

Linear LE (<=) 24

Linear EQ (=) 18

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 255

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalProduction

Solution Status Optimal

Objective Value 2618.5791147

Primal Infeasibility 2.273737E-13

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 46

Presolve Time 0.00

Solution Time 0.01
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Figure 9.3 continued

[1] [2] Production Stock ExtraCapacity ProductiveCapacity

coal 0 0.000 150.000

coal 1 184.818 31.629 0.0000 300.00

coal 2 430.505 16.372 130.5047 430.50

coal 3 430.505 0.000 0.0000 430.50

coal 4 430.505 0.000 0.0000 430.50

coal 5 430.505 0.000 0.0000 430.50

coal 6 166.397 324.108 0.0000 430.50

coal 7 0.0000

steel 0 0.000 80.000

steel 1 86.730 11.532 0.0000 350.00

steel 2 155.337 0.000 0.0000 350.00

steel 3 182.867 0.000 0.0000 350.00

steel 4 359.402 0.000 9.4023 359.40

steel 5 359.402 176.535 0.0000 359.40

steel 6 105.668 490.269 0.0000 359.40

steel 7 0.0000

transport 0 0.000 100.000

transport 1 141.312 0.000 0.0000 280.00

transport 2 198.388 0.000 0.0000 280.00

transport 3 225.918 0.000 0.0000 280.00

transport 4 519.383 0.000 239.3826 519.38

transport 5 519.383 293.465 0.0000 519.38

transport 6 92.308 750.540 0.0000 519.38

transport 7 0.0000

[1] Manpower_con.BODY

1 217.37

2 344.58

3 384.17

4 470.00

5 470.00

6 150.00

For Problem3, the right-hand side of each Continuity_con[i,year] constraint changes back to demand[i]:

use problem Problem3;
for {i in INDUSTRIES, year in YEARS} do;

Continuity_con[i,year].lb = demand[i];
Continuity_con[i,year].ub = demand[i];

end;
solve;
print Production Stock ExtraCapacity ProductiveCapacity Manpower_con.body;

quit;
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Figure 9.4 shows the output from the linear programming solver for Problem3.

Figure 9.4 Output from Linear Programming Solver for Problem3

Problem Summary

Objective Sense Maximization

Objective Function TotalManpower

Objective Type Linear

Number of Variables 63

Bounded Above 0

Bounded Below 51

Bounded Below and Above 0

Free 0

Fixed 12

Number of Constraints 36

Linear LE (<=) 18

Linear EQ (=) 18

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 219

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalManpower

Solution Status Optimal

Objective Value 2450.0266228

Primal Infeasibility 2.344791E-12

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 50

Presolve Time 0.00

Solution Time 0.01
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Figure 9.4 continued

[1] [2] Production Stock ExtraCapacity ProductiveCapacity

coal 0 0.00 150.0000

coal 1 251.79 0.0000 0.0000 300.00

coal 2 316.02 0.0000 16.0152 316.02

coal 3 319.83 0.0000 3.8168 319.83

coal 4 366.35 0.0000 46.5177 366.35

coal 5 859.36 0.0000 493.0099 859.36

coal 6 859.36 460.2080 0.0000 859.36

coal 7 0.0000

steel 0 0.00 80.0000

steel 1 134.79 11.0280 0.0000 350.00

steel 2 175.04 0.0000 0.0000 350.00

steel 3 224.06 0.0000 0.0000 350.00

steel 4 223.14 0.0000 0.0000 350.00

steel 5 220.04 0.0000 0.0000 350.00

steel 6 350.00 0.0000 0.0000 350.00

steel 7 0.0000

transport 0 0.00 100.0000

transport 1 143.56 4.2472 0.0000 280.00

transport 2 181.68 0.0000 0.0000 280.00

transport 3 280.00 0.0000 0.0000 280.00

transport 4 279.07 0.0000 0.0000 280.00

transport 5 275.98 0.0000 0.0000 280.00

transport 6 195.54 0.0000 0.0000 280.00

transport 7 0.0000

[1] Manpower_con.BODY

1 226.63

2 279.98

3 333.73

4 539.77

5 636.82

6 659.72
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming (dynamic Leontief input-output model)

� numeric and string index sets

� set operator UNION

� multiple input data sets

� reading dense two-dimensional data

� IMPVAR statement

� .lb and .ub variable suffixes

� IF-THEN/ELSE expression

� using the .lb and .ub constraint suffixes to modify the right-hand side of a constraint

� multiple objectives

� PROBLEM and USE PROBLEM statements

� .body constraint suffix
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Problem Statement
A large company wishes to move some of its departments out of London.1 There are benefits to be derived
from doing this (cheaper housing, government incentives, easier recruitment, etc.) which have been costed.
Also, however, there will be greater costs of communication between departments. These have also been
costed for all possible locations of each department.

Where should each department be located so as to minimize overall yearly cost?

The company comprises five departments (A, B, C, D, E). The possible cities for relocation are Bristol and
Brighton, or a department may be kept in London. None of these cities (including London) may be the
location for more than three of the departments.

Benefits to be derived from each relocation are given below (in thousands of pounds per year):

A B C D E
Bristol 10 15 10 20 5
Brighton 10 20 15 15 15

Communication costs are of the form CikDjl where Cik is the quantity of communication between depart-
ments i and k per year and Djl is the cost per unit of communication between cities j and l. Cik and Djl are
given by the tables below:

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 242).
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Quantities of communication Cik

(in thousands of units)
A B C D E

A 0.0 1.0 1.5 0.0
B 1.4 1.2 0.0
C 0.0 2.0
D 0.7

Costs per unit of communication
Djl (in £)

Bristol Brighton London
Bristol 5 14 13
Brighton 5 9
London 10

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� dept; i; k 2 DEPTS

� city; j; l 2 CITIES

� .i; j; k; l/ 2 IJKL D fi 2 DEPTS; j 2 CITIES; k 2 DEPTS; l 2 CITIES W i < kg

Parameters
Table 10.1 shows the parameters that are used in this example.

Table 10.1 Parameters

Parameter Name Interpretation

benefit[i,j] Yearly benefit derived from relocating department i to city j
comm[i,k] Quantity of communication between departments i and k per year
cost[j,l] Cost per unit of communication between cities j and l
max_num_depts Upper bound on number of departments per city
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Variables
Table 10.2 shows the variables that are used in this example.

Table 10.2 Variables

Variable Name Interpretation

Assign[i,j] 1 if department i is assigned to city j; 0 otherwise
Product[i,j,k,l] Assign[i,j] � Assign[k,l]
TotalBenefit Total yearly benefit of all relocations
TotalCost Total yearly communication costs of all relocations

Objective
The objective is to maximize the following quadratic function:

NetBenefit D
X

i2DEPTS

X
j2CITIES

benefit[i,j] �Assign[i,j]�
X

.i;j;k;l/2IJKL

comm[i,k] � cost[j,l] �Product[i,j,k,l]

where

Product[i,j,k,l] D Assign[i,j] � Assign[k,l]

Constraints
The following constraints are used in this example:

� bounds on variables

� TotalBenefit D
X

i2DEPTS

X
j2CITIES

benefit[i,j] � Assign[i,j]

� TotalCost D
X

.i;j;k;l/2IJKL

comm[i,k] � cost[j,l] � Product[i,j,k,l]

� for dept 2 DEPTS,X
city2CITIES

Assign[dept,city] D 1

� for city 2 CITIES,X
dept2DEPTS

Assign[dept,city] � max_num_depts
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� for .i; j; k; l/ 2 IJKL,

Assign[i,j]C Assign[k,l] � 1 � Product[i,j,k,l]

� for .i; j; k; l/ 2 IJKL,

Product[i,j,k,l] � Assign[i,j]

� for .i; j; k; l/ 2 IJKL,

Product[i,j,k,l] � Assign[k,l]

� for i 2 DEPTS and k 2 DEPTS and l 2 CITIES such that i < k,X
.i;j;k;l/2IJKL

Product[i,j,k,l] D Assign[k,l]

� for k 2 DEPTS and i 2 DEPTS and j 2 CITIES such that i < k,X
.i;j;k;l/2IJKL

Product[i,j,k,l] D Assign[i,j]

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data dept_data;
input dept $ @@;
datalines;

A B C D E
;

data city_data;
input city $;
datalines;

Bristol
Brighton
London
;

data benefit_data;
input city $ A B C D E;
datalines;

Bristol 10 15 10 20 5
Brighton 10 20 15 15 15
;

data comm_data;
input i $ j $ comm;
datalines;
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A B 0.0
A C 1.0
A D 1.5
A E 0.0
B C 1.4
B D 1.2
B E 0.0
C D 0.0
C E 2.0
D E 0.7
;

data cost_data;
input i $ j $ cost;
datalines;

Bristol Bristol 5
Bristol Brighton 14
Bristol London 13
Brighton Brighton 5
Brighton London 9
London London 10
;

%let max_num_depts = 3;

PROC OPTMODEL Statements and Output
The first two READ DATA statements populate the DEPTS and CITIES index sets:

proc optmodel;
set <str> DEPTS;
read data dept_data into DEPTS=[dept];

set <str> CITIES;
read data city_data into CITIES=[city];

The following READ DATA statement reads dense two-dimensional data, as in previous examples, with an
initial value of 0 for benefit to account for the possibility of staying in London:

num benefit {DEPTS, CITIES} init 0;
read data benefit_data into [city] {dept in DEPTS}

<benefit[dept,city]=col(dept)>;
print benefit;

Note that this READ DATA statement does not repopulate CITIES by using the following:

CITIES=[city]

Doing so would have removed London from the CITIES index set, because London does not appear in the
benefit_data data set. Figure 10.1 shows the resulting values of benefit.
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Figure 10.1 benefit Parameter

The OPTMODEL Procedure

benefit

Brighton Bristol London

A 10 10 0

B 20 15 0

C 15 10 0

D 15 20 0

E 15 5 0

The following NUM and assignment statements read an upper triangular matrix and use these values to
populate the lower triangular part. The INIT option initializes the parameter comm to a missing value, and
the body of the FOR loop replaces each missing value with the value obtained by reflection across the main
diagonal.

num comm {DEPTS, DEPTS} init .;
read data comm_data into [i j] comm;
for {i in DEPTS, j in DEPTS} do;

if i = j then comm[i,j] = 0;
else if comm[i,j] = . then comm[i,j] = comm[j,i];

end;
print comm;

Figure 10.2 shows the resulting values of comm.

Figure 10.2 comm Parameter

comm

A B C D E

A 0.0 0.0 1.0 1.5 0.0

B 0.0 0.0 1.4 1.2 0.0

C 1.0 1.4 0.0 0.0 2.0

D 1.5 1.2 0.0 0.0 0.7

E 0.0 0.0 2.0 0.7 0.0

Similar statements are used to populate the cost parameter, but instead the main diagonal is read from the
cost_data data set:

num cost {CITIES, CITIES} init .;
read data cost_data into [i j] cost;
for {i in CITIES, j in CITIES: cost[i,j] = .}

cost[i,j] = cost[j,i];
print cost;



PROC OPTMODEL Statements and Output F 127

Figure 10.3 shows the resulting values of cost.

Figure 10.3 cost Parameter

cost

Brighton Bristol London

Brighton 5 14 9

Bristol 14 5 13

London 9 13 10

The following declarations are straightforward:

var Assign {DEPTS, CITIES} binary;

set IJKL = {i in DEPTS, j in CITIES, k in DEPTS, l in CITIES: i < k};
var Product {IJKL} binary;

impvar TotalBenefit
= sum {i in DEPTS, j in CITIES} benefit[i,j] * Assign[i,j];

impvar TotalCost
= sum {<i,j,k,l> in IJKL} comm[i,k] * cost[j,l] * Product[i,j,k,l];

max NetBenefit = TotalBenefit - TotalCost;

con Assign_dept {dept in DEPTS}:
sum {city in CITIES} Assign[dept,city] = 1;

con Cardinality {city in CITIES}:
sum {dept in DEPTS} Assign[dept,city] <= &max_num_depts;

The following CON statement enforces the rule that Assign[i,j] D 1 and Assign[k,l] D 1 together imply
Product[i,j,k,l] D 1:

con Product_def {<i,j,k,l> in IJKL}:
Assign[i,j] + Assign[k,l] - 1 <= Product[i,j,k,l];

The following two CON statements enforce the converse rule that Product[i,j,k,l] D 1 implies both
Assign[i,j] D 1 and Assign[k,l] D 1:

con Product_def2 {<i,j,k,l> in IJKL}:
Product[i,j,k,l] <= Assign[i,j];

con Product_def3 {<i,j,k,l> in IJKL}:
Product[i,j,k,l] <= Assign[k,l];

Because of the maximization objective in this problem, these two constraints could be omitted and would
still be satisfied by an optimal solution. But including them can sometimes reduce the number of simplex
iterations and branch-and-bound nodes.

solve;

print TotalBenefit TotalCost;
print Assign;
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Figure 10.4 shows the output from the mixed integer linear programming solver.

Figure 10.4 Output from Mixed Integer Linear Programming Solver

Problem Summary

Objective Sense Maximization

Objective Function NetBenefit

Objective Type Linear

Number of Variables 105

Bounded Above 0

Bounded Below 0

Bounded Below and Above 105

Free 0

Fixed 0

Binary 105

Integer 0

Number of Constraints 278

Linear LE (<=) 273

Linear EQ (=) 5

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 660

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NetBenefit

Solution Status Optimal

Objective Value 14.9

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 14.9

Nodes 1

Iterations 210

Presolve Time 0.03

Solution Time 0.06

TotalBenefit TotalCost

80 65.1
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Figure 10.4 continued

Assign

Brighton Bristol London

A 0 1 0

B 1 0 0

C 1 0 0

D 0 1 0

E 1 0 0

An alternative “compact linearization” formulation involves fewer constraints (Liberti 2007). The following
DROP statement removes three families of constraints from the original formulation:

drop Product_def Product_def2 Product_def3;

The following two CON statements declare two new constraints that enforce the desired relationship between
the Product and Assign variables:

con Product_def4 {i in DEPTS, k in DEPTS, l in CITIES: i < k}:
sum {<(i),j,(k),(l)> in IJKL} Product[i,j,k,l] = Assign[k,l];

con Product_def5 {k in DEPTS, i in DEPTS, j in CITIES: i < k}:
sum {<(i),(j),(k),l> in IJKL} Product[i,j,k,l] = Assign[i,j];

solve;

print TotalBenefit TotalCost;
print Assign;

quit;
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Figure 10.5 shows the output from the mixed integer linear programming solver for the compact linearization
formulation.

Figure 10.5 Output from Mixed Integer Linear Programming Solver (Compact Linearization)

Problem Summary

Objective Sense Maximization

Objective Function NetBenefit

Objective Type Linear

Number of Variables 105

Bounded Above 0

Bounded Below 0

Bounded Below and Above 105

Free 0

Fixed 0

Binary 105

Integer 0

Number of Constraints 68

Linear LE (<=) 3

Linear EQ (=) 65

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 270

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NetBenefit

Solution Status Optimal

Objective Value 14.9

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 3.330669E-16

Bound Infeasibility 0

Integer Infeasibility 3.330669E-16

Best Bound 14.9

Nodes 1

Iterations 178

Presolve Time 0.01

Solution Time 0.02

TotalBenefit TotalCost

80 65.1
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Figure 10.5 continued

Assign

Brighton Bristol London

A 0 1 0

B 1 0 0

C 1 0 0

D 0 1 0

E 1 0 0

As expected, this solution agrees with the solution reported in Figure 10.4 for the original formulation.

In both formulations, the Product variable can be relaxed to be nonnegative instead of binary. The integrality
of Assign, together with the various Product_def* constraints, automatically implies integrality of Product.
For real-world problems, you should try both ways to determine which alternative performs better in specific
cases.

Similarly, the compact formulation is weaker but contains fewer constraints than the original formulation. The
net effect on total solve time is difficult to predict. For real-world problems, you should try both formulations.

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (quadratic assignment problem)

� numeric and string index sets

� reading dense two-dimensional data

� reading sparse (upper triangular) two-dimensional data

� multiple input data sets

� set of tuples

� INIT option

� IMPVAR statement

� product of two binary variables

� DROP statement

� compact linearization
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Problem Statement
A quantity y is known to depend upon another quantity x.1 A set of corresponding values has been collected
for x and y and is presented in Table 11.

x 0.0 0.5 1.0 1.5 1.9 2.5 3.0 3.5 4.0 4.5
y 1.0 0.9 0.7 1.5 2.0 2.4 3.2 2.0 2.7 3.5

x 5.0 5.5 6.0 6.6 7.0 7.6 8.5 9.0 10.0
y 1.0 4.0 3.6 2.7 5.7 4.6 6.0 6.8 7.3

(1) Fit the ‘best’ straight line y D bx C a to this set of data points. The objective is to minimize the sum
of absolute deviations of each observed value of y from the value predicted by the linear relationship.

(2) Fit the ‘best’ straight line where the objective is to minimize the maximum deviation of all the observed
values of y from the value predicted by the linear relationship.

(3) Fit the ‘best’ quadratic curve y D cx2 C bx C a to this set of data points using the same objectives as
in (1) and (2).

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 242–243).
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Mathematical Programming Formulation

Index Sets and Their Members
The following index set and its members are used in this example:

� i 2 POINTS

Parameters
Table 11.1 shows the parameters that are used in this example.

Table 11.1 Parameters

Parameter Name Interpretation

x[i] x coordinate of input data point i
y[i] y coordinate of input data point i
order Order of polynomial regression curve
sum_abs_dev Sum of absolute deviations between predicted and observed values
max_abs_dev Maximum of absolute deviations between predicted and observed values

Variables
Table 11.2 shows the variables that are used in this example.

Table 11.2 Variables

Variable Name Interpretation

Beta[k] Regression coefficient of order k
Estimate[i] Predicted value of y for data point i
Surplus[i] maxfEstimate[i] � y[i]; 0g

Slack[i] maxfy[i] � Estimate[i]; 0g

MinMax maxi2POINTS jEstimate[i] � y[i]j

Objectives
The first objective is to minimize the following (nonlinear, nondifferentiable) L1 norm function:

Objective1 D
X

i2POINTS

jEstimate[i] � y[i]j
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The second objective is to minimize the following (nonlinear, nondifferentiable) L1 norm function:

Objective2 D max
i2POINTS

jEstimate[i] � y[i]j

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 POINTS,

Estimate[i] D Beta[0]C
orderX
kD1

Beta[k] � x[i]k

� for i 2 POINTS,

Estimate[i] � Surplus[i]C Slack[i] D y[i]

� for i 2 POINTS,

MinMax � Surplus[i]C Slack[i]

Input Data
The following data set contains the input data that are used in this example:

data xy_data;
input x y;
datalines;

0.0 1.0
0.5 0.9
1.0 0.7
1.5 1.5
1.9 2.0
2.5 2.4
3.0 3.2
3.5 2.0
4.0 2.7
4.5 3.5
5.0 1.0
5.5 4.0
6.0 3.6
6.6 2.7
7.0 5.7
7.6 4.6
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8.5 6.0
9.0 6.8

10.0 7.3
;

PROC OPTMODEL Statements and Output
The following PROC OPTMODEL statements declare an index set and parameters and then read the input
data:

proc optmodel;
set POINTS;
num x {POINTS};
num y {POINTS};
read data xy_data into POINTS=[_N_] x y;

The following NUM statement declares the order parameter, which is later set to 1 for Problems (1) and (2)
and set to 2 for Problem (3):

num order;
var Beta {0..order};
impvar Estimate {i in POINTS}

= Beta[0] + sum {k in 1..order} Beta[k] * x[i]^k;

The following statements encode the linearization of the L1 norm:

var Surplus {POINTS} >= 0;
var Slack {POINTS} >= 0;
min Objective1 = sum {i in POINTS} (Surplus[i] + Slack[i]);
con Abs_dev_con {i in POINTS}:

Estimate[i] - Surplus[i] + Slack[i] = y[i];

The following statements (which are not used but are shown here for comparison) encode an alternative
linearization of the L1 norm that requires half as many variables but twice as many constraints:

var AbsDeviation {POINTS} >= 0;
min Objective1 = sum {i in POINTS} AbsDeviation[i];
con Abs_dev_con1 {i in POINTS}:

AbsDeviation[i] >= Estimate[i] - y[i];
con Abs_dev_con2 {i in POINTS}:

AbsDeviation[i] >= y[i] - Estimate[i];

The following additional declarations encode the linearization of the L1 norm:

var MinMax;
min Objective2 = MinMax;
con MinMax_con {i in POINTS}:

MinMax >= Surplus[i] + Slack[i];
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The following statements (which are not used but match the formulation in Williams (1999)) encode an
alternative linearization of the L1 norm that requires the same number of variables but twice as many
constraints:

var MinMax;
min Objective2 = MinMax;
con MinMax_con1 {i in POINTS}:

MinMax >= Surplus[i];
con MinMax_con2 {i in POINTS}:

MinMax >= Slack[i];

The following NUM statements use the ABS function, the .sol variable suffix, and the MAX aggregation
operator to compute the two norms from the optimal solution:

num sum_abs_dev = sum {i in POINTS} abs(Estimate[i].sol - y[i]);
num max_abs_dev = max {i in POINTS} abs(Estimate[i].sol - y[i]);

The following PROBLEM statement specifies the variables, objective, and constraints for L1 minimization:

problem L1 include
Beta Surplus Slack
Objective1
Abs_dev_con;

The following PROBLEM statement specifies the additional variables, objective, and constraints for L1
minimization:

problem Linf from L1 include
MinMax
Objective2
MinMax_con;

The following statements specify a straight line fit, switch the focus to problem L1, solve Problem (1), print
the results, and store the y-values that are predicted by the optimal solution:

order = 1;
use problem L1;
solve;
print sum_abs_dev max_abs_dev;
print Beta;
print x y Estimate Surplus Slack;
create data sol_data1 from [POINTS] x y Estimate;
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Figure 11.1 shows the output from the linear programming solver for Problem (1).

Figure 11.1 Output from Linear Programming Solver for Problem (1)

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function Objective1

Objective Type Linear

Number of Variables 40

Bounded Above 0

Bounded Below 38

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 19

Linear LE (<=) 0

Linear EQ (=) 19

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 75

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective1

Solution Status Optimal

Objective Value 11.46625

Primal Infeasibility 1.776357E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 23

Presolve Time 0.00

Solution Time 0.01

sum_abs_dev max_abs_dev

11.466 2.7688

[1] Beta

0 0.58125

1 0.63750
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Figure 11.1 continued

[1] x y Estimate Surplus Slack

1 0.0 1.0 0.58125 0.00000 0.41875

2 0.5 0.9 0.90000 0.00000 0.00000

3 1.0 0.7 1.21875 0.51875 0.00000

4 1.5 1.5 1.53750 0.03750 0.00000

5 1.9 2.0 1.79250 0.00000 0.20750

6 2.5 2.4 2.17500 0.00000 0.22500

7 3.0 3.2 2.49375 0.00000 0.70625

8 3.5 2.0 2.81250 0.81250 0.00000

9 4.0 2.7 3.13125 0.43125 0.00000

10 4.5 3.5 3.45000 0.00000 0.05000

11 5.0 1.0 3.76875 2.76875 0.00000

12 5.5 4.0 4.08750 0.08750 0.00000

13 6.0 3.6 4.40625 0.80625 0.00000

14 6.6 2.7 4.78875 2.08875 0.00000

15 7.0 5.7 5.04375 0.00000 0.65625

16 7.6 4.6 5.42625 0.82625 0.00000

17 8.5 6.0 6.00000 0.00000 0.00000

18 9.0 6.8 6.31875 0.00000 0.48125

19 10.0 7.3 6.95625 0.00000 0.34375

The following statements switch the focus to problem Linf, solve Problem (2), print the results, and store the
y-values that are predicted by the optimal solution:

use problem Linf;
solve;
print sum_abs_dev max_abs_dev;
print Beta;
print x y Estimate Surplus Slack;
create data sol_data2 from [POINTS] x y Estimate;
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Figure 11.2 shows the output from the linear programming solver for Problem (2).

Figure 11.2 Output from Linear Programming Solver for Problem (2)

Problem Summary

Objective Sense Minimization

Objective Function Objective2

Objective Type Linear

Number of Variables 41

Bounded Above 0

Bounded Below 38

Bounded Below and Above 0

Free 3

Fixed 0

Number of Constraints 38

Linear LE (<=) 0

Linear EQ (=) 19

Linear GE (>=) 19

Linear Range 0

Constraint Coefficients 132

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective2

Solution Status Optimal

Objective Value 1.725

Primal Infeasibility 2.220446E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 26

Presolve Time 0.00

Solution Time 0.01

sum_abs_dev max_abs_dev

19.95 1.725

[1] Beta

0 -0.400

1 0.625



PROC OPTMODEL Statements and Output F 141

Figure 11.2 continued

[1] x y Estimate Surplus Slack

1 0.0 1.0 -0.4000 0.000 1.4000

2 0.5 0.9 -0.0875 0.000 0.9875

3 1.0 0.7 0.2250 0.000 0.4750

4 1.5 1.5 0.5375 0.000 0.9625

5 1.9 2.0 0.7875 0.000 1.2125

6 2.5 2.4 1.1625 0.000 1.2375

7 3.0 3.2 1.4750 0.000 1.7250

8 3.5 2.0 1.7875 0.000 0.2125

9 4.0 2.7 2.1000 0.000 0.6000

10 4.5 3.5 2.4125 0.000 1.0875

11 5.0 1.0 2.7250 1.725 0.0000

12 5.5 4.0 3.0375 0.000 0.9625

13 6.0 3.6 3.3500 0.000 0.2500

14 6.6 2.7 3.7250 1.025 0.0000

15 7.0 5.7 3.9750 0.000 1.7250

16 7.6 4.6 4.3500 0.000 0.2500

17 8.5 6.0 4.9125 0.000 1.0875

18 9.0 6.8 5.2250 0.000 1.5750

19 10.0 7.3 5.8500 0.000 1.4500

The following statements specify a quadratic curve fit, solve both parts of Problem (3), print the results, and
store the y-values that are predicted by the optimal solutions:

order = 2;
use problem L1;
solve;
print sum_abs_dev max_abs_dev;
print Beta;
print x y Estimate Surplus Slack;
create data sol_data3 from [POINTS] x y Estimate;

use problem Linf;
solve;
print sum_abs_dev max_abs_dev;
print Beta;
print x y Estimate Surplus Slack;
create data sol_data4 from [POINTS] x y Estimate;

quit;



142 F Chapter 11: Curve Fitting

Figure 11.3 shows the output from the linear programming solver for the first part of Problem (3).

Figure 11.3 Output from Linear Programming Solver for First Part of Problem (3)

Problem Summary

Objective Sense Minimization

Objective Function Objective1

Objective Type Linear

Number of Variables 41

Bounded Above 0

Bounded Below 38

Bounded Below and Above 0

Free 3

Fixed 0

Number of Constraints 19

Linear LE (<=) 0

Linear EQ (=) 19

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 93

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective1

Solution Status Optimal

Objective Value 10.458964706

Primal Infeasibility 7.993606E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 20

Presolve Time 0.00

Solution Time 0.01

sum_abs_dev max_abs_dev

10.459 2.298

[1] Beta

0 0.982353

1 0.294510

2 0.033725
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Figure 11.3 continued

[1] x y Estimate Surplus Slack

1 0.0 1.0 0.98235 0.00000 0.017647

2 0.5 0.9 1.13804 0.23804 0.000000

3 1.0 0.7 1.31059 0.61059 0.000000

4 1.5 1.5 1.50000 0.00000 0.000000

5 1.9 2.0 1.66367 0.00000 0.336329

6 2.5 2.4 1.92941 0.00000 0.470588

7 3.0 3.2 2.16941 0.00000 1.030588

8 3.5 2.0 2.42627 0.42627 0.000000

9 4.0 2.7 2.70000 0.00000 0.000000

10 4.5 3.5 2.99059 0.00000 0.509412

11 5.0 1.0 3.29804 2.29804 0.000000

12 5.5 4.0 3.62235 0.00000 0.377647

13 6.0 3.6 3.96353 0.36353 0.000000

14 6.6 2.7 4.39520 1.69520 0.000000

15 7.0 5.7 4.69647 0.00000 1.003529

16 7.6 4.6 5.16861 0.56861 0.000000

17 8.5 6.0 5.92235 0.00000 0.077647

18 9.0 6.8 6.36471 0.00000 0.435294

19 10.0 7.3 7.30000 0.00000 0.000000

Figure 11.4 shows the output from the linear programming solver for the second part of Problem (3).

Figure 11.4 Output from Linear Programming Solver for Second Part of Problem (3)

Problem Summary

Objective Sense Minimization

Objective Function Objective2

Objective Type Linear

Number of Variables 42

Bounded Above 0

Bounded Below 38

Bounded Below and Above 0

Free 4

Fixed 0

Number of Constraints 38

Linear LE (<=) 0

Linear EQ (=) 19

Linear GE (>=) 19

Linear Range 0

Constraint Coefficients 150
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Figure 11.4 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective2

Solution Status Optimal

Objective Value 1.475

Primal Infeasibility 7.105427E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 27

Presolve Time 0.00

Solution Time 0.01

sum_abs_dev max_abs_dev

16.758 1.475

[1] Beta

0 2.475

1 -0.625

2 0.125

[1] x y Estimate Surplus Slack

1 0.0 1.0 2.4750 1.47500 0.00000

2 0.5 0.9 2.1938 1.29375 0.00000

3 1.0 0.7 1.9750 1.27500 0.00000

4 1.5 1.5 1.8188 0.31875 0.00000

5 1.9 2.0 1.7388 0.00000 0.26125

6 2.5 2.4 1.6938 0.00000 0.70625

7 3.0 3.2 1.7250 0.00000 1.47500

8 3.5 2.0 1.8188 0.00000 0.18125

9 4.0 2.7 1.9750 0.00000 0.72500

10 4.5 3.5 2.1938 0.00000 1.30625

11 5.0 1.0 2.4750 1.47500 0.00000

12 5.5 4.0 2.8188 0.00000 1.18125

13 6.0 3.6 3.2250 0.00000 0.37500

14 6.6 2.7 3.7950 1.09500 0.00000

15 7.0 5.7 4.2250 0.00000 1.47500

16 7.6 4.6 4.9450 0.34500 0.00000

17 8.5 6.0 6.1938 0.19375 0.00000

18 9.0 6.8 6.9750 0.17500 0.00000

19 10.0 7.3 8.7250 1.42500 0.00000

You can find a higher-order polynomial fit simply by increasing the value of the order parameter. The
dimensions of the Beta and Estimate variables are automatically updated when order changes.
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The following PROC SGPLOT statements use the output data sets that are created by PROC OPTMODEL to
display the results from Problems (1) and (2) in one plot:

data plot1;
merge sol_data1(rename=(Estimate=Line1)) sol_data2(rename=(Estimate=Line2));

run;

proc sgplot data=plot1;
scatter x=x y=y;
series x=x y=Line1 / curvelabel;
series x=x y=Line2 / curvelabel;

run;

Figure 11.5 shows the regression lines for Problems (1) and (2), as on page 319 of Williams (1999).

Figure 11.5 Regression Lines for Problems (1) and (2)
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The following PROC SGPLOT statements use the output data sets that are created by PROC OPTMODEL to
display the results from both parts of Problem (3) in one plot:

data plot2;
merge sol_data3(rename=(Estimate=Curve1))

sol_data4(rename=(Estimate=Curve2));
run;

proc sgplot data=plot2;
scatter x=x y=y;
series x=x y=Curve1 / curvelabel;
series x=x y=Curve2 / curvelabel;

run;

Figure 11.6 shows the regression curves for Problem (3), as on page 319 of Williams (1999).

Figure 11.6 Regression Curves for Problem (3)
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Features Demonstrated
The following features are demonstrated in this example:

� problem types: linear programming (polynomial regression with L1 and L1 norms)

� numeric index set

� IMPVAR statement

� PROBLEM and USE PROBLEM statements

� multiple objectives

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� ABS function

� MAX aggregation operator

� SGPLOT procedure
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Problem Statement
Logical circuits have a given number of inputs and one output.1 Impulses may be applied to the inputs of a
given logical circuit and it will respond either by giving an output (signal 1) or by giving no output (signal 0).
The input impulses are of the same kind as the outputs, i.e. 1 (positive input) or 0 (no input).

In this example a logical circuit is to be built up of NOR gates. A NOR gate is a device with two inputs and
one output. It has the property that there is positive output (signal 1) if and only if neither input is positive, i.e.
both inputs have value 0. By connecting such gates together with outputs from one gate possibly being inputs
into another gate it is possible to construct a circuit to perform any desired logical function. For example the
circuit illustrated in Figure 12.1 will respond to the inputs A and B in the way indicated by the truth table in
Table 12.1.

The problem here is to construct a circuit using the minimum number of NOR gates which will perform the
logical function specified by the truth table in Table 12.2. This problem, together with further references to it,
is discussed in Williams (1974).

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 243–244).
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Figure 12.1

Table 12.1

Inputs Output
A B
0 0 0
0 1 0
1 0 0
1 1 1

Table 12.2

Inputs Output
A B
0 0 0
0 1 1
1 0 1
1 1 0

‘Fan-in’ and ‘fan-out’ are not permitted. That is, more than one output from a NOR gate cannot lead into one
input, nor can one output lead into more than one input.
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It may be assumed throughout that the optimal design is a ‘subnet’ of the ‘maximal’ net shown in Figure 12.2.

Figure 12.2

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� .i; j /; .pred; gate/ 2 ARCS

� pred; gate 2 GATES

� row 2 ROWS

Parameters
Table 12.3 shows the parameters that are used in this example.

Table 12.3 Parameters

Parameter Name Interpretation

inputA[row] Value of input A in each row of truth table
inputB[row] Value of input B in each row of truth table
target_output[row] Value of target output in each row of truth table



152 F Chapter 12: Logical Design

Variables
Table 12.4 shows the variables that are used in this example.

Table 12.4 Variables

Variable Name Interpretation

UseGate[gate] 1 if gate is used; 0 otherwise
AssignAGate[gate] 1 if input A is assigned to gate; 0 otherwise
AssignBGate[gate] 1 if input B is assigned to gate; 0 otherwise
Output[gate,row] Output value for each gate and each row of truth table

Objective
The objective is to minimize the following function:

NumGatesUsed D
X

gate2GATES

UseGate[gate]

Constraints
The following constraints are used in this example:

� bounds on variables

� for gate 2 GATES,

AssignAGate[gate] � UseGate[gate]

� for gate 2 GATES,

AssignBGate[gate] � UseGate[gate]

� for gate 2 GATES,X
.pred;gate/2ARCS

UseGate[pred]C AssignAGate[gate]C AssignBGate[gate] � 2

� for row 2 ROWS,

Output[1,row] D target_output[row]

� for gate 2 GATES and row 2 ROWS,

Output[gate,row] � UseGate[gate]
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� for gate 2 GATES and row 2 ROWS,

inputA[row] � AssignAGate[gate] � 1 � Output[gate,row]

� for gate 2 GATES and row 2 ROWS,

inputB[row] � AssignBGate[gate] � 1 � Output[gate,row]

� for .pred; gate/ 2 ARCS and row 2 ROWS,

Output[pred,row] � 1 � Output[gate,row]

� for gate 2 GATES and row 2 ROWS,

inputA[row] � AssignAGate[gate]C inputB[row] � AssignBGate[gate]

C

X
.pred;gate/2ARCS

Output[pred,row]

� UseGate[gate] � Output[gate,row]

Input Data
The following data sets contain the input data that are used in this example:

data arc_data;
input i j;
datalines;

4 2
5 2
6 3
7 3
2 1
3 1
;

/* truth table (for XOR) */
data truth_data;

input A B output;
datalines;

0 0 0
0 1 1
1 0 1
1 1 0
;



154 F Chapter 12: Logical Design

PROC OPTMODEL Statements and Output
The following SET and READ statements declare the ARCS index set and then populate it by reading the
arc_data data set:

proc optmodel;
set <num,num> ARCS;
read data arc_data into ARCS=[i j];

Each arc corresponds to a connection from one NOR gate to another in Figure 12.2, and the following
SET statement declares and populates the index set GATES by taking a union over ARCS, as in previous
examples:

set GATES = union {<i,j> in ARCS} {i,j};

var UseGate {GATES} binary;
min NumGatesUsed = sum {gate in GATES} UseGate[gate];

var AssignAGate {GATES} binary;
var AssignBGate {GATES} binary;

The following CON statements declare the constraints that if input A or B is assigned to a gate, that gate must
be used:

con AssignAGate_def {gate in GATES}:
AssignAGate[gate] <= UseGate[gate];

con AssignBGate_def {gate in GATES}:
AssignBGate[gate] <= UseGate[gate];

The following CON statement declares the constraint that each gate has at most two inputs:

con At_most_two_inputs {gate in GATES}:
sum {<pred,(gate)> in ARCS} UseGate[pred]

+ AssignAGate[gate] + AssignBGate[gate]
<= 2;

The following statements declare the ROWS index set and several parameters and read the truth_data data
set that contains the target output:

set ROWS;
num inputA {ROWS};
num inputB {ROWS};
num target_output {ROWS};
read data truth_data into ROWS=[_N_] inputA=A inputB=B target_output=output;

The following VAR and FIX statements declare the Output variable and fix the output of Gate 1 to the desired
values specified in target_output:

var Output {GATES, ROWS} binary;
for {row in ROWS} fix Output[1,row] = target_output[row];

The following CON statement declares the constraint that if any row has a positive Output, that gate must be
used.
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con Output_link {gate in GATES, row in ROWS}:
Output[gate,row] <= UseGate[gate];

The following CON statements declare the constraints that define each NOR gate:

/* if inputA[row] = 1 and AssignAGate[gate] = 1, then
Output[gate,row] = 0 */

con NOR_def1 {gate in GATES, row in ROWS}:
inputA[row] * AssignAGate[gate] <= 1 - Output[gate,row];

/* if inputB[row] = 1 and AssignBGate[gate] = 1, then
Output[gate,row] = 0 */

con NOR_def2 {gate in GATES, row in ROWS}:
inputB[row] * AssignBGate[gate] <= 1 - Output[gate,row];

/* if Output[pred,row] = 1, then Output[gate,row] = 0 */
con NOR_def3 {<pred,gate> in ARCS, row in ROWS}:

Output[pred,row] <= 1 - Output[gate,row];

/* if UseGate[gate] = 1 and Output[gate,row] = 0, then
(inputA[row] = 1 and AssignAGate[gate] = 1)
or (inputB[row] = 1 and AssignBGate[gate] = 1)
or sum {<pred,(gate)> in ARCS} Output[pred,row] >= 1 */

con NOR_def4 {gate in GATES, row in ROWS}:
inputA[row] * AssignAGate[gate]

+ inputB[row] * AssignBGate[gate]
+ sum {<pred,(gate)> in ARCS} Output[pred,row]

>= UseGate[gate] - Output[gate,row];

solve;
print UseGate AssignAGate AssignBGate;
print Output;
create data sol_data1 from [gate] UseGate AssignAGate AssignBGate;
create data sol_data2 from [gate row] Output;

quit;
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Figure 12.3 shows the output from the mixed integer linear programming solver. In this case, five gates are
used in the optimal solution.

Figure 12.3 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function NumGatesUsed

Objective Type Linear

Number of Variables 49

Bounded Above 0

Bounded Below 0

Bounded Below and Above 45

Free 0

Fixed 4

Binary 49

Integer 0

Number of Constraints 157

Linear LE (<=) 129

Linear EQ (=) 0

Linear GE (>=) 28

Linear Range 0

Constraint Coefficients 344

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NumGatesUsed

Solution Status Optimal

Objective Value 5

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 5

Nodes 1

Iterations 3

Presolve Time 0.03

Solution Time 0.03
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Figure 12.3 continued

[1] UseGate AssignAGate AssignBGate

1 1 0 0

2 1 1 1

3 1 0 0

4 0 0 0

5 0 0 0

6 1 1 0

7 1 0 1

Output

1 2 3 4

1 0 1 1 0

2 1 0 0 0

3 0 0 0 1

4 0 0 0 0

5 0 0 0 0

6 1 1 0 0

7 1 0 1 0

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� numeric and string index sets

� set of tuples

� set operator UNION

� implicit slice

� FIX statement

� modeling if-then constraints by using binary variables
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Problem Statement
A large company has two divisions D1 and D2.1 The company supplies retailers with oil and spirit.

It is desired to allocate each retailer to either division D1 or division D2. This division will be the retailer’s
supplier. As far as possible this division must be made so that D1 controls 40% of the market and D2 the
remaining 60%. The retailers are listed below as M1 to M23. Each retailer has an estimated market for oil
and spirit. Retailers M1 to M8 are in region 1; retailers M9 to M18 are in region 2; retailers M19 to M23 are
in region 3. Certain retailers are considered to have good growth prospects and categorized as group A and
the others are in group B. Each retailer has a certain number of delivery points as given below. It is desired to
make the 40/60 split between D1 and D2 in each of the following respects:

(1) Total number of delivery points

(2) Control of spirit market

(3) Control of oil market in region 1

(4) Control of oil market in region 2

(5) Control of oil market in region 3

(6) Number of retailers in group A

(7) Number of retailers in group B

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 244–245).
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Table 13.1

Oil market Delivery Spirit market Growth
Retailer (106 gallons) points (106 gallons) category

M1 9 11 34 A
M2 13 47 411 A
M3 14 44 82 A

Region 1 M4 17 25 157 B
M5 18 10 5 A
M6 19 26 183 A
M7 23 26 14 B
M8 21 54 215 B
M9 9 18 102 B
M10 11 51 21 A
M11 17 20 54 B
M12 18 105 0 B

Region 2 M13 18 7 6 B
M14 17 16 96 B
M15 22 34 118 A
M16 24 100 112 B
M17 36 50 535 B
M18 43 21 8 B
M19 6 11 53 B
M20 15 19 28 A

Region 3 M21 15 14 69 B
M22 25 10 65 B
M23 39 11 27 B

There is a certain flexibility in that any share may vary by ˙5%. That is, the share can vary between the
limits 35/65 and 45/55.

The primary aim is to find a feasible solution. If, however, there is some choice, then possible objectives are
(i) to minimize the sum of the percentage deviations from the 40/60 split and (ii) to minimize the maximum
such deviation.

Build a model to see if the problem has a feasible solution and if so find the optimal solutions.

The numerical data are given in Table 13.1.

Mathematical Programming Formulation
Williams (1999) uses the fact that the company has only two divisions to reduce the number of decision
variables and constraints. The formulation shown here generalizes to any number of divisions.
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Index Sets and Their Members
The following index sets and their members are used in this example:

� retailer 2 RETAILERS

� r; reg 2 REGIONS

� g; group 2 GROUPS

� retailer 2 RETAILERS_region[region]

� retailer 2 RETAILERS_group[group]

� division 2 DIVISIONS

� category 2 CATEGORIES

Parameters
Table 13.2 shows the parameters that are used in this example.

Table 13.2 Parameters

Parameter Name Interpretation

region[retailer] Region per retailer
oil[retailer] Estimated market for oil per retailer
delivery[retailer] Number of delivery points per retailer
spirit[retailer] Estimated market for spirit per retailer
growth[retailer] Growth category per retailer
target[division] Market share target per division
tolerance Amount by which market share can differ from target
sum_abs_dev Sum of absolute deviations between market share and target
max_abs_dev Maximum of absolute deviations between market share and target



162 F Chapter 13: Market Sharing

Variables
Table 13.3 shows the variables that are used in this example.

Table 13.3 Variables

Variable Name Interpretation

Assign[retailer,division] 1 if retailer is assigned to division; 0 otherwise
MarketShare[category,division] Market share for category and division
Surplus[category,division] maxfMarketShare[category,division] � target[division]; 0g

Slack[category,division] maxftarget[division] �MarketShare[category,division]; 0g

MinMax max
category2CATEGORIES;

division2DIVISIONS

jMarketShare[category,division] � target[division]j

Objectives
The first objective is to minimize the following (nonlinear, nondifferentiable) L1 norm function:

Objective1 D
X

category2CATEGORIES;
division2DIVISIONS

jMarketShare[category,division] � target[division]j

The second objective is to minimize the following (nonlinear, nondifferentiable) L1 norm function:

Objective2 D max
category2CATEGORIES;

division2DIVISIONS

jMarketShare[category,division] � target[division]j

Constraints
The following constraints are used in this example:

� bounds on variables

� for retailer 2 RETAILERS,X
division2DIVISIONS

Assign[retailer,division] D 1

� for division 2 DIVISIONS,

MarketShare[’delivery’,division] D

P
retailer2RETAILERS

delivery[retailer] � Assign[retailer,division]P
retailer2RETAILERS

delivery[retailer]
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� for division 2 DIVISIONS,

MarketShare[’spirit’,division] D

P
retailer2RETAILERS

spirit[retailer] � Assign[retailer,division]P
retailer2RETAILERS

spirit[retailer]

� for reg 2 REGIONS and division 2 DIVISIONS,

MarketShare[’oil’||reg,division] D

P
retailer2RETAILERS_region[reg]

oil[retailer] � Assign[retailer,division]P
retailer2RETAILERS_region[reg]

oil[retailer]

� for group 2 GROUPS and division 2 DIVISIONS,

MarketShare[’growth’||group,division] D

P
retailer2RETAILERS_group[group]

Assign[retailer,division]

jRETAILERS_group[group]j

� for category 2 CATEGORIES and division 2 DIVISIONS,

MarketShare[category,division]�Surplus[category,division]CSlack[category,division] D target[division]

� for category 2 CATEGORIES and division 2 DIVISIONS,

MinMax � Surplus[category,division]C Slack[category,division]

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data retailer_data;
input region oil delivery spirit growth $;
datalines;

1 9 11 34 A
1 13 47 411 A
1 14 44 82 A
1 17 25 157 B
1 18 10 5 A
1 19 26 183 A
1 23 26 14 B
1 21 54 215 B
2 9 18 102 B
2 11 51 21 A
2 17 20 54 B
2 18 105 0 B
2 18 7 6 B
2 17 16 96 B
2 22 34 118 A
2 24 100 112 B
2 36 50 535 B
2 43 21 8 B
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3 6 11 53 B
3 15 19 28 A
3 15 14 69 B
3 25 10 65 B
3 39 11 27 B
;

data division_data;
input target;
datalines;

0.40
0.60
;

%let tolerance = 0.05;

PROC OPTMODEL Statements and Output
The following PROC OPTMODEL statements declare an index set and parameters and then read the input
data:

proc optmodel;
set RETAILERS;
num region {RETAILERS};
num oil {RETAILERS};
num delivery {RETAILERS};
num spirit {RETAILERS};
str growth {RETAILERS};
read data retailer_data into RETAILERS=[_N_]

region oil delivery spirit growth;

The following statements declare parameters and index sets, which are initialized to be empty and then
populated within a FOR loop. Note that both RETAILERS_region and RETAILERS_group are sets that are
indexed by other sets:

set REGIONS init {};
set RETAILERS_region {REGIONS} init {};
num r;
set <str> GROUPS init {};
set RETAILERS_group {GROUPS} init {};
str g;
for {retailer in RETAILERS} do;

r = region[retailer];
REGIONS = REGIONS union {r};
RETAILERS_region[r] = RETAILERS_region[r] union {retailer};
g = growth[retailer];
GROUPS = GROUPS union {g};
RETAILERS_group[g] = RETAILERS_group[g] union {retailer};

end;

set DIVISIONS;
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num target {DIVISIONS};
read data division_data into DIVISIONS=[_N_] target;

num tolerance = &tolerance;

The following declarations are straightforward:

var Assign {RETAILERS, DIVISIONS} binary;

con Assign_con {retailer in RETAILERS}:
sum {division in DIVISIONS} Assign[retailer,division] = 1;

set CATEGORIES = {'delivery','spirit'}
union (setof {reg in REGIONS} 'oil'||reg)
union (setof {group in GROUPS} 'growth'||group);

var MarketShare {CATEGORIES, DIVISIONS};
var Surplus {CATEGORIES, DIVISIONS} >= 0 <= tolerance;
var Slack {CATEGORIES, DIVISIONS} >= 0 <= tolerance;

min Objective1 =
sum {category in CATEGORIES, division in DIVISIONS}

(Surplus[category,division] + Slack[category,division]);

con Delivery_con {division in DIVISIONS}:
MarketShare['delivery',division]

= (sum {retailer in RETAILERS} delivery[retailer] *
Assign[retailer,division])
/ (sum {retailer in RETAILERS} delivery[retailer]);

con Spirit_con {division in DIVISIONS}:
MarketShare['spirit',division]

= (sum {retailer in RETAILERS} spirit[retailer] *
Assign[retailer,division])
/ (sum {retailer in RETAILERS} spirit[retailer]);

con Oil_con {reg in REGIONS, division in DIVISIONS}:
MarketShare['oil'||reg,division]

= (sum {retailer in RETAILERS_region[reg]}
oil[retailer] * Assign[retailer,division])
/ (sum {retailer in RETAILERS_region[reg]} oil[retailer]);

con Growth_con {group in GROUPS, division in DIVISIONS}:
MarketShare['growth'||group,division]

= (sum {retailer in RETAILERS_group[group]} Assign[retailer,division])
/ card(RETAILERS_group[group]);

con Abs_dev_con {category in CATEGORIES, division in DIVISIONS}:
MarketShare[category,division]

- Surplus[category,division] + Slack[category,division]
= target[division];

The following NUM statements use the ABS function, the .sol variable suffix, and the MAX aggregation
operator to compute the two norms from the optimal solution:
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num sum_abs_dev =
sum {category in CATEGORIES, division in DIVISIONS}

abs(MarketShare[category,division].sol - target[division]);
num max_abs_dev =

max {category in CATEGORIES, division in DIVISIONS}
abs(MarketShare[category,division].sol - target[division]);

The MILP solver is called twice, and each SOLVE statement includes the OBJ option to specify which
objective to optimize. The first PRINT statement after each SOLVE statement reports the values of both
objectives even though only one objective is optimized at a time:

solve obj Objective1;
print sum_abs_dev max_abs_dev;
print Assign;
print MarketShare Surplus Slack;

Figure 13.1 shows the output that results from the first SOLVE statement. The optimal objective value
disagrees with the value 0.0453 presented in Williams (1999), even after you account for the fact that the
formulation here counts each deviation twice (once per division).

Figure 13.1 Output from First SOLVE Statement, Minimizing Sum of Deviations

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function Objective1

Objective Type Linear

Number of Variables 88

Bounded Above 0

Bounded Below 0

Bounded Below and Above 74

Free 14

Fixed 0

Binary 46

Integer 0

Number of Constraints 51

Linear LE (<=) 0

Linear EQ (=) 51

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 284
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Figure 13.1 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Objective1

Solution Status Optimal

Objective Value 0.1059523594

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.110223E-16

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 0.1059523594

Nodes 309

Iterations 2214

Presolve Time 0.02

Solution Time 0.06

sum_abs_dev max_abs_dev

0.10595 0.025

Assign

1 2

1 1 0

2 1 0

3 1 0

4 1 0

5 0 1

6 0 1

7 0 1

8 0 1

9 0 1

10 0 1

11 1 0

12 0 1

13 0 1

14 0 1

15 0 1

16 1 0

17 0 1

18 1 0

19 0 1

20 0 1

21 1 0

22 1 0

23 0 1
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Figure 13.1 continued

[1] [2] MarketShare Surplus Slack

delivery 1 0.40000 0.0000000 0.0000000

delivery 2 0.60000 0.0000000 0.0000000

growthA 1 0.37500 0.0000000 0.0250000

growthA 2 0.62500 0.0250000 0.0000000

growthB 1 0.40000 0.0000000 0.0000000

growthB 2 0.60000 0.0000000 0.0000000

oil1 1 0.39552 0.0000000 0.0044776

oil1 2 0.60448 0.0044776 0.0000000

oil2 1 0.39070 0.0000000 0.0093023

oil2 2 0.60930 0.0093023 0.0000000

oil3 1 0.40000 0.0000000 0.0000000

oil3 2 0.60000 0.0000000 0.0000000

spirit 1 0.41420 0.0141962 0.0000000

spirit 2 0.58580 0.0000000 0.0141962

The following statements declare the additional variable, objective, and constraints for problem (ii), with the
tighter linearization of the L1 norm as in Chapter 11:

var MinMax >= 0 init max_abs_dev;
min Objective2 = MinMax;
con MinMax_con {category in CATEGORIES, division in DIVISIONS}:

MinMax >= Surplus[category,division] + Slack[category,division];

The following statements call the MILP solver to solve problem (ii). The PRIMALIN option is used to
initialize the MILP solver with the optimal solution that was obtained for problem (i):

solve obj Objective2 with MILP / primalin;
print sum_abs_dev max_abs_dev;
print Assign;
print MarketShare Surplus Slack;

quit;
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Figure 13.2 shows the output that results from the second SOLVE statement.

Figure 13.2 Output from Second SOLVE Statement, Minimizing Maximum Deviation

Problem Summary

Objective Sense Minimization

Objective Function Objective2

Objective Type Linear

Number of Variables 89

Bounded Above 0

Bounded Below 1

Bounded Below and Above 74

Free 14

Fixed 0

Binary 46

Integer 0

Number of Constraints 65

Linear LE (<=) 0

Linear EQ (=) 51

Linear GE (>=) 14

Linear Range 0

Constraint Coefficients 326

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Objective2

Solution Status Optimal

Objective Value 0.025

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.110223E-16

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 0.025

Nodes 1

Iterations 22

Presolve Time 0.01

Solution Time 0.01

sum_abs_dev max_abs_dev

0.10595 0.025
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Figure 13.2 continued

Assign

1 2

1 1 0

2 1 0

3 1 0

4 1 0

5 0 1

6 0 1

7 0 1

8 0 1

9 0 1

10 0 1

11 1 0

12 0 1

13 0 1

14 0 1

15 0 1

16 1 0

17 0 1

18 1 0

19 0 1

20 0 1

21 1 0

22 1 0

23 0 1

[1] [2] MarketShare Surplus Slack

delivery 1 0.40000 0.0000000 0.0000000

delivery 2 0.60000 0.0000000 0.0000000

growthA 1 0.37500 0.0000000 0.0250000

growthA 2 0.62500 0.0250000 0.0000000

growthB 1 0.40000 0.0000000 0.0000000

growthB 2 0.60000 0.0000000 0.0000000

oil1 1 0.39552 0.0000000 0.0044776

oil1 2 0.60448 0.0044776 0.0000000

oil2 1 0.39070 0.0000000 0.0093023

oil2 2 0.60930 0.0093023 0.0000000

oil3 1 0.40000 0.0000000 0.0000000

oil3 2 0.60000 0.0000000 0.0000000

spirit 1 0.41420 0.0141962 0.0000000

spirit 2 0.58580 0.0000000 0.0141962
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (L1 and L1 norms)

� numeric and string index sets

� multiple input data sets

� set operators UNION and SETOF

� string concatenation

� sets indexed by other sets

� multiple objectives and the OBJ option

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� CARD function

� ABS function

� MAX aggregation operator

� MILP solver option PRIMALIN



172



Chapter 14

Opencast Mining: How Much to Excavate
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Problem Statement
A company has obtained permission to opencast mine within a square plot 200 ft � 200 ft.1 The angle of
slip of the soil is such that it is not possible for the sides of the excavation to be steeper than 45ı. The
company has obtained estimates for the value of the ore in various places at various depths. Bearing in mind
the restrictions imposed by the angle of slip, the company decides to consider the problem as one of the
extracting of rectangular blocks. Each block has horizontal dimensions 50 ft � 50 ft and a vertical dimension
of 25 ft. If the blocks are chosen to lie above one another, as illustrated in vertical section in Figure 14.1, then
it is only possible to excavate blocks forming an upturned pyramid. (In a three-dimensional representation
Figure 14.1 would show four blocks lying above each lower block.)

Figure 14.1

If the estimates of ore value are applied to give values (in percentage of pure metal) for each block in the
maximum pyramid which can be extracted then the following values are obtained:

Level 1
(surface)

1.5 1.5 1.5 0.75
1.5 2.0 1.5 0.75
1.0 1.0 0.75 0.5
0.75 0.75 0.5 0.25

Level 2
(25 ft depth)

4.0 4.0 2.0
3.0 3.0 1.0
2.0 2.0 0.5

Level 3
(50 ft depth)

12.0 6.0
5.0 4.0

Level 4
(75 ft depth)

6.0

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 245–247).
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The cost of extraction increases with depth. At successive levels the cost of extracting a block is:

Level 1 £3000
Level 2 £6000
Level 3 £8000
Level 4 £10,000

The revenue obtained from a ‘100% value block’ would be £200,000. For each block here the revenue is
proportional to ore value.

Build a model to help decide the best blocks to extract. The objective is to maximize revenue � cost.

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� block; i; j 2 BLOCKS

� level 2 LEVELS

Parameters
Table 14.1 shows the parameters that are used in this example.

Table 14.1 Parameters

Parameter Name Interpretation

level[block] Level of block
row[block] Row of block
column[block] Column of block
revenue[block] Revenue obtained from extracting block
cost[level] Cost of extracting block per level
full_value Revenue obtained from a 100% value block
profit[block] Profit obtained from extracting block
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Variables
Table 14.2 shows the variables that are used in this example.

Table 14.2 Variables

Variable Name Interpretation

Extract[block] 1 if block is extracted; 0 otherwise

Objective
The objective is to maximize the following function:

TotalProfit D
X

block2BLOCKS

profit[block] � Extract[block]

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 BLOCKS and j 2 BLOCKS such that level[j] D level[i]�1 and row[j] 2 frow[i]; row[i]C1g

and column[j] 2 fcolumn[i]; column[i]C 1g,

Extract[i] � Extract[j]

Input Data
The following data sets and macro variable contain the input data that are used in this example:

data block_data;
input level row column percent;
datalines;

1 1 1 1.5
1 1 2 1.5
1 1 3 1.5
1 1 4 0.75
1 2 1 1.5
1 2 2 2.0
1 2 3 1.5
1 2 4 0.75
1 3 1 1.0
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1 3 2 1.0
1 3 3 0.75
1 3 4 0.5
1 4 1 0.75
1 4 2 0.75
1 4 3 0.5
1 4 4 0.25
2 1 1 4.0
2 1 2 4.0
2 1 3 2.0
2 2 1 3.0
2 2 2 3.0
2 2 3 1.0
2 3 1 2.0
2 3 2 2.0
2 3 3 0.5
3 1 1 12.0
3 1 2 6.0
3 2 1 5.0
3 2 2 4.0
4 1 1 6.0
;

data level_data;
input cost;
datalines;

3000
6000
8000
10000
;

%let full_value = 200000;
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PROC OPTMODEL Statements and Output
The following PROC OPTMODEL statements declare index sets and parameters and then read data sets to
populate them:

proc optmodel;
set BLOCKS;
num level {BLOCKS};
num row {BLOCKS};
num column {BLOCKS};
num revenue {BLOCKS};
read data block_data into BLOCKS=[_N_] level row column revenue=percent;
for {block in BLOCKS} revenue[block] = &full_value * revenue[block] / 100;

set LEVELS;
num cost {LEVELS};
read data level_data into LEVELS=[_N_] cost;

The following statements declare binary decision variables and the objective:

var Extract {BLOCKS} binary;
num profit {block in BLOCKS} = revenue[block] - cost[level[block]];
max TotalProfit = sum {block in BLOCKS} profit[block] * Extract[block];

The following CON statement uses the colon operator (:) to enforce the rule that if you extract block i, then
you must also extract each block j that lies above it:

con Precedence_con {i in BLOCKS, j in BLOCKS:
level[j] = level[i] - 1
and row[j] in {row[i],row[i]+1}
and column[j] in {column[i],column[i]+1}
}:
Extract[i] <= Extract[j];

The following SOLVE statement calls the MILP solver. However, since the constraint matrix is totally
unimodular, the optimal solution of the LP relaxation is automatically integral, and hence no branching is
required.

solve;
print Extract profit;

The following CREATE DATA statement uses the colon operator (:) to output only the blocks that are used
in the optimal solution:

create data sol_data from
[block]={block in BLOCKS: Extract[block].sol > 0.5}
level row column revenue cost[level[block]] profit;

quit;
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Figure 14.2 shows the output from the mixed integer linear programming solver.

Figure 14.2 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 30

Bounded Above 0

Bounded Below 0

Bounded Below and Above 30

Free 0

Fixed 0

Binary 30

Integer 0

Number of Constraints 56

Linear LE (<=) 56

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 112

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalProfit

Solution Status Optimal

Objective Value 17500

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 17500

Nodes 0

Iterations 0

Presolve Time 0.02

Solution Time 0.02
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Figure 14.2 continued

[1] Extract profit

1 1 0

2 1 0

3 1 0

4 0 -1500

5 1 0

6 1 1000

7 1 0

8 0 -1500

9 1 -1000

10 1 -1000

11 1 -1500

12 0 -2000

13 0 -1500

14 0 -1500

15 0 -2000

16 0 -2500

17 1 2000

18 1 2000

19 0 -2000

20 1 0

21 1 0

22 0 -4000

23 0 -2000

24 0 -2000

25 0 -5000

26 1 16000

27 0 4000

28 0 2000

29 0 0

30 0 2000

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (totally unimodular)

� reading multiple input data sets

� IN expression

� logical operator AND

� using a colon (:) to select members of a set

� modeling if-then constraints by using binary variables

� creating an output data set from a subset of an index set
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Problem Statement
A number of power stations are committed to meeting the following electricity load demands over a day:1

12 [a.m.] to 6 a.m. 15,000 megawatts
6 a.m. to 9 a.m. 30,000 megawatts
9 a.m. to 3 p.m. 25,000 megawatts
3 p.m. to 6 p.m. 40,000 megawatts
6 p.m. to 12 [a.m.] 27,000 megawatts

There are three types of generating unit available: 12 of type 1, 10 of type 2, and five of type 3. Each
generator has to work between a minimum and a maximum level. There is an hourly cost of running each
generator at minimum level. In addition there is an extra hourly cost for each megawatt at which a unit is
operated above minimum level. To start up a generator also involves a cost. All this information is given in
Table 15.1 (with costs in £).

In addition to meeting the estimated load demands there must be sufficient generators working at any time to
make it possible to meet an increase in load of up to 15%. This increase would have to be accomplished by
adjusting the output of generators already operating within their permitted limits.

Which generators should be working in which periods of the day to minimize total cost?

What is the marginal cost of production of electricity in each period of the day; i.e. what tariffs should be
charged?

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 247).
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What would be the saving of lowering the 15% reserve output guarantee; i.e. what does this security of supply
guarantee cost?

Table 15.1

Cost per hour
Minimum Maximum Cost per hour per megawatt [Start-up]

level level at minimum above minimum cost

Type 1 850 MW 2000 MW 1000 2 2000
Type 2 1250 MW 1750 MW 2600 1.30 1000
Type 3 1500 MW 4000 MW 3000 3 500

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� period 2 PERIODS

� type 2 TYPES

Parameters
Table 15.2 shows the parameters that are used in this example.

Table 15.2 Parameters

Parameter Name Interpretation

length[period] Length per period (in hours)
demand[period] Demand per period (in megawatts)
num_avail[type] Number of units available per generator
min_level[type] Minimum level (in megawatts) per generator
max_level[type] Maximum level (in megawatts) per generator
unit_cost[type] Hourly cost (in pounds) of running each generator at minimum level
excess_cost[type] Extra hourly cost (in pounds) per megawatt at which a unit is operated above

minimum level
startup_cost[type] Cost (in pounds) of starting up each generator
reserve Additional fraction of estimated load required to be met by generators already in

operation
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Variables
Table 15.3 shows the variables that are used in this example.

Table 15.3 Variables

Variable Name Interpretation

NumWorking[period,type] Number of units per type of generator operating per period
Excess[period,type] Number of megawatt-hours generated above minimum level
NumStartup[period,type] Number of units per type of generator starting up per period
Output[period,type] Number of megawatt-hours generated

Objective
The objective is to minimize the following function:

TotalCost D
X

period2PERIODS;

type2TYPES

.unit_cost[type] � length[period] � NumWorking[period,type]

Cexcess_cost[type] � length[period] � Excess[period,type]

Cstartup_cost[type] � NumStartup[period,type]/

Constraints
The following constraints are used in this example:

� bounds on variables

� for period 2 PERIODS and type 2 TYPES,

Output[period,type] D min_level[type] � NumWorking[period,type]C Excess[period,type]

� for period 2 PERIODS,X
type2TYPES

Output[period,type] � demand[period]

� for period 2 PERIODS,X
type2TYPES

max_level[type] � NumWorking[period,type] � .1C reserve/ � demand[period]

� for period 2 PERIODS and type 2 TYPES,

Excess[period,type] � .max_level[type] � min_level[type]/ � NumWorking[period,type]
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� for period 2 PERIODS and type 2 TYPES,

NumStartup[period,type] � NumWorking[period,type]

� .if period � 1 2 PERIODS, then NumWorking[period � 1; type]I

else NumWorking[jPERIODSj; type]/

Input Data
The following data sets and macro variable contain the input data that are used in this example:

data period_data;
input length demand;
datalines;

6 15000
3 30000
6 25000
3 40000
6 27000
;

data type_data;
input num_avail min_level max_level unit_cost excess_cost startup_cost;
datalines;

12 850 2000 1000 2 2000
10 1250 1750 2600 1.30 1000
5 1500 4000 3000 3 500

;

%let reserve = 0.15;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set PERIODS;
num length {PERIODS};
num demand {PERIODS};
read data period_data into PERIODS=[_N_] length demand;

set TYPES;
num num_avail {TYPES};
num min_level {TYPES};
num max_level {TYPES};
num unit_cost {TYPES};
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num excess_cost {TYPES};
num startup_cost {TYPES};
read data type_data into TYPES=[_N_]

num_avail min_level max_level unit_cost excess_cost startup_cost;

The following VAR statements declare decision variables, with bounds that depend on type:

var NumWorking {PERIODS, type in TYPES} >= 0 <= num_avail[type] integer;
var Excess {PERIODS, TYPES} >= 0;
var NumStartup {PERIODS, type in TYPES} >= 0 <= num_avail[type] integer;

The following IMPVAR statement declares Output as an implicit variable:

impvar Output {period in PERIODS, type in TYPES} =
min_level[type] * NumWorking[period,type] + Excess[period,type];

The following MIN statement declares the objective:

min TotalCost =
sum {period in PERIODS, type in TYPES} (

unit_cost[type] * length[period] * NumWorking[period,type]
+ excess_cost[type] * length[period] * Excess[period,type]
+ startup_cost[type] * NumStartup[period,type]);

The following CON statements declare the constraints, with an IF-THEN/ELSE expression in the last
constraint to account for a boundary condition in the first period:

con Demand_con {period in PERIODS}:
sum {type in TYPES} Output[period,type]

>= demand[period];

con Reserve_con {period in PERIODS}:
sum {type in TYPES} max_level[type] * NumWorking[period,type]

>= (1 + &reserve) * demand[period];

con Excess_ub {period in PERIODS, type in TYPES}:
Excess[period,type]

<= (max_level[type] - min_level[type]) * NumWorking[period,type];

con Startup_con {period in PERIODS, type in TYPES}:
NumStartup[period,type]

>= NumWorking[period,type]
- (if period - 1 in PERIODS then NumWorking[period-1,type]

else NumWorking[card(PERIODS),type]);

The following statements call the mixed integer linear programming solver, print the optimal solution, and
create a data set that contains the optimal solution, with one observation per period-type pair:

solve;
print NumWorking NumStartup Excess Output;
create data sol_data from [period type] NumWorking NumStartup Excess Output;
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Figure 15.1 shows the output from the mixed integer linear programming solver.

Figure 15.1 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 45

Bounded Above 0

Bounded Below 15

Bounded Below and Above 30

Free 0

Fixed 0

Binary 0

Integer 30

Number of Constraints 40

Linear LE (<=) 15

Linear EQ (=) 0

Linear GE (>=) 25

Linear Range 0

Constraint Coefficients 120

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalCost

Solution Status Optimal

Objective Value 988540

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 3.637979E-12

Bound Infeasibility 0

Integer Infeasibility 5.551115E-15

Best Bound 988540

Nodes 1

Iterations 33

Presolve Time 0.01

Solution Time 0.02
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Figure 15.1 continued

[1] [2] NumWorking NumStartup Excess Output

1 1 12 0 0 10200

1 2 3 0 1050 4800

1 3 0 0 0 0

2 1 12 0 5800 16000

2 2 8 5 4000 14000

2 3 0 0 0 0

3 1 12 0 800 11000

3 2 8 0 4000 14000

3 3 0 0 0 0

4 1 12 0 11050 21250

4 2 9 1 4500 15750

4 3 2 2 0 3000

5 1 12 0 1050 11250

5 2 9 0 4500 15750

5 3 0 0 0 0

The following statements fix the integer variables to their optimal values, call the linear programming solver,
and use the .dual constraint suffix to compute marginal costs. The RELAXINT option in the SOLVE
statement relaxes the integer variables to be continuous.

fix NumWorking;
fix NumStartup;
solve with LP relaxint;
print NumWorking NumStartup Excess Output;
print {period in PERIODS} (demand_con[period].dual / length[period]);

Figure 15.2 shows the output from the linear programming solver when the integer variables are fixed to their
optimal values. As expected, the same optimal solution is obtained; the point of calling the LP solver is to
obtain the dual variables used to compute the marginal costs, as shown in Figure 15.3.
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Figure 15.2 Output from Linear Programming Solver, Integer Variables Fixed

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 45

Bounded Above 0

Bounded Below 15

Bounded Below and Above 0

Free 0

Fixed 30

Binary 16

Integer 7

Number of Constraints 40

Linear LE (<=) 15

Linear EQ (=) 0

Linear GE (>=) 25

Linear Range 0

Constraint Coefficients 120

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalCost

Solution Status Optimal

Objective Value 988540

Primal Infeasibility 2.220446E-16

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 6

Presolve Time 0.00

Solution Time 0.00
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Figure 15.2 continued

[1] [2] NumWorking NumStartup Excess Output

1 1 12 0 0 10200

1 2 3 0 1050 4800

1 3 0 0 0 0

2 1 12 0 5800 16000

2 2 8 5 4000 14000

2 3 0 0 0 0

3 1 12 0 800 11000

3 2 8 0 4000 14000

3 3 0 0 0 0

4 1 12 0 11050 21250

4 2 9 1 4500 15750

4 3 2 2 0 3000

5 1 12 0 1050 11250

5 2 9 0 4500 15750

5 3 0 0 0 0

Figure 15.3 Marginal Costs for Demand Constraints

[1]

1 1.3

2 2.0

3 2.0

4 2.0

5 2.0

The following statements unfix the integer variables, call the linear programming solver, and use the .dual
constraint suffix to compute marginal costs:

unfix NumWorking;
unfix NumStartup;
solve with LP relaxint;
print NumWorking NumStartup Excess Output;
print {period in PERIODS} (demand_con[period].dual / length[period]);
print {period in PERIODS} (reserve_con[period].dual / length[period]);

quit;
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Figure 15.4 shows the output from the linear programming solver when the integer variables are unfixed and
relaxed to be continuous. As expected, some relaxed integer variables now take fractional values, and the
total cost is slightly less than before. Figure 15.5 and Figure 15.6 show the resulting marginal costs.

Figure 15.4 Output from Linear Programming Solver, Integer Variables Unfixed and Relaxed

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 45

Bounded Above 0

Bounded Below 15

Bounded Below and Above 30

Free 0

Fixed 0

Binary 0

Integer 30

Number of Constraints 40

Linear LE (<=) 15

Linear EQ (=) 0

Linear GE (>=) 25

Linear Range 0

Constraint Coefficients 120

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalCost

Solution Status Optimal

Objective Value 985164.28571

Primal Infeasibility 7.275958E-12

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 25

Presolve Time 0.00

Solution Time 0.01
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Figure 15.4 continued

[1] [2] NumWorking NumStartup Excess Output

1 1 12.0000 0.0000 0.0 10200

1 2 2.7429 0.0000 1371.4 4800

1 3 0.0000 0.0000 0.0 0

2 1 12.0000 0.0000 5000.0 15200

2 2 8.4571 5.7143 4228.6 14800

2 3 0.0000 0.0000 0.0 0

3 1 12.0000 0.0000 0.0 10200

3 2 8.4571 0.0000 4228.6 14800

3 3 0.0000 0.0000 0.0 0

4 1 12.0000 0.0000 11050.0 21250

4 2 9.6000 1.1429 4800.0 16800

4 3 1.3000 1.3000 0.0 1950

5 1 12.0000 0.0000 0.0 10200

5 2 9.6000 0.0000 4800.0 16800

5 3 0.0000 0.0000 0.0 0

Figure 15.5 Marginal Costs for Demand Constraints

[1]

1 1.7619

2 2.0000

3 1.7857

4 2.0000

5 1.8601

Figure 15.6 Marginal Costs for Reserve Constraints

[1]

1 0.000000

2 0.000000

3 0.000000

4 0.041667

5 0.000000
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Features Demonstrated
The following features are demonstrated in this example:

� problem types: mixed integer linear programming, linear programming

� multiple input data sets

� IMPVAR statement

� modeling startup costs

� IF-THEN/ELSE expression

� CARD function

� FIX and UNFIX statements

� LP solver option RELAXINT

� .dual constraint suffix
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Problem Statement
This is an extension of the Tariff Rates (Power Generation) problem of Section 12.15 [Chapter 15].1 In
addition to the thermal generators a reservoir powers two hydro generators: one of type A and one of type
B. When a hydro generator is running, it operates at a fixed level and the depth of the reservoir decreases.
The costs associated with each hydro generator are a fixed start-up cost and a running cost per hour. The
characteristics of each type of generator are shown in Table 16.1.

Table 16.1

Operating Reservoir depth
level Cost per hour reduction per hour Start-up cost

Hydro A 900 MW £90 0.31 metres £1500
Hydro B 1400 MW £150 0.47 metres £1200

For environmental reasons, the reservoir must be maintained at a depth of between 15 and 20 metres. Also, at
midnight each night, the reservoir must be 16 metres deep. Thermal generators can be used to pump water
into the reservoir. To increase the level of the reservoir by 1 metre requires 3000 MWh of electricity. You
may assume that rainfall does not affect the reservoir level.

At any time it must be possible to meet an increase in demand for electricity of up to 15%. This can be
achieved by any combination of the following: switching on a hydro generator (even if this would cause the
reservoir depth to fall below 15 metres); using the output of a thermal generator which is used for pumping
water into the reservoir; and increasing the operating level of a thermal generator to its maximum. Thermal
generators cannot be switched on instantaneously to meet increased demand (although hydro generators can
be).

Which generators should be working in which periods of the day, and how should the reservoir be maintained
to minimize the total cost?

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 247–248).
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Mathematical Programming Formulation
This formulation builds on the formulation used in Chapter 15. This section includes only the new elements
of the formulation.

Index Sets and Their Members
The following additional index set and its members are used in this example:

� hydro 2 HYDROS

Parameters
Table 16.2 shows the additional parameters that are used in this example.

Table 16.2 Parameters

Parameter Name Interpretation

hydro_level[hydro] Operating level (in MW) per hydro generator
hydro_unit_cost[hydro] Hourly cost (in pounds) of operating each hydro generator
hydro_depth_rate[hydro] Reservoir depth reduction (in meters) per hour per hydro generator
hydro_startup_cost[hydro] Cost of starting up each hydro generator
min_depth Lower bound on reservoir depth (in meters)
max_depth Upper bound on reservoir depth (in meters)
midnight_depth Required depth (in meters) of reservoir at midnight each night
meters_per_mwh Reservoir level increase (in meters) per megawatt-hour of electricity

Variables
Table 16.3 shows the additional variables that are used in this example.

Table 16.3 Variables

Variable Name Interpretation

HydroNumWorking[period,hydro] Number of units per type of hydro generator operating per period
HydroNumStartup[period,hydro] Number of units per type of hydro generator starting up per period
Depth[period] Reservoir depth (in meters) per period
Pump[period] Number of megawatts used by thermal generators to pump per period
HydroOutput[period,hydro] Number of megawatt-hours generated by hydro generators
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Objective
The objective is to minimize the following function:

TotalCost D
X

period2PERIODS;

type2TYPES

.unit_cost[type] � length[period] � NumWorking[period,type]

Cexcess_cost[type] � length[period] � Excess[period,type]

Cstartup_cost[type] � NumStartup[period,type]/

C

X
period2PERIODS;

hydro2HYDROS

.hydro_unit_cost[hydro] � length[period] � HydroNumWorking[period,hydro]

Chydro_startup_cost[hydro] � HydroNumStartup[period,hydro]/

Constraints
The following modified and additional constraints are used in this example:

� for period 2 PERIODS and hydro 2 HYDROS,

HydroOutput[period,hydro] D hydro_level[hydro] � HydroNumWorking[period,hydro]

� for period 2 PERIODS,X
type2TYPES

Output[period,type]C
X

hydro2HYDROS

HydroOutput[period,hydro] � Pump[period]

� demand[period]

� for period 2 PERIODS,X
type2TYPES

max_level[type] � NumWorking[period,type]

C

X
hydro2HYDROS

hydro_level[hydro] � HydroNumWorking[period,hydro].ub

� .1C reserve/ � demand[period]

� for period 2 PERIODS and hydro 2 HYDROS,

HydroNumStartup[period,hydro]

� HydroNumWorking[period,hydro]

� .if period � 1 2 PERIODS, then HydroNumWorking[period � 1; hydro]I

else HydroNumWorking[|PERIODS|, hydro]/
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� for period 2 PERIODS,

.if periodC 1 2 PERIODS; then Depth[periodC 1]I else Depth[1]/

D Depth[period]C meters_per_mwh � length[period] � Pump[period]

�

X
hydro2HYDROS

hydro_depth_rate[hydro] � length[period] � HydroNumWorking[period,hydro]

Input Data
The following data sets and macro variables contain the additional input data that are used in this example:

data hydro_data;
input hydro $ level unit_cost depth_rate startup_cost;
datalines;

A 900 90 0.31 1500
B 1400 150 0.47 1200
;

%let min_depth = 15;
%let max_depth = 20;
%let midnight_depth = 16;
%let meters_per_mwh = 1/3000;

PROC OPTMODEL Statements and Output
For completeness, all statements are shown. Statements that are new or changed from Chapter 15 are
indicated.

proc optmodel;
set PERIODS;
num length {PERIODS};
num demand {PERIODS};
read data period_data into PERIODS=[_N_] length demand;

set TYPES;
num num_avail {TYPES};
num min_level {TYPES};
num max_level {TYPES};
num unit_cost {TYPES};
num excess_cost {TYPES};
num startup_cost {TYPES};
read data type_data into TYPES=[_N_]

num_avail min_level max_level unit_cost excess_cost startup_cost;

var NumWorking {PERIODS, type in TYPES} >= 0 <= num_avail[type] integer;
var Excess {PERIODS, TYPES} >= 0;
var NumStartup {PERIODS, type in TYPES} >= 0 <= num_avail[type] integer;
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impvar Output {period in PERIODS, type in TYPES} =
min_level[type] * NumWorking[period,type] + Excess[period,type];

The following statements declare the additional index set and parameters and then read the additional input
data:

set <str> HYDROS;
num hydro_level {HYDROS};
num hydro_unit_cost {HYDROS};
num hydro_depth_rate {HYDROS};
num hydro_startup_cost {HYDROS};
read data hydro_data into HYDROS=[hydro]

hydro_level=level hydro_unit_cost=unit_cost hydro_depth_rate=depth_rate
hydro_startup_cost=startup_cost;

The following statements declare additional variables and fix the value of Depth[1]:

var HydroNumWorking {PERIODS, HYDROS} binary;
var HydroNumStartup {PERIODS, HYDROS} binary;
var Depth {PERIODS} >= &min_depth <= &max_depth;
fix Depth[1] = &midnight_depth;
var Pump {PERIODS} >= 0;

The following IMPVAR statement declares HydroOutput as a new implicit variable:

impvar HydroOutput {period in PERIODS, hydro in HYDROS} =
hydro_level[hydro] * HydroNumWorking[period,hydro];

The following MIN statement is a modification of the objective declaration from Chapter 15:

min TotalCost =
sum {period in PERIODS, type in TYPES} (

unit_cost[type] * length[period] * NumWorking[period,type]
+ excess_cost[type] * length[period] * Excess[period,type]
+ startup_cost[type] * NumStartup[period,type])

+ sum {period in PERIODS, hydro in HYDROS} (
hydro_unit_cost[hydro] * length[period] *

HydroNumWorking[period,hydro]
+ hydro_startup_cost[hydro] * HydroNumStartup[period,hydro]);

The following two CON statements are modified from Chapter 15:

con Demand_con {period in PERIODS}:
sum {type in TYPES} Output[period,type]

+ sum {hydro in HYDROS} HydroOutput[period,hydro]
- Pump[period]
>= demand[period];

con Reserve_con {period in PERIODS}:
sum {type in TYPES} max_level[type] * NumWorking[period,type]

+ sum {hydro in HYDROS} hydro_level[hydro] *
HydroNumWorking[period,hydro].ub

>= (1 + &reserve) * demand[period];

con Excess_ub {period in PERIODS, type in TYPES}:
Excess[period,type]

<= (max_level[type] - min_level[type]) * NumWorking[period,type];
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con Startup_con {period in PERIODS, type in TYPES}:
NumStartup[period,type]

>= NumWorking[period,type]
- (if period - 1 in PERIODS then NumWorking[period-1,type]

else NumWorking[card(PERIODS),type]);

The following two CON statements declare the final two additional constraints:

con Hydro_startup_con {period in PERIODS, hydro in HYDROS}:
HydroNumStartup[period,hydro]

>= HydroNumWorking[period,hydro]
- (if period - 1 in PERIODS then HydroNumWorking[period-1,hydro]

else HydroNumWorking[card(PERIODS),hydro]);

con Depth_con {period in PERIODS}:
(if period + 1 in PERIODS then Depth[period+1] else Depth[1])

= Depth[period]
+ &meters_per_mwh * length[period] * Pump[period]
- sum {hydro in HYDROS} hydro_depth_rate[hydro] * length[period] *

HydroNumWorking[period,hydro];

The following statements call the mixed integer linear programming solver, print the optimal solution, and
create several data sets that contain various parts of the optimal solution, with variables grouped according to
their index sets:

solve;
print NumWorking NumStartup Excess Output;
print HydroNumWorking HydroNumStartup HydroOutput;
print Pump Depth;
create data sol_data1 from [period type]

NumWorking NumStartup Excess Output;
create data sol_data2 from [period hydro]

HydroNumWorking HydroNumStartup HydroOutput;
create data sol_data3 from [period] Pump Depth;

quit;
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Figure 16.1 shows the output from the mixed integer linear programming solver.

Figure 16.1 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 75

Bounded Above 0

Bounded Below 20

Bounded Below and Above 54

Free 0

Fixed 1

Binary 20

Integer 30

Number of Constraints 55

Linear LE (<=) 15

Linear EQ (=) 5

Linear GE (>=) 35

Linear Range 0

Constraint Coefficients 190

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalCost

Solution Status Optimal

Objective Value 986630

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.664535E-15

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 986630

Nodes 53

Iterations 617

Presolve Time 0.02

Solution Time 0.06
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Figure 16.1 continued

[1] [2] NumWorking NumStartup Excess Output

1 1 12 0 365 10565

1 2 3 0 1500 5250

1 3 0 0 0 0

2 1 12 0 4050 14250

2 2 9 6 4500 15750

2 3 0 0 0 0

3 1 12 0 0 10200

3 2 9 0 4500 15750

3 3 0 0 0 0

4 1 12 0 11150 21350

4 2 9 0 4500 15750

4 3 1 1 0 1500

5 1 12 0 0 10200

5 2 9 0 4500 15750

5 3 0 0 0 0

[1] [2] HydroNumWorking HydroNumStartup HydroOutput

1 A 0 0 0

1 B 0 0 0

2 A 0 0 0

2 B 0 0 0

3 A 0 0 0

3 B 0 0 0

4 A 0 0 0

4 B 1 1 1400

5 A 0 0 0

5 B 1 0 1400

[1] Pump Depth

1 815 16.00

2 0 17.63

3 950 17.63

4 0 19.53

5 350 18.12
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� multiple input and output data sets

� FIX statement

� IMPVAR statement

� .ub variable suffix

� modeling startup costs

� IF-THEN/ELSE expression

� CARD function
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Three-Dimensional Noughts and Crosses: A
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Problem Statement
Twenty-seven cells are arranged 3 � 3 � 3 in a three-dimensional array as shown in Figure 17.1.1

Figure 17.1

Chapter 24

Module Library

Contents
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079

Overview
The IMLMLIB library contains modules written in the SAS/IML language. The library contains both func-
tions and subroutines. You do not have to explicitly load these modules: they are automatically loaded at
run time when they are called by a SAS/IML program.

Figure 24.1

Three cells are regarded as lying in the same line if they are on the same horizontal or vertical line or the
same diagonal. Diagonals exist on each horizontal and vertical section and connecting opposite vertices of
the cube. (There are 49 lines altogether.)

Given 13 white balls (noughts) and 14 black balls (crosses), arrange them, one to a cell, so as to minimize the
number of lines with balls all of one colour.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 248–249).
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Mathematical Programming Formulation
The formulation shown here generalizes the problem to an n � n � n array and an arbitrary number of colors.

Index Sets and Their Members
The following index sets and their members are used in this example:

� .i; j; k/ 2 CELLS

� color 2 COLORS

� line 2 LINES

� .i; j; k/ 2 CELLS_lineŒline�

Parameters
Table 17.1 shows the parameters that are used in this example.

Table 17.1 Parameters

Parameter Name Interpretation

n Number of cells per line
num_lines Number of lines
num_balls[color] Number of balls of each color
assigned_color[i,j,k] Color assigned to cell .i; j; k/

Variables
Table 17.2 shows the variables that are used in this example.

Table 17.2 Variables

Variable Name Interpretation

IsColor[i,j,k,color] 1 if cell .i; j; k/ is color; 0 otherwise
IsMonochromatic[line] 1 if line is monochromatic; 0 otherwise
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Objective
The objective is to minimize the following function:

NumMonochromaticLines D
X

line2LINES

IsMonochromatic[line]

Constraints
The following constraints are used in this example:

� bounds on variables

� for .i; j; k/ 2 CELLS,X
color2COLORS

IsColor[i,j,k,color] D 1

� for color 2 COLORS,X
.i;j;k/2CELLS

IsColor[i,j,k,color] D num_balls[color]

� for line 2 LINES and color 2 COLORS,X
.i;j;k/2CELLS_lineŒline�

IsColor[i,j,k,color] � jCELLS_lineŒline�j C 1 � IsMonochromatic[line]

Input Data
The following data set and macro variable contain the input data that are used in this example:

data color_data;
input num_balls;
datalines;

13
14
;

%let n = 3;
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PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare parameters and index sets and then read the input
data:

proc optmodel;
num n = &n;
set CELLS = 1..n cross 1..n cross 1..n;

set COLORS;
num num_balls {COLORS};
read data color_data into COLORS=[_N_] num_balls;

The following statements declare the IsColor variables and the first two families of constraints:

var IsColor {CELLS, COLORS} binary;
con IsColor_con {<i,j,k> in CELLS}:

sum {color in COLORS} IsColor[i,j,k,color] = 1;
con Num_balls_con {color in COLORS}:

sum {<i,j,k> in CELLS} IsColor[i,j,k,color] = num_balls[color];

The following statements declare the IsMonochromatic variables and the objective:

num num_lines init 0;
set LINES = 1..num_lines;
var IsMonochromatic {LINES} binary;

min NumMonochromaticLines = sum {line in LINES} IsMonochromatic[line];

The following SET statement declares (but does not populate) an index set that will contain the cells for each
line:

set <num,num,num> CELLS_line {LINES};

The following FOR loops use the SETOF operator to populate CELLS_line for each row:

for {i in 1..n, j in 1..n} do;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {k in 1..n} <i,j,k>;

end;
for {i in 1..n, k in 1..n} do;

num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {j in 1..n} <i,j,k>;

end;
for {j in 1..n, k in 1..n} do;

num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {i in 1..n} <i,j,k>;

end;
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The following FOR loops use the SETOF operator to populate CELLS_line for each face diagonal:

for {i in 1..n} do;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {j in 1..n} <i,j,j>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {j in 1..n} <i,j,n+1-j>;

end;
for {j in 1..n} do;

num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {i in 1..n} <i,j,i>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {i in 1..n} <i,j,n+1-i>;

end;
for {k in 1..n} do;

num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {i in 1..n} <i,i,k>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {i in 1..n} <i,n+1-i,k>;

end;

The following statements use the SETOF operator to populate CELLS_line for each cube diagonal:

num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {t in 1..n} <t,t,t>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {t in 1..n} <t,t,n+1-t>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {t in 1..n} <t,n+1-t,t>;
num_lines = num_lines + 1;
CELLS_line[num_lines] = setof {t in 1..n} <t,n+1-t,n+1-t>;

The following PUT statements demonstrate that num_lines is ..nC 2/3 � n3/=2, which is 49 when n D 3.

put num_lines=;
put (((n+2)^3 - n^3) / 2)=;

The following CON statement enforces the rule that if all cells in a line are the same color, then
IsMonochromatic[line] D 1:

con Link_con {line in LINES, color in COLORS}:
sum {<i,j,k> in CELLS_line[line]} IsColor[i,j,k,color]

- card(CELLS_line[line]) + 1
<= IsMonochromatic[line];

The following statements call the mixed integer linear programming solver and use the .sol variable suffix
to populate assigned_color[i,j,k]:

solve;
num assigned_color {CELLS};
for {<i,j,k> in CELLS} do;

for {color in COLORS: IsColor[i,j,k,color].sol > 0.5} do;
assigned_color[i,j,k] = color;
leave;

end;
end;
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The following statements print the values of assigned_color[i,j,k] for each i and display in the log which
cells make up each monochromatic line:

for {i in 1..n}
print {j in 1..n, k in 1..n} assigned_color[i,j,k];

for {line in LINES: IsMonochromatic[line].sol > 0.5}
put CELLS_line[line]=;

By default, the PUT statement writes to the log. You can use the following FILE statement to redirect log
output to the listing:

file print;
for {line in LINES: IsMonochromatic[line].sol > 0.5}

put CELLS_line[line]=;
quit;

Figure 17.2 shows the output from the mixed integer linear programming solver.

Figure 17.2 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function NumMonochromaticLines

Objective Type Linear

Number of Variables 103

Bounded Above 0

Bounded Below 0

Bounded Below and Above 103

Free 0

Fixed 0

Binary 103

Integer 0

Number of Constraints 127

Linear LE (<=) 98

Linear EQ (=) 29

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 500
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Figure 17.2 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NumMonochromaticLines

Solution Status Optimal

Objective Value 4

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.776357E-15

Bound Infeasibility 1.332268E-15

Integer Infeasibility 1.332268E-15

Best Bound 4

Nodes 195

Iterations 3678

Presolve Time 0.02

Solution Time 0.09

assigned_color

1 2 3

1 1 2 1

2 2 1 2

3 1 2 2

assigned_color

1 2 3

1 1 2 2

2 2 2 1

3 2 1 1

assigned_color

1 2 3

1 2 1 2

2 1 2 1

3 1 1 2

Figure 17.3 shows the output from the PUT statement.

Figure 17.3 Output from PUT Statement

                             The OPTMODEL Procedure                             
                                                                                
CELLS_line[29]={<1,1,3>,<1,2,2>,<1,3,1>}                                        
CELLS_line[31]={<2,1,3>,<2,2,2>,<2,3,1>}                                        
CELLS_line[32]={<3,1,1>,<3,2,2>,<3,3,3>}                                        
CELLS_line[49]={<1,3,3>,<2,2,2>,<3,1,1>}                                        
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� sets of tuples

� set operators CROSS and SETOF

� sets indexed by other sets

� modeling if-then constraints by using binary variables

� CARD function

� PUT statement

� .sol variable suffix

� FILE statement
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Problem Statement
In an integer programming problem the following constraint occurs:1

9x1 C 13x2 � 14x3 C 17x4 C 13x5 � 19x6 C 23x7 C 21x8 � 37:

All the variables occurring in this constraint are 0-1 variables, i.e. they can only take the value of 0 or 1.

Find the ‘simplest’ version of this constraint. The objective is to find another constraint involving these
variables which is logically equivalent to the original constraint but which has the smallest possible absolute
value of the right-hand side (with all coefficients of similar signs to the original coefficients).

If the objective were to find an equivalent constraint where the sum of the absolute values of the coefficients
(apart from the right-hand side coefficient) were a minimum what would be the result?

Mathematical Programming Formulation
The formulation shown here differs from Williams (1999) and does not require transforming the original
constraint into a standard form with positive coefficients. The new constraint to be found isX

j2VARS

Alpha[j] � xj � Alpha[0]

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 249).
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Index Sets and Their Members
The following index sets and their members are used in this example:

� j 2 VARS

� j 2 VARS0 D VARS [ f0g

� point 2 FEAS_POINTS

� point 2 INFEAS_POINTS

Parameters
Table 18.1 shows the parameters that are used in this example.

Table 18.1 Parameters

Parameter Name Interpretation

n Number of decision variables in constraint
a[j] Original constraint coefficient of variable j, with a[0] equal to original right-hand side
x_feas[point,j] Value of variable j in feasible point
x_infeas[point,j] Value of variable j in infeasible point

Variables
Table 18.2 shows the variables that are used in this example.

Table 18.2 Variables

Variable Name Interpretation

Scale[j] Nonnegative scalar multiplier for coefficient of variable j
Alpha[j] Coefficient of variable j in new constraint

Objectives
The first objective is to minimize the absolute value of the new right-hand side:

Objective1 D ja[0]j � Scale[0]
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The second objective is to minimize the sum of absolute values of the new left-hand side coefficients:

Objective2 D
X

j2VARS

ja[j]j � Scale[j]

Constraints
The following constraints are used in this example:

� bounds on variables

� for j 2 VARS0,

Alpha[j] D a[j] � Scale[j]

� for point 2 FEAS_POINTS,X
j2VARS

Alpha[j] � x_feas[point,j] � Alpha[0]

� for point 2 INFEAS_POINTS,X
j2VARS

Alpha[j] � x_infeas[point,j] � Alpha[0]C 1

Input Data
The following data set and macro variables contain the input data that are used in this example:

data a_data;
input a @@;
datalines;

9 13 -14 17 13 -19 23 21
;

%let b = 37;

/* populate macro variable n as number of decision variables */
%let dsid = %sysfunc(open(a_data));
%let n = %sysfunc(attrn(&dsid, NOBS));
%let rc = %sysfunc(close(&dsid));
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PROC OPTMODEL Statements and Output
The following PROC TRANSPOSE statements and DATA step create an input data set for the CLP procedure
in SAS/OR software:

proc transpose data=a_data out=trans(drop=_name_) prefix=x;
run;

data condata_feas(drop=j);
length _type_ $8;
array x[&n];
set trans;
_type_ = 'le';
_rhs_ = &b;
output;
do j = 1 to &n;

x[j] = 1;
end;
_type_ = 'binary';
_rhs_ = .;
output;

run;

The following PROC CLP statements find all feasible solutions and save them in the out_feas data set:

proc clp data=condata_feas out=out_feas allsolns usecondatavars=1;
run;

The following DATA step creates another input data set for PROC CLP, for the purpose of finding all binary
solutions that violate the original constraint:

data condata_infeas;
set condata_feas;
if _N_ = 1 then do;

_type_ = 'ge';
_rhs_ = _rhs_ + 1;

end;
run;

The following PROC CLP statements find all such solutions and save them in the out_infeas data set:

proc clp data=condata_infeas out=out_infeas allsolns usecondatavars=1;
run;
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The first several PROC OPTMODEL statements declare sets and parameters and read the original constraint
data:

proc optmodel;
set VARS;
set VARS0 = VARS union {0};
num a {VARS0};
read data a_data into VARS=[_N_] a;
a[0] = &b;

The following statements declare the FEAS_POINTS set and the x_feas parameter and populate them by
reading the out_feas data set:

set FEAS_POINTS;
num x_feas {FEAS_POINTS, VARS};
read data out_feas into FEAS_POINTS=[_N_]

{j in VARS} <x_feas[_N_,j]=col('x'||j)>;

The following statements declare the INFEAS_POINTS set and the x_infeas parameter and populate them
by reading the out_infeas data set:

set INFEAS_POINTS;
num x_infeas {INFEAS_POINTS, VARS};
read data out_infeas into INFEAS_POINTS=[_N_]

{j in VARS} <x_infeas[_N_,j]=col('x'||j)>;

The following statements declare the variables and constraints:

var Scale {VARS0} >= 0;
impvar Alpha {j in VARS0} = a[j] * Scale[j];

con Feas_con {point in FEAS_POINTS}:
sum {j in VARS} Alpha[j] * x_feas[point,j] <= Alpha[0];

con Infeas_con {point in INFEAS_POINTS}:
sum {j in VARS} Alpha[j] * x_infeas[point,j] >= Alpha[0] + 1;

The following statements solve the problem by using the first objective and then print the solution:

min Objective1 = abs(a[0]) * Scale[0];
solve;
print a Scale Alpha;
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Figure 18.1 shows the output from the linear programming solver for the first objective.

Figure 18.1 Output from Linear Programming Solver, First Objective

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function Objective1

Objective Type Linear

Number of Variables 9

Bounded Above 0

Bounded Below 9

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 256

Linear LE (<=) 152

Linear EQ (=) 0

Linear GE (>=) 104

Linear Range 0

Constraint Coefficients 1280

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective1

Solution Status Optimal

Objective Value 25

Primal Infeasibility 7.105427E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 20

Presolve Time 0.00

Solution Time 0.00

[1] a Scale Alpha

0 37 0.67568 25

1 9 0.66667 6

2 13 0.69231 9

3 -14 0.71429 -10

4 17 0.70588 12

5 13 0.69231 9

6 -19 0.68421 -13

7 23 0.69565 16

8 21 0.66667 14
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The following statements solve the problem by using the second objective and then print the solution:

min Objective2 = sum {j in VARS} abs(a[j]) * Scale[j];
solve;
print a Scale Alpha;

quit;

Figure 18.2 shows the output from the linear programming solver for the second objective.

Figure 18.2 Output from Linear Programming Solver, Second Objective

Problem Summary

Objective Sense Minimization

Objective Function Objective2

Objective Type Linear

Number of Variables 9

Bounded Above 0

Bounded Below 9

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 256

Linear LE (<=) 152

Linear EQ (=) 0

Linear GE (>=) 104

Linear Range 0

Constraint Coefficients 1280

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Objective2

Solution Status Optimal

Objective Value 89

Primal Infeasibility 3.552714E-15

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 19

Presolve Time 0.00

Solution Time 0.00
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Figure 18.2 continued

[1] a Scale Alpha

0 37 0.67568 25

1 9 0.66667 6

2 13 0.69231 9

3 -14 0.71429 -10

4 17 0.70588 12

5 13 0.69231 9

6 -19 0.68421 -13

7 23 0.69565 16

8 21 0.66667 14

For this test instance, it turns out that the optimal solutions for the two different objectives agree.

In SAS/OR 13.2, you can also access the CLP solver from within PROC OPTMODEL by using the SOLVE
WITH CLP statement. The first several PROC OPTMODEL statements are the same as before:

proc optmodel;
set VARS;
set VARS0 = VARS union {0};
num a {VARS0};
read data a_data into VARS=[_N_] a;
a[0] = &b;

The following statements declare variables and a constraint for the CLP problem:

var X {VARS} binary;
con CLP_con:

sum {j in VARS} a[j] * X[j] <= a[0];

The following statements call the CLP solver and use the FINDALLSOLNS option to find all solutions,
and then they use the predeclared numeric parameter _NSOL_ and the .sol variable suffix to retrieve the
resulting solutions:

solve with CLP / findallsolns;
set FEAS_POINTS;
FEAS_POINTS = 1.._NSOL_;
num x_feas {FEAS_POINTS, VARS};
for {s in FEAS_POINTS, j in VARS} x_feas[s,j]=X[j].sol[s];
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The following statements modify the right-hand side of the constraint by changing the .lb constraint suffix
and then use the CONSTANT function to effectively remove the previously declared upper bound by replacing
it with the largest machine-representable number:

CLP_con.lb = CLP_con.ub + 1;
CLP_con.ub = constant('BIG');

The following statements call the CLP solver again and retrieve the resulting solutions:

solve with CLP / findallsolns;
set INFEAS_POINTS;
INFEAS_POINTS = 1.._NSOL_;
num x_infeas {INFEAS_POINTS, VARS};
for {s in INFEAS_POINTS, j in VARS} x_infeas[s,j]=X[j].sol[s];

The remaining statements are the same as before, except that now the PROBLEM and USE PROBLEM
statements are used to switch the focus from the CLP problem to the LP problem:

var Scale {VARS0} >= 0;
impvar Alpha {j in VARS0} = a[j] * Scale[j];

con Feas_con {point in FEAS_POINTS}:
sum {j in VARS} Alpha[j] * x_feas[point,j] <= Alpha[0];

con Infeas_con {point in INFEAS_POINTS}:
sum {j in VARS} Alpha[j] * x_infeas[point,j] >= Alpha[0] + 1;

min Objective1 = abs(a[0]) * Scale[0];

problem LP_problem include Scale Feas_con Infeas_con Objective1;
use problem LP_problem;

solve;
print a Scale Alpha;

min Objective2 = sum {j in VARS} abs(a[j]) * Scale[j];
solve;
print a Scale Alpha;

quit;
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming

� CLP procedure

� set operator UNION

� IMPVAR statement

� ABS function

� reading multiple data sets

� multiple objectives

� SOLVE WITH CLP

� CLP solver option FINDALLSOLNS

� multiple solutions

� predeclared numeric parameter _NSOL_

� using the .lb and .ub constraint suffixes to modify the right-hand side of a constraint

� CONSTANT function

� PROBLEM and USE PROBLEM statements
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Problem Statement
A company has two factories, one at Liverpool and one at Brighton.1 In addition it has four depots with
storage facilities at Newcastle, Birmingham, London and Exeter. The company sells its product to six
customers C1, C2, . . . , C6. Customers can be supplied either from a depot or from the factory direct (see
Figure 19.1).

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 249–251).
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Figure 19.1
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Table 19.1

Suppliera

Liverpool Brighton Newcastle Birmingham London Exeter
Supplied to factory factory depot depot depot depot

Depots
Newcastle 0.5 —
Birmingham 0.5 0.3
London 1.0 0.5
Exeter 0.2 0.2

Customers
C1 1.0 2.0 — 1.0 — —
C2 — — 1.5 0.5 1.5 —
C3 1.5 — 0.5 0.5 2.0 0.2
C4 2.0 — 1.5 1.0 — 1.5
C5 — — — 0.5 0.5 0.5
C6 1.0 — 1.0 — 1.5 1.5

aA dash indicates the impossibility of certain suppliers for certain depots or customers.

The distribution costs (which are borne by the company) are known; they are given in Table 19.1 (in £ per ton
delivered).

Certain customers have expressed preferences for being supplied from factories or depots which they are
used to. The preferred suppliers are

C1 Liverpool (factory)
C2 Newcastle (depot)
C3 No preferences
C4 No preferences
C5 Birmingham (depot)
C6 Exeter or London (depots)

Each factory has a monthly capacity given below which cannot be exceeded:

Liverpool 150,000 tons
Brighton 200,000 tons

Each depot has a maximum monthly throughput given below which cannot be exceeded:

Newcastle 70,000 tons
Birmingham 50,000 tons
London 100,000 tons
Exeter 40,000 tons
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Each customer has a monthly requirement given below which must be met:

C1 50,000 tons
C2 10,000 tons
C3 40,000 tons
C4 35,000 tons
C5 60,000 tons
C6 20,000 tons

The company would like to determine:

(1) What distribution pattern would minimize overall cost?

(2) What the effect of increasing factory and depot capacities would be on distribution costs?

(3) What the effects of small changes in costs, capacities and requirements would be on the distribution
pattern?

(4) Would it be possible to meet all customers preferences regarding suppliers and if so what would the
extra cost of doing this be?

Mathematical Programming Formulation
The problem is represented as a network flow problem with side constraints. Each node corresponds to a
factory, depot, or customer, and each arc represents a shipment of the product from one place to another.

Index Sets and Their Members
The following index sets and their members are used in this example:

� .i; j / 2 ARCS

� i; factory 2 FACTORIES

� i; depot 2 DEPOTS

� i; customer 2 CUSTOMERS

� i 2 NODES

� .i; j / 2 PREFERRED_ARCS

� j 2 CUSTOMERS_WITH_PREFERENCES
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Parameters
Table 19.2 shows the parameters that are used in this example.

Table 19.2 Parameters

Parameter Name Interpretation

cost[i,j] Distribution costs (in £ per ton delivered)
capacity[factory] Monthly capacity per factory (in tons)
throughput[depot] Maximum monthly throughput per depot (in tons)
demand[customer] Monthly demand per customer (in tons)
supply[i] Supply at node i (in tons)

Variables
Table 19.3 shows the variables that are used in this example.

Table 19.3 Variables

Variable Name Interpretation

Flow[i,j] Flow across arc .i; j /

Objectives
One objective is to minimize the following function:

TotalCost D
X

.i;j /2ARCS

cost[i,j] � Flow[i,j]

Another objective is to minimize the following function:

NonpreferredFlow D
X

.i;j /2ARCSnPREFERRED_ARCSW
j2CUSTOMERS_WITH_PREFERENCES

Flow[i,j]

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 NODES,X
.i;j /2ARCS

Flow[i,j] �
X

.j;i/2ARCS

Flow[j,i] � supply[i]
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� for i 2 DEPOTS,X
.i;j /2ARCS

Flow[i,j] � throughput[i]

� NonpreferredFlow � NonpreferredFlow.sol

Input Data
The following data sets contain the input data that are used in this example:

data arc_data;
input j $11. i $11. cost;
datalines;

Newcastle Liverpool 0.5
Birmingham Liverpool 0.5
Birmingham Brighton 0.3
London Liverpool 1.0
London Brighton 0.5
Exeter Liverpool 0.2
Exeter Brighton 0.2
C1 Liverpool 1.0
C1 Brighton 2.0
C1 Birmingham 1.0
C2 Newcastle 1.5
C2 Birmingham 0.5
C2 London 1.5
C3 Liverpool 1.5
C3 Newcastle 0.5
C3 Birmingham 0.5
C3 London 2.0
C3 Exeter 0.2
C4 Liverpool 2.0
C4 Newcastle 1.5
C4 Birmingham 1.0
C4 Exeter 1.5
C5 Birmingham 0.5
C5 London 0.5
C5 Exeter 0.5
C6 Liverpool 1.0
C6 Newcastle 1.0
C6 London 1.5
C6 Exeter 1.5
;

data customer_data;
input customer $ demand;
datalines;

C1 50000
C2 10000
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C3 40000
C4 35000
C5 60000
C6 20000
;

data factory_data;
input factory $10. capacity;
datalines;

Liverpool 150000
Brighton 200000
;

data depot_data;
input depot $11. throughput;
datalines;

Newcastle 70000
Birmingham 50000
London 100000
Exeter 40000
;

data preferred_arc_data;
input j $ i $11.;
datalines;

C1 Liverpool
C2 Newcastle
C5 Birmingham
C6 Exeter
C6 London
;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set <str,str> ARCS;
num cost {ARCS};
read data arc_data into ARCS=[i j] cost;

set <str> FACTORIES;
num capacity {FACTORIES};
read data factory_data into FACTORIES=[factory] capacity;

set <str> DEPOTS;
num throughput {DEPOTS};
read data depot_data into DEPOTS=[depot] throughput;

set <str> CUSTOMERS;
num demand {CUSTOMERS};
read data customer_data into CUSTOMERS=[customer] demand;
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The following statements use the UNION set operator to declare the NODES index set, declare the supply
parameter with an initial value of 0, and populate supply for both factories and customers:

set NODES = FACTORIES union DEPOTS union CUSTOMERS;
num supply {NODES} init 0;
for {i in FACTORIES} supply[i] = capacity[i];
for {i in CUSTOMERS} supply[i] = -demand[i];

The following statements declare the variables, constraints, and TotalCost objective:

var Flow {ARCS} >= 0;

con Flow_balance_con {i in NODES}:
sum {<(i),j> in ARCS} Flow[i,j] - sum {<j,(i)> in ARCS} Flow[j,i]

<= supply[i];

con Depot_con {i in DEPOTS}:
sum {<(i),j> in ARCS} Flow[i,j] <= throughput[i];

min TotalCost = sum {<i,j> in ARCS} cost[i,j] * Flow[i,j];

The following statements call the default linear programming algorithm (which is the dual simplex algorithm),
print the positive variables in the resulting optimal solution, and print the left-hand side (.body), right-hand
side (.ub), and dual value (.dual) of each constraint:

put 'Minimizing TotalCost...';
solve;
print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow;
print Flow_balance_con.body Flow_balance_con.ub Flow_balance_con.dual;
print Depot_con.body Depot_con.ub Depot_con.dual;
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Figure 19.2 shows the output when you use the (default) dual simplex algorithm.

Figure 19.2 Output from Dual Simplex Algorithm, Minimizing TotalCost

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 29

Bounded Above 0

Bounded Below 29

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 16

Linear LE (<=) 16

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 75

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalCost

Solution Status Optimal

Objective Value 198500

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 14

Presolve Time 0.00

Solution Time 0.01
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Figure 19.2 continued

[1] [2] Flow

Birmingham C2 10000

Birmingham C4 35000

Birmingham C5 5000

Brighton Birmingham 50000

Brighton London 55000

Exeter C3 40000

Liverpool C1 50000

Liverpool C6 20000

Liverpool Exeter 40000

London C5 55000

[1] Flow_balance_con.BODY Flow_balance_con.UB Flow_balance_con.DUAL

Birmingham 0 0 -0.3

Brighton 105000 200000 0.0

C1 -50000 -50000 -1.0

C2 -10000 -10000 -1.0

C3 -40000 -40000 -1.0

C4 -35000 -35000 -1.5

C5 -60000 -60000 -1.0

C6 -20000 -20000 -1.0

Exeter 0 0 -0.2

Liverpool 110000 150000 0.0

London 0 0 -0.5

Newcastle 0 0 -0.5

[1] Depot_con.BODY Depot_con.UB Depot_con.DUAL

Birmingham 50000 50000 -0.2

Exeter 40000 40000 -0.6

London 55000 100000 0.0

Newcastle 0 70000 0.0

The following statements call the network simplex linear programming algorithm and print the same solution
information as before:

put 'Minimizing TotalCost by using network simplex...';
solve with LP / algorithm=ns;
print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow;
print Flow_balance_con.body Flow_balance_con.ub Flow_balance_con.dual;
print Depot_con.body Depot_con.ub Depot_con.dual;
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Figure 19.3 shows the output when you use the ALGORITHM=NS option to invoke the network simplex
algorithm.

Figure 19.3 Output from Network Simplex Algorithm, Minimizing TotalCost

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 29

Bounded Above 0

Bounded Below 29

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 16

Linear LE (<=) 16

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 75

Solution Summary

Solver LP

Algorithm Network Simplex

Objective Function TotalCost

Solution Status Optimal

Objective Value 198500

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 15

Iterations2 5

Presolve Time 0.00

Solution Time 0.04
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Figure 19.3 continued

[1] [2] Flow

Birmingham C2 10000

Birmingham C4 35000

Birmingham C5 5000

Brighton Birmingham 50000

Brighton London 55000

Exeter C3 40000

Liverpool C1 50000

Liverpool C6 20000

Liverpool Exeter 40000

London C5 55000

[1] Flow_balance_con.BODY Flow_balance_con.UB Flow_balance_con.DUAL

Birmingham 0 0 -0.3

Brighton 105000 200000 0.0

C1 -50000 -50000 -1.0

C2 -10000 -10000 -1.0

C3 -40000 -40000 -1.0

C4 -35000 -35000 -1.5

C5 -60000 -60000 -1.0

C6 -20000 -20000 -1.0

Exeter 0 0 -0.2

Liverpool 110000 150000 0.0

London 0 0 -0.5

Newcastle 0 0 -0.5

[1] Depot_con.BODY Depot_con.UB Depot_con.DUAL

Birmingham 50000 50000 -0.2

Exeter 40000 40000 -0.6

London 55000 100000 0.0

Newcastle 0 70000 0.0

The following statements call the linear programming solver to minimize NonpreferredFlow and print both
objectives, the positive variables in the resulting optimal solution, and the flow along nonpreferred arcs:

set <str,str> PREFERRED_ARCS;
read data preferred_arc_data into PREFERRED_ARCS=[i j];
set CUSTOMERS_WITH_PREFERENCES = setof {<i,j> in PREFERRED_ARCS} j;
min NonpreferredFlow =

sum {<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES}
Flow[i,j];

put 'Minimizing NonpreferredFlow...';
solve;
print TotalCost NonpreferredFlow;
print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow;
print

{<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES}
Flow;
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Figure 19.4 shows the output from the linear programming solver.

Figure 19.4 Output from Linear Programming Solver, Minimizing NonpreferredFlow

Problem Summary

Objective Sense Minimization

Objective Function NonpreferredFlow

Objective Type Linear

Number of Variables 29

Bounded Above 0

Bounded Below 29

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 16

Linear LE (<=) 16

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 75

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function NonpreferredFlow

Solution Status Optimal

Objective Value 10000

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 17

Presolve Time 0.00

Solution Time 0.00

TotalCost NonpreferredFlow

356000 10000
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Figure 19.4 continued

[1] [2] Flow

Birmingham C5 50000

Brighton Birmingham 50000

Brighton Exeter 40000

Brighton London 30000

Exeter C3 40000

Liverpool C1 50000

Liverpool C4 35000

Liverpool Newcastle 65000

London C5 10000

London C6 20000

Newcastle C2 65000

[1] [2] Flow

Birmingham C1 0

Birmingham C2 0

Brighton C1 0

Exeter C5 0

Liverpool C6 0

London C2 0

London C5 10000

Newcastle C6 0

The following CON statement declares a constraint that limits NonpreferredFlow to the minimum value
found in the previous solve:

con Objective_cut:
NonpreferredFlow <= NonpreferredFlow.sol;

The following statements call the linear programming solver to minimize TotalCost with a constrained
NonpreferredFlow and print the same solution information as before:

put 'Minimizing TotalCost with constrained NonpreferredFlow...';
solve obj TotalCost;
print TotalCost NonpreferredFlow;
print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow;
print

{<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES}
Flow;

quit;
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Figure 19.5 shows the output from the linear programming solver. As expected, NonpreferredFlow remains
at its minimum value and TotalCost is less than its value from Figure 19.4.

Figure 19.5 Output from Linear Programming Solver, Minimizing TotalCost with Constrained Nonpreferred-
Flow

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 29

Bounded Above 0

Bounded Below 29

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 17

Linear LE (<=) 17

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 83

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalCost

Solution Status Optimal

Objective Value 246000

Primal Infeasibility 0

Dual Infeasibility 2.220446E-16

Bound Infeasibility 0

Iterations 18

Presolve Time 0.00

Solution Time 0.01

TotalCost NonpreferredFlow

246000 10000



236 F Chapter 19: Distribution 1

Figure 19.5 continued

[1] [2] Flow

Birmingham C5 50000

Brighton Birmingham 50000

Brighton London 30000

Exeter C3 40000

Liverpool C1 50000

Liverpool C4 35000

Liverpool Exeter 40000

Liverpool Newcastle 10000

London C5 10000

London C6 20000

Newcastle C2 10000

[1] [2] Flow

Birmingham C1 0

Birmingham C2 0

Brighton C1 0

Exeter C5 0

Liverpool C6 0

London C2 0

London C5 10000

Newcastle C6 0

Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming (network flow with side constraints)

� sets of tuples

� reading multiple data sets

� set operators UNION, SETOF, and DIFF

� INIT option

� implicit slice

� using a colon (:) to select members of a set

� .body constraint suffix

� .ub constraint suffix

� .dual constraint suffix

� multiple objectives and the OBJ option

� ALGORITHM= option
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Problem Statement
In the distribution problem there is a possibility of opening new depots at Bristol and Northampton as well as
of enlarging the Birmingham depot.1

It is not considered desirable to have more than four depots and if necessary Newcastle or Exeter (or both)
can be closed down.

The monthly costs (in interest charges) of the possible new depots and expansion at Birmingham are given in
Table 20.1 together with the potential monthly throughputs.

The monthly savings of closing down the Newcastle and Exeter depots are given in Table 20.2.

Table 20.1

Cost (£1000) Throughput (1000 tons)

Bristol 12 30
Northampton 4 25
Birmingham (expansion) 3 20

Table 20.2

Saving (£1000)

Newcastle 10
Exeter 5

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 251–252).
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Table 20.3

Supplier
Liverpool Brighton Bristol Northampton

Supplied to factory factory depot depot

New depots
Bristol 0.6 0.4
Northampton 0.4 0.3

Customers
C1 1.2 —
C2 0.6 0.4
C3 As given for 0.5 —
C4 distribution problem — 0.5
C5 0.3 0.6
C6 0.8 0.9

The distribution costs involving the new depots are given in Table 20.3 (in £ per ton delivered).

Which new depots should be built? Should Birmingham be expanded? Should Exeter or Newcastle be closed
down? What would be the best resultant distribution pattern to minimize overall costs?

Mathematical Programming Formulation
This formulation builds on the formulation used in Chapter 19. This section includes only the new elements
of the formulation.

Index Sets and Their Members
The following additional index set and its members are used in this example:

� i; depot 2 EXPAND_DEPOTS
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Parameters
Table 20.4 shows the additional parameters that are used in this example.

Table 20.4 Parameters

Parameter Name Interpretation

open_cost[depot] Monthly costs for opening each depot (in £)
close_savings[depot] Monthly savings for closing each depot (in £)
expand_throughput[depot] Potential monthly throughput per depot (in tons)
expand_cost[depot] Monthly costs for expanding each depot (in £)
max_num_depots Maximum number of depots allowed to be open

Variables
Table 20.5 shows the additional variables that are used in this example.

Table 20.5 Variables

Variable Name Interpretation

IsOpen[depot] 1 if depot is open; 0 otherwise
Expand[depot] 1 if depot is expanded; 0 otherwise
FixedCost Fixed cost that depends only on the binary variables
VariableCost Variable cost that depends only on the continuous variables

Objective
The objective is to minimize the following function:

TotalCost D FixedCostC VariableCost

where

FixedCost D
X

depot2DEPOTS

.open_cost[depot] � IsOpen[depot] � close_savings[depot] � .1 � IsOpen[depot]//

C

X
depot2EXPAND_DEPOTS

expand_cost[depot] � Expand[depot]

and

VariableCost D
X

.i;j /2ARCS

cost[i,j] � Flow[i,j]
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Constraints
The following additional and modified constraints are used in this example:

� bounds on variables

�

X
i2DEPOTS

IsOpen[i] � max_num_depots

� for i 2 DEPOTS,X
.i;j /2ARCS

Flow[i,j] � throughput[i]�IsOpen[i]C.if i 2 EXPAND_DEPOTS, then expand_throughput[i] � Expand[i]/

� for i 2 EXPAND_DEPOTS,

Expand[i] � IsOpen[i]

Input Data
The following additional and modified data sets and macro variable contain the input data that are used in
this example:

data arc_data;
input j $12. i $12. cost;
datalines;

Newcastle Liverpool 0.5
Birmingham Liverpool 0.5
Birmingham Brighton 0.3
London Liverpool 1.0
London Brighton 0.5
Exeter Liverpool 0.2
Exeter Brighton 0.2
C1 Liverpool 1.0
C1 Brighton 2.0
C1 Birmingham 1.0
C2 Newcastle 1.5
C2 Birmingham 0.5
C2 London 1.5
C3 Liverpool 1.5
C3 Newcastle 0.5
C3 Birmingham 0.5
C3 London 2.0
C3 Exeter 0.2
C4 Liverpool 2.0
C4 Newcastle 1.5
C4 Birmingham 1.0
C4 Exeter 1.5
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C5 Birmingham 0.5
C5 London 0.5
C5 Exeter 0.5
C6 Liverpool 1.0
C6 Newcastle 1.0
C6 London 1.5
C6 Exeter 1.5
Bristol Liverpool 0.6
Bristol Brighton 0.4
Northampton Liverpool 0.4
Northampton Brighton 0.3
C1 Bristol 1.2
C2 Bristol 0.6
C2 Northampton 0.4
C3 Bristol 0.5
C4 Northampton 0.5
C5 Bristol 0.3
C5 Northampton 0.6
C6 Bristol 0.8
C6 Northampton 0.9
;

data depot_data;
input depot $12. throughput cost savings;
datalines;

Newcastle 70000 0 10000
Birmingham 50000 0 .
London 100000 0 .
Exeter 40000 0 5000
Bristol 30000 12000 0
Northampton 25000 4000 0
;

data expand_depot_data;
input depot $12. throughput cost;
datalines;

Birmingham 20000 3000
;

%let max_num_depots = 4;
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PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set <str,str> ARCS;
num cost {ARCS};
read data arc_data into ARCS=[i j] cost;

set <str> FACTORIES;
num capacity {FACTORIES};
read data factory_data into FACTORIES=[factory] capacity;

set <str> DEPOTS;
num throughput {DEPOTS};
num open_cost {DEPOTS};
num close_savings {DEPOTS};
read data depot_data into DEPOTS=[depot]

throughput open_cost=cost close_savings=savings;

set <str> EXPAND_DEPOTS;
num expand_throughput {EXPAND_DEPOTS};
num expand_cost {EXPAND_DEPOTS};
read data expand_depot_data into EXPAND_DEPOTS=[depot]

expand_throughput=throughput expand_cost=cost;

set <str> CUSTOMERS;
num demand {CUSTOMERS};
read data customer_data into CUSTOMERS=[customer] demand;

The following statements are the same as in Chapter 19:

set NODES = FACTORIES union DEPOTS union CUSTOMERS;
num supply {NODES} init 0;
for {i in FACTORIES} supply[i] = capacity[i];
for {i in CUSTOMERS} supply[i] = -demand[i];

var Flow {ARCS} >= 0;

con Flow_balance_con {i in NODES}:
sum {<(i),j> in ARCS} Flow[i,j] - sum {<j,(i)> in ARCS} Flow[j,i]

<= supply[i];
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The following statements declare the additional variables and constraints:

var IsOpen {DEPOTS} binary;
var Expand {EXPAND_DEPOTS} binary;

con Max_num_depots_con:
sum {i in DEPOTS} IsOpen[i] <= &max_num_depots;

con Depot_con {i in DEPOTS}:
sum {<(i),j> in ARCS} Flow[i,j]

<= throughput[i] * IsOpen[i]
+ (if i in EXPAND_DEPOTS then expand_throughput[i] * Expand[i]);

con Expand_con {i in EXPAND_DEPOTS}:
Expand[i] <= IsOpen[i];

The following statements fix the IsOpen variable to 1 for depots that are not eligible to be closed (indicated
by a missing value for close_savings in the input data):

for {i in DEPOTS: close_savings[i] = .} do;
close_savings[i] = 0;
fix IsOpen[i] = 1;

end;

The following statements declare FixedCost and VariableCost as implicit variables and TotalCost as the
objective:

impvar FixedCost =
sum {depot in DEPOTS}

(open_cost[depot] * IsOpen[depot] -
close_savings[depot] * (1 - IsOpen[depot]))

+ sum {depot in EXPAND_DEPOTS} expand_cost[depot] * Expand[depot];
impvar VariableCost = sum {<i,j> in ARCS} cost[i,j] * Flow[i,j];
min TotalCost = FixedCost + VariableCost;

The following statements call the mixed integer linear programming solver and then print the various parts of
the objective, the positive variables in the resulting optimal solution, and the additional decision variables:

solve;
print FixedCost VariableCost TotalCost;
print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow;
print IsOpen Expand;

quit;
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Figure 20.1 shows the output from the mixed integer linear programming solver.

Figure 20.1 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function TotalCost

Objective Type Linear

Number of Variables 49

Bounded Above 0

Bounded Below 42

Bounded Below and Above 5

Free 0

Fixed 2

Binary 7

Integer 0

Number of Constraints 22

Linear LE (<=) 22

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 125

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalCost

Solution Status Optimal

Objective Value 174000

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 174000

Nodes 1

Iterations 20

Presolve Time 0.01

Solution Time 0.02

FixedCost VariableCost TotalCost

-3000 177000 174000
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Figure 20.1 continued

[1] [2] Flow

Birmingham C2 10000

Birmingham C4 10000

Birmingham C5 50000

Brighton Birmingham 70000

Brighton London 10000

Brighton Northampton 25000

Exeter C3 40000

Liverpool C1 50000

Liverpool C6 20000

Liverpool Exeter 40000

London C5 10000

Northampton C4 25000

[1] IsOpen Expand

Birmingham 1 1

Bristol 0

Exeter 1

London 1

Newcastle 0

Northampton 1

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (fixed costs)

� sets of tuples

� reading multiple data sets

� set operator UNION

� INIT option

� implicit slice

� IF-THEN expression

� modeling if-then constraints by using binary variables

� using a colon (:) to select members of a set

� FIX statement

� IMPVAR statement
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Problem Statement
The government of a country wants to decide what prices should be charged for its dairy products, milk, butter
and cheese.1 All these products arise directly or indirectly from the country’s raw milk production. This raw
milk is usefully divided into the two components of fat and dry matter. After subtracting the quantities of fat
and dry matter which are used for making products for export or consumption on the farms there is a total
yearly availability of 600,000 tons of fat and 750,000 tons of dry matter. This is all available for producing
milk, butter and two kinds of cheese for domestic consumption.

The percentage compositions of the products are given in Table 21.1.

For the previous year the domestic consumption and prices for the products are given in Table 21.2.

Table 21.1

Fat Dry matter Water

Milk 4 9 87
Butter 80 2 18
Cheese 1 35 30 35
Cheese 2 25 40 35

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 252–253).
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Table 21.2

Milk Butter Cheese 1 Cheese 2

Domestic consumption (1000 tons) 4820 320 210 70
Price (£/ton) 297 720 1050 815

Price elasticities of demand, relating consumer demand to the prices of each product, have been calculated
on the basis of past statistics. The price elasticity E of a product is defined by

E D
percentage decrease in demand

percentage increase in price
:

For the two makes of cheese there will be some degree of substitution in consumer demand depending on
relative prices. This is measured by cross-elasticity of demand with respect to price. The cross-elasticity
EAB from a product A to a product B is defined by

EAB D
percentage increase in demand for A

percentage increase in price of B
:

The elasticities and cross-elasticities are given in Table 21.3.

The objective is to determine what prices and resultant demand will maximize total revenue.

It is, however, politically unacceptable to allow a certain price index to rise. As a result of the way this index
is calculated this limitation simply demands that the new prices must be such that the total cost of last year’s
consumption would not be increased. A particularly important additional requirement is to quantify the
economic cost of this political limitation.

Table 21.3

Cheese 1 Cheese 2
to to

Milk Butter Cheese 1 Cheese 2 Cheese 2 Cheese 1

0.4 2.7 1.1 0.4 0.1 0.4

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� raw 2 RAWS

� product; i; j 2 PRODUCTS
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Parameters
Table 21.4 shows the parameters that are used in this example.

Table 21.4 Parameters

Parameter Name Interpretation

supply[raw] Supply of each raw material (in tons)
prev_demand[product] Demand for each product in previous year (in tons)
prev_price[product] Price of each product in previous year (in £/ton)
percent[product,raw] Percentage composition for each product and raw

elasticity[i,j]
Percentage increase in demand for product i

Percentage increase in price of product j

Variables
Table 21.5 shows the variables that are used in this example.

Table 21.5 Variables

Variable Name Interpretation

Price[product] Price of each product (in £/ton)
Demand[product] Demand for each product (in tons)

Objective
The objective is to maximize the following (bilinear) quadratic function:

TotalRevenue D
X

product2PRODUCTS

Price[product] � Demand[product]

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 PRODUCTS,

Demand[i] � prev_demand[i]
prev_demand[i]

D

X
j2PRODUCTS

elasticity[i,j] �
Price[j] � prev_price[j]

prev_price[j]
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� for raw 2 RAWS such that supply[raw] is not missing,X
product2PRODUCTS

percent[product,raw]
100

� Demand[product] � supply[raw]

�

X
product2PRODUCTS

prev_demand[product] � Price[product]

�

X
product2PRODUCTS

prev_demand[product] � prev_price[product]

Input Data
The following data sets contain the input data that are used in this example:

/* missing supply indicates unbounded */
data raw_material_data;

input raw $10. supply;
datalines;

Fat 600000
DryMatter 750000
Water .
;

data product_data;
input product $ Fat DryMatter Water prev_demand prev_price;
datalines;

Milk 4 9 87 4820000 297
Butter 80 2 18 320000 720
Cheese1 35 30 35 210000 1050
Cheese2 25 40 35 70000 815
;

data elasticity_data;
input i $ j $ elasticity;
datalines;

Milk Milk -0.4
Butter Butter -2.7
Cheese1 Cheese1 -1.1
Cheese2 Cheese2 -0.4
Cheese1 Cheese2 0.1
Cheese2 Cheese1 0.4
;
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PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set <str> RAWS;
num supply {RAWS};
read data raw_material_data into RAWS=[raw] supply;

set <str> PRODUCTS;
num prev_demand {PRODUCTS};
num prev_price {PRODUCTS};
num percent {PRODUCTS, RAWS};
read data product_data into PRODUCTS=[product]

{raw in RAWS} <percent[product,raw]=col(raw)> prev_demand prev_price;

num elasticity {PRODUCTS, PRODUCTS} init 0;
read data elasticity_data into [i j] elasticity;

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

var Price {PRODUCTS} >= 0;

var Demand {PRODUCTS} >= 0;

max TotalRevenue
= sum {product in PRODUCTS} Price[product] * Demand[product];

con Demand_con {i in PRODUCTS}:
(Demand[i] - prev_demand[i]) / prev_demand[i]

= sum {j in PRODUCTS} elasticity[i,j] * (Price[j] - prev_price[j]) /
prev_price[j];

con Supply_con {raw in RAWS: supply[raw] ne .}:
sum {product in PRODUCTS} (percent[product,raw]/100) * Demand[product]

<= supply[raw];

con Price_index_con:
sum {product in PRODUCTS} prev_demand[product] * Price[product]

<= sum {product in PRODUCTS} prev_demand[product] * prev_price[product];

In this example, all variables are real, the objective function is quadratic, and all constraints are linear. So
PROC OPTMODEL automatically recognizes that this model is a quadratic programming problem, and
the first SOLVE statement calls the quadratic programming solver. In this case, the QP solver detects that
this maximization problem has a nonconcave objective, and PROC OPTMODEL instead calls the default
nonlinear programming algorithm, which is the interior point algorithm.
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solve;
print Price Demand;
print Price_index_con.dual;

Figure 21.1 shows the output when you use the (default) NLP interior point algorithm.

Figure 21.1 Output from NLP Interior Point Algorithm

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalRevenue

Objective Type Quadratic

Number of Variables 8

Bounded Above 0

Bounded Below 8

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 7

Linear LE (<=) 3

Linear EQ (=) 4

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 22

Hessian Diagonal Elements 0

Hessian Elements Below Diagonal 4

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function TotalRevenue

Solution Status Optimal

Objective Value 1991585738.7

Optimality Error 9.4885594E-7

Infeasibility 9.4885594E-7

Iterations 30

Presolve Time 0.00

Solution Time 0.07
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Figure 21.1 continued

[1] Price Demand

Butter 667.29 383255

Cheese1 889.89 251695

Cheese2 1066.17 57101

Milk 303.83 4775679

Price_index_con.DUAL

0.6161

To invoke the active set algorithm (which is not the default NLP algorithm), you can use the ALGORITHM=
option in the SOLVE WITH NLP statement:

solve with NLP / algorithm=activeset;
print Price Demand;
print Price_index_con.dual;

quit;

Figure 21.2 shows the output when you use the ALGORITHM=ACTIVESET option to invoke the active set
algorithm.

Figure 21.2 Output from NLP Active Set Algorithm

Problem Summary

Objective Sense Maximization

Objective Function TotalRevenue

Objective Type Quadratic

Number of Variables 8

Bounded Above 0

Bounded Below 8

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 7

Linear LE (<=) 3

Linear EQ (=) 4

Linear GE (>=) 0

Linear Range 0
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Figure 21.2 continued

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function TotalRevenue

Solution Status Best Feasible

Objective Value 1991586658.3

Optimality Error 4.6941417E-6

Infeasibility 9.2315099E-7

Iterations 562

Presolve Time 0.00

Solution Time 0.52

[1] Price Demand

Butter 667.26 383286

Cheese1 890.46 251626

Cheese2 1068.30 57043

Milk 303.77 4776032

Price_index_con.DUAL

.

The optimal solutions for the two algorithms agree. The dual value is missing for the active set algorithm
because the solution status is Best Feasible.

You can also replace the Demand and Demand_con declarations with the following IMPVAR and CON
statements to perform the substitutions that are described on page 299 of Williams (1999):

impvar Demand {i in PRODUCTS} =
prev_demand[i] * (1 +

sum {j in PRODUCTS}
elasticity[i,j] * (Price[j] - prev_price[j]) / prev_price[j]);

con Demand_nonnegative {i in PRODUCTS}:
Demand[i] >= 0;

The resulting formulation is mathematically equivalent but yields a concave objective function, as shown in
Williams (1999).
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Figure 21.3 shows the output when you use the (default) quadratic programming solver on the reformulated
problem.

Figure 21.3 Output from Quadratic Programming Solver, Reformulated Problem

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalRevenue

Objective Type Quadratic

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 7

Linear LE (<=) 3

Linear EQ (=) 0

Linear GE (>=) 4

Linear Range 0

Constraint Coefficients 18

Hessian Diagonal Elements 4

Hessian Elements Below Diagonal 1

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function TotalRevenue

Solution Status Optimal

Objective Value 1991585591.9

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Duality Gap 4.872317E-14

Complementarity 0

Iterations 16

Presolve Time 0.00

Solution Time 0.04
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Figure 21.3 continued

[1] Price Demand

Butter 667.29 383255

Cheese1 889.89 251695

Cheese2 1066.17 57101

Milk 303.83 4775678

Price_index_con.DUAL

0.6161

Figure 21.4 shows the output when you use the WITH NLP option to invoke the nonlinear programming
interior point algorithm on the reformulated problem.

Figure 21.4 Output from NLP Interior Point Algorithm, Reformulated Problem

Problem Summary

Objective Sense Maximization

Objective Function TotalRevenue

Objective Type Quadratic

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 7

Linear LE (<=) 3

Linear EQ (=) 0

Linear GE (>=) 4

Linear Range 0

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function TotalRevenue

Solution Status Optimal

Objective Value 1991585591.9

Optimality Error 5E-7

Infeasibility 0

Iterations 7

Presolve Time 0.00

Solution Time 0.02
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Figure 21.4 continued

[1] Price Demand

Butter 667.29 383255

Cheese1 889.89 251695

Cheese2 1066.17 57101

Milk 303.83 4775678

Price_index_con.DUAL

0.6161

Figure 21.5 shows the output when you use the ALGORITHM=ACTIVESET option to invoke the active set
algorithm on the reformulated problem.

Figure 21.5 Output from NLP Active Set Algorithm, Reformulated Problem

Problem Summary

Objective Sense Maximization

Objective Function TotalRevenue

Objective Type Quadratic

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 7

Linear LE (<=) 3

Linear EQ (=) 0

Linear GE (>=) 4

Linear Range 0

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function TotalRevenue

Solution Status Optimal

Objective Value 1991585591.9

Optimality Error 5.266607E-14

Infeasibility 0

Iterations 38

Presolve Time 0.00

Solution Time 0.04
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Figure 21.5 continued

[1] Price Demand

Butter 667.29 383255

Cheese1 889.89 251695

Cheese2 1066.17 57101

Milk 303.83 4775679

Price_index_con.DUAL

0.6161

The optimal solutions and dual values for all three algorithms agree with the previous results.

Features Demonstrated
The following features are demonstrated in this example:

� problem type: nonlinear programming (quadratic)

� reading multiple data sets

� INIT option

� reading sparse two-dimensional data

� using a colon (:) to select members of a set

� WITH clause

� ALGORITHM= option

� .dual constraint suffix

� IMPVAR statement
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Problem Statement
A car manufacturer wants to evaluate the efficiencies of different garages who have received a franchise to
sell its cars.1 The method to be used is Data Envelopment Analysis (DEA). References to this technique are
given in Section 3.2. Each garage has a certain number of measurable ‘inputs’. These are taken to be: Staff,
Showroom Space, Catchment Population in different economic categories and annual Enquiries for different
brands of car. Each garage also has a certain number of measurable ‘outputs’. These are taken to be: Number
Sold of different brands of car and annual Profit. Table 22.1 gives the inputs and outputs for each of the 28
franchised garages.

A central assumption of DEA (although modified models can be built to alter this assumption) is that constant
returns to scale are possible, i.e. doubling a garage’s inputs should lead to a doubling of all its outputs. A
garage is deemed to be efficient if it is not possible to find a mixture of proportions of other garages whose
combined inputs do not exceed those of the garage being considered, but whose outputs are equal to, or
exceed, those of the garage. Should this not be possible then the garage is deemed to be inefficient and the
comparator garages can be identified.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 253–255).
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Table 22.1

Inputs Outputs

Show- Enq. Enq.
room Popn. Popn. Alpha Beta Alpha Beta

Staff space cat. 1 cat. 2 model model sales sales Profit
Garage (100 m2) (1000s) (1000s) (100s) (100s) (1000s) (1000s) (millions)

1 Winchester 7 8 10 12 8.5 4 2 0.6 1.5
2 Andover 6 6 20 30 9 4.5 2.3 0.7 1.6
3 Basingstoke 2 3 40 40 2 1.5 0.8 0.25 0.5
4 Poole 14 9 20 25 10 6 2.6 0.86 1.9
5 Woking 10 9 10 10 11 5 2.4 1 2
6 Newbury 24 15 15 13 25 1.9 8 2.6 4.5
7 Portsmouth 6 7 50 40 8.5 3 2.5 0.9 1.6
8 Alresford 8 7.5 5 8 9 4 2.1 0.85 2
9 Salisbury 5 5 10 10 5 2.5 2 0.65 0.9
10 Guildford 8 10 30 35 9.5 4.5 2.05 0.75 1.7
11 Alton 7 8 7 8 3 2 1.9 0.70 0.5
12 Weybridge 5 6.5 9 12 8 4.5 1.8 0.63 1.4
13 Dorchester 6 7.5 10 10 7.5 4 1.5 0.45 1.45
14 Bridport 11 8 8 10 10 6 2.2 0.65 2.2
15 Weymouth 4 5 10 10 7.5 3.5 1.8 0.62 1.6
16 Portland 3 3.5 3 20 2 1.5 0.9 0.35 0.5
17 Chichester 5 5.5 8 10 7 3.5 1.2 0.45 1.3
18 Petersfield 21 12 6 6 15 8 6 0.25 2.9
19 Petworth 6 5.5 2 2 8 5 1.5 0.55 1.55
20 Midhurst 3 3.6 3 3 2.5 1.5 0.8 0.20 0.45
21 Reading 30 29 120 80 35 20 7 2.5 8
22 Southampton 25 16 110 80 27 12 6.5 3.5 5.4
23 Bournemouth 19 10 90 22 25 13 5.5 3.1 4.5
24 Henley 7 6 5 7 8.5 4.5 1.2 0.48 2
25 Maidenhead 12 8 7 10 12 7 4.5 2 2.3
26 Fareham 4 6 1 1 7.5 3.5 1.1 0.48 1.7
27 Romsey 2 2.5 1 1 2.5 1 0.4 0.1 0.55
28 Ringwood 2 3.5 2 2 1.9 1.2 0.3 0.09 0.4

A linear programming model can be built to identify efficient and inefficient garages and their comparators.

Mathematical Programming Formulation
The formulation that is described here applies to each garage k. The PROC OPTMODEL statements call the
linear programming solver in a loop, with one solve per garage.
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Index Sets and Their Members
The following index sets and their members are used in this example:

� i 2 INPUTS

� i 2 OUTPUTS

� j; k 2 GARAGES

� j; g1 2 INEFFICIENT_GARAGES

� j; g2 2 EFFICIENT_GARAGES

Parameters
Table 22.2 shows the parameters that are used in this example.

Table 22.2 Parameters

Parameter Name Interpretation

garage_name[garage] Name of garage
input[i,j] Input coefficient of input i for garage j
output[i,j] Output coefficient of output i for garage j
k Dummy index for looping over garages
efficiency_number[k] Efficiency number of garage k
weight_sol[k,j] Weight of garage j when maximizing inefficiency of garage k

Variables
Table 22.3 shows the variables that are used in this example.

Table 22.3 Variables

Variable Name Interpretation

Weight[j] Weight of garage j
Inefficiency Inefficiency of current garage

Objective
The objective is to maximize Inefficiency.
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Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 INPUTS,X
j2GARAGES

input[i,j] �Weight[j] � input[i,k]

� for i 2 OUTPUTS,X
j2GARAGES

output[i,j] �Weight[j] � output[i,k] � Inefficiency

Input Data
The following data sets contain the input data that are used in this example:

data inputs;
input input $9.;
datalines;

staff
showroom
pop1
pop2
alpha_enq
beta_enq
;

data outputs;
input output $11.;
datalines;

alpha_sales
beta_sales
profit
;

data garage_data;
input garage_name $12. staff showroom pop1 pop2 alpha_enq beta_enq

alpha_sales beta_sales profit;
datalines;

Winchester 7 8 10 12 8.5 4 2 0.6 1.5
Andover 6 6 20 30 9 4.5 2.3 0.7 1.6
Basingstoke 2 3 40 40 2 1.5 0.8 0.25 0.5
Poole 14 9 20 25 10 6 2.6 0.86 1.9
Woking 10 9 10 10 11 5 2.4 1 2
Newbury 24 15 15 13 25 19 8 2.6 4.5



PROC OPTMODEL Statements and Output F 263

Portsmouth 6 7 50 40 8.5 3 2.5 0.9 1.6
Alresford 8 7.5 5 8 9 4 2.1 0.85 2
Salisbury 5 5 10 10 5 2.5 2 0.65 0.9
Guildford 8 10 30 35 9.5 4.5 2.05 0.75 1.7
Alton 7 8 7 8 3 2 1.9 0.7 0.5
Weybridge 5 6.5 9 12 8 4.5 1.8 0.63 1.4
Dorchester 6 7.5 10 10 7.5 4 1.5 0.45 1.45
Bridport 11 8 8 10 10 6 2.2 0.65 2.2
Weymouth 4 5 10 10 7.5 3.5 1.8 0.62 1.6
Portland 3 3.5 3 2 2 1.5 0.9 0.35 0.5
Chichester 5 5.5 8 10 7 3.5 1.2 0.45 1.3
Petersfield 21 12 6 8 15 8 6 0.25 2.9
Petworth 6 5.5 2 2 8 5 1.5 0.55 1.55
Midhurst 3 3.6 3 3 2.5 1.5 0.8 0.2 0.45
Reading 30 29 120 80 35 20 7 2.5 8
Southampton 25 16 110 80 27 12 6.5 3.5 5.4
Bournemouth 19 10 90 12 25 13 5.5 3.1 4.5
Henley 7 6 5 7 8.5 4.5 1.2 0.48 2
Maidenhead 12 8 7 10 12 7 4.5 2 2.3
Fareham 4 6 1 1 7.5 3.5 1.1 0.48 1.7
Romsey 2 2.5 1 1 2.5 1 0.4 0.1 0.55
Ringwood 2 3.5 2 2 1.9 1.2 0.3 0.09 0.4
;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set <str> INPUTS;
read data inputs into INPUTS=[input];

set <str> OUTPUTS;
read data outputs into OUTPUTS=[output];

set <num> GARAGES;
str garage_name {GARAGES};
num input {INPUTS, GARAGES};
num output {OUTPUTS, GARAGES};
read data garage_data into GARAGES=[_N_] garage_name

{i in INPUTS} <input[i,_N_]=col(i)>
{i in OUTPUTS} <output[i,_N_]=col(i)>;

num k;
num efficiency_number {GARAGES};
num weight_sol {GARAGES, GARAGES};
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The following statements correspond directly to the mathematical programming formulation that is described
earlier:

var Weight {GARAGES} >= 0;
var Inefficiency >= 0;

max Objective = Inefficiency;

con Input_con {i in INPUTS}:
sum {j in GARAGES} input[i,j] * Weight[j] <= input[i,k];

con Output_con {i in OUTPUTS}:
sum {j in GARAGES} output[i,j] * Weight[j] >= output[i,k] * Inefficiency;

The following statements loop over all garages, call the linear programming solver once per garage, and store
the results in the parameters efficiency_number and weight_sol:

do k = GARAGES;
solve;
efficiency_number[k] = 1 / Inefficiency.sol;
for {j in GARAGES}

weight_sol[k,j] = (if Weight[j].sol > 1e-6 then Weight[j].sol else .);
end;

Note that the DO loop contains no declaration statements. As the value of k changes, the SOLVE statement
automatically updates the constraints to use the values of input[i,k] and output[i,k]. The approach shown
here is much more efficient than the following alternatives:

� Calling PROC OPTMODEL once per garage

� Enlarging the set of decision variables by including an additional index, resulting in variables Weight[k,j]
and Inefficiency[k]. Within the DO loop, you must then fix most of the variables to 0 and rely on the
presolver to remove them, but that approach uses much more memory and computational time.

In SAS/OR 13.1, you can instead solve the same set of problems in parallel by replacing the DO loop with
the following COFOR loop:

cofor {kk in GARAGES} do;
k = kk;
solve;
efficiency_number[k] = 1 / Inefficiency.sol;
for {j in GARAGES}

weight_sol[k,j] = (if Weight[j].sol > 1e-6 then Weight[j].sol else .);
end;

After the DO or COFOR loop terminates, the following statements partition the garages into two sets by
using a threshold on the resulting efficiency numbers:

set EFFICIENT_GARAGES = {j in GARAGES: efficiency_number[j] >= 1};
set INEFFICIENT_GARAGES = GARAGES diff EFFICIENT_GARAGES;

The following statements print the efficiency numbers, as shown in Figure 22.1, and write them to the
efficiency_data data set:
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print garage_name efficiency_number;
create data efficiency_data from [garage] garage_name efficiency_number;

Figure 22.1 efficiency_number Parameter

The OPTMODEL Procedure

[1] garage_name efficiency_number

1 Winchester 0.84017

2 Andover 0.91738

3 Basingstoke 1.00000

4 Poole 0.86189

5 Woking 0.86732

6 Newbury 1.00000

7 Portsmouth 1.00000

8 Alresford 1.00000

9 Salisbury 1.00000

10 Guildford 0.81417

11 Alton 1.00000

12 Weybridge 0.85435

13 Dorchester 0.83920

14 Bridport 0.97101

15 Weymouth 1.00000

16 Portland 1.00000

17 Chichester 0.82434

18 Petersfield 1.00000

19 Petworth 0.98824

20 Midhurst 0.82928

21 Reading 0.98205

22 Southampton 1.00000

23 Bournemouth 1.00000

24 Henley 1.00000

25 Maidenhead 1.00000

26 Fareham 1.00000

27 Romsey 1.00000

28 Ringwood 0.87587

The following CREATE DATA statements write the inefficient garages and the corresponding multiples of
efficient garages to SAS data sets (in both dense and sparse form), as in Table 14.8 in Williams (1999):

create data weight_data_dense from [inefficient_garage]=INEFFICIENT_GARAGES
garage_name
efficiency_number
{efficient_garage in EFFICIENT_GARAGES} <col('w'||efficient_garage)

=weight_sol[inefficient_garage,efficient_garage]>;
create data weight_data_sparse from

[inefficient_garage efficient_garage]=
{g1 in INEFFICIENT_GARAGES, g2 in EFFICIENT_GARAGES: weight_sol[g1,g2] ne .}

weight_sol;
quit;
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The following statements sort the efficiency_data data set by efficiency and print the results, shown in
Figure 22.2:

proc sort data=efficiency_data;
by descending efficiency_number;

run;

proc print;
run;

Figure 22.2 efficiency_data Data Set

Obs garage garage_name efficiency_number

1 25 Maidenhead 1.00000

2 26 Fareham 1.00000

3 18 Petersfield 1.00000

4 3 Basingstoke 1.00000

5 6 Newbury 1.00000

6 7 Portsmouth 1.00000

7 8 Alresford 1.00000

8 9 Salisbury 1.00000

9 11 Alton 1.00000

10 16 Portland 1.00000

11 23 Bournemouth 1.00000

12 24 Henley 1.00000

13 27 Romsey 1.00000

14 15 Weymouth 1.00000

15 22 Southampton 1.00000

16 19 Petworth 0.98824

17 21 Reading 0.98205

18 14 Bridport 0.97101

19 2 Andover 0.91738

20 28 Ringwood 0.87587

21 5 Woking 0.86732

22 4 Poole 0.86189

23 12 Weybridge 0.85435

24 1 Winchester 0.84017

25 13 Dorchester 0.83920

26 20 Midhurst 0.82928

27 17 Chichester 0.82434

28 10 Guildford 0.81417

The following statements sort the weight_data_dense data set by efficiency and print the results, shown in
Figure 22.3:

proc sort data=weight_data_dense;
by descending efficiency_number;

run;

proc print;
run;



PROC OPTMODEL Statements and Output F 267

Figure 22.3 weight_data_dense Data Set

Obs inefficient_garage garage_name efficiency_number w3 w6 w7 w8 w9

1 15 Weymouth 1.00000 . . . . .

2 22 Southampton 1.00000 . . . . .

3 19 Petworth 0.98824 . 0.066345 . . .

4 21 Reading 0.98205 1.26862 . . . .

5 14 Bridport 0.97101 0.03278 . . . .

6 2 Andover 0.91738 . . . . .

7 28 Ringwood 0.87587 0.00771 . . . .

8 5 Woking 0.86732 . . . 0.95253 .

9 4 Poole 0.86189 0.32859 . . . .

10 12 Weybridge 0.85435 . . . . .

11 1 Winchester 0.84017 . . 0.00528 0.41627 0.40328

12 13 Dorchester 0.83920 0.13436 . . 0.10448 .

13 20 Midhurst 0.82928 . . . . 0.05957

14 17 Chichester 0.82434 0.05825 . . 0.09682 .

15 10 Guildford 0.81417 0.42459 . 0.14961 0.62272 .

Obs w11 w16 w18 w23 w24 w25 w26 w27

1 . . . . . . . .

2 . . . . . . . .

3 . . 0.015212 . . 0.03409 0.67493 .

4 . 1.19914 . . 2.86247 0.13753 . .

5 . 0.46969 . . 0.78310 0.19489 . .

6 . . . . . 0.21429 . .

7 . 0.31973 . . 0.14649 . . .

8 0.021078 . . . . 0.14838 . .

9 . 0.75733 . . 0.43442 0.34463 . .

10 . . . . . 0.14524 0.01773 .

11 . 0.09614 . . . . . .

12 . 0.75163 . . 0.03532 . 0.47905 .

13 . 0.47189 0.043482 . . 0.00894 . .

14 . 0.16523 . . 0.23637 . 0.15424 .

15 . 0.16807 . . . . . .

The weight_data_sparse data set contains the same information in sparse format, as shown in Figure 22.4:

proc print data=weight_data_sparse;
run;
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Figure 22.4 weight_data_sparse Data Set

Obs inefficient_garage efficient_garage weight_sol

1 4 3 0.32859

2 10 3 0.42459

3 13 3 0.13436

4 14 3 0.03278

5 17 3 0.05825

6 21 3 1.26862

7 28 3 0.00771

8 19 6 0.06635

9 1 7 0.00528

10 10 7 0.14961

11 1 8 0.41627

12 5 8 0.95253

13 10 8 0.62272

14 13 8 0.10448

15 17 8 0.09682

16 1 9 0.40328

17 20 9 0.05957

18 5 11 0.02108

19 1 16 0.09614

20 4 16 0.75733

21 10 16 0.16807

22 13 16 0.75163

23 14 16 0.46969

24 17 16 0.16523

25 20 16 0.47189

26 21 16 1.19914

27 28 16 0.31973

28 19 18 0.01521

29 20 18 0.04348

30 4 24 0.43442

31 13 24 0.03532

32 14 24 0.78310

33 17 24 0.23637

34 21 24 2.86247

35 28 24 0.14649

36 2 25 0.21429

37 4 25 0.34463

38 5 25 0.14838

39 12 25 0.14524

40 14 25 0.19489

41 19 25 0.03409

42 20 25 0.00894

43 21 25 0.13753

44 12 26 0.01773

45 13 26 0.47905

46 17 26 0.15424

47 19 26 0.67493
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming (data envelopment analysis)

� numeric and string index sets

� reading and writing multiple data sets

� reading dense two-dimensional data

� calling a solver in a DO loop

� calling a solver in a COFOR loop

� .sol variable suffix

� storing a solution in a numeric parameter

� using a colon (:) to select members of a set

� set operator DIFF

� writing dense two-dimensional data

� writing sparse two-dimensional data
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Problem Statement
A small milk processing company is committed to collecting milk from 20 farms and taking it back to the
depot for processing.1 The company has one tanker lorry with a capacity for carrying 80,000 litres of milk.
Eleven of the farms are small and need a collection only every other day. The other nine farms need a
collection every day. The positions of the farms in relation to the depot (numbered 1) are given in Table 23.1
together with their collection requirements.

Find the optimal route for the tanker lorry on each day, bearing in mind that it has to (i) visit all the ‘every
day’ farms, (ii) visit some of the ‘every other day’ farms, and (iii) work within its capacity. On alternate days
it must again visit the ‘every day’ farms but also visit the ‘every other day’ farms not visited on the previous
day.

For convenience a map of the area considered is given in Figure 23.1.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 255–256).
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Table 23.1

Position 10 miles:
Collection requirement

Farm East North Collection frequency (1000 litres)

1 (Depot) 0 0 — —
2 �3 3 Every day 5
3 1 11 Every day 4
4 4 7 Every day 3
5 �5 9 Every day 6
6 �5 �2 Every day 7
7 �4 �7 Every day 3
8 6 0 Every day 4
9 3 �6 Every day 6
10 �1 �3 Every day 5
11 0 �6 Every other day 4
12 6 4 Every other day 7
13 2 5 Every other day 3
14 �2 8 Every other day 4
15 6 10 Every other day 5
16 1 8 Every other day 6
17 �3 1 Every other day 8
18 �6 5 Every other day 5
19 2 9 Every other day 7
20 �6 �5 Every other day 6
21 5 �4 Every other day 6
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Figure 23.1

Mathematical Programming Formulation
The problem is formulated as a periodic vehicle routing problem with a node for each farm. Williams (1999)
uses the fact that the number of days in the planning horizon is two to reduce the number of decision variables
and constraints. The formulation shown here generalizes to any number of days and arbitrary frequencies
(not just 1 or 2).

Index Sets and Their Members
The following index sets and their members are used in this example:

� i; j 2 NODES

� .i; j / 2 EDGES
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� d 2 DAYS

� i; j 2 NODES_TEMP

� .i; j / 2 EDGES_SOL[iter,d]

� ci ; cj 2 COMPONENT_IDS

� k 2 COMPONENTŒci�

� k 2 SUBTOURŒs�

Parameters
Table 23.2 shows the parameters that are used in this example.

Table 23.2 Parameters

Parameter Name Interpretation

east[i] East coordinate of node i
north[i] North coordinate of node i
frequency[i] Number of times node i must be visited (1 for every other day, 2 for every day)
requirement[i] Collection requirement of node i (in 1,000 litres)
distance[i,j] Distance between nodes i and j (in miles)
distance_scale Distance scale
num_days Number of days in planning horizon
capacity Capacity of the lorry (in 1,000 litres)
depot Node number of depot
num_subtours Number of subtours in current formulation
iter Iteration number for each round of subtour elimination constraints
num_components[d] Number of connected components in solution for day d
component_id[i] Connected component containing node i
ci,cj Dummy indices for members of COMPONENT_IDS

Variables
Table 23.3 shows the variables that are used in this example.

Table 23.3 Variables

Variable Name Interpretation

UseNode[i,d] 1 if node i is visited on day d; 0 otherwise
UseEdge[i,j,d] 1 if edge .i; j / is traversed on day d; 0 otherwise
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Objective
The objective is to minimize the following function:

TotalDistance D
X

.i;j /2EDGES

X
d2DAYS

distance[i,j] � UseEdge[i,j,d]

Constraints
The following constraints are used in this example:

� bounds on variables

� for d 2 DAYS,X
i2NODES

requirement[i] � UseNode[i,d] � capacity

� for i 2 NODES,X
d2DAYS

UseNode[i,d] D frequency[i]

� for k 2 NODES and d 2 DAYS,X
.i;j /2EDGESWk2fi;j g

UseEdge[i,j,d] D 2 � UseNode[k,d]

� for d 2 DAYS n f1g,X
i2NODES

UseNode[i,d] �
X

i2NODES

UseNode[i,d � 1]

� for s 2 f1; : : : ; num_subtoursg and k 2 SUBTOUR[s] and d 2 DAYS,X
i2NODESnSUBTOUR[s];

j2SUBTOUR[s]W
.i;j /2EDGES

UseEdge[i,j,d]C
X

i2SUBTOUR[s];
j2NODESnSUBTOUR[s]W

.i;j /2EDGES

UseEdge[i,j,d] � 2 � UseNode[k,d]
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Input Data
The following data set and macro variables contain the input data that are used in this example:

data farm_data;
farm = _N_;
input east north frequency requirement;
datalines;

0 0 2 0
-3 3 2 5
1 11 2 4
4 7 2 3

-5 9 2 6
-5 -2 2 7
-4 -7 2 3
6 0 2 4
3 -6 2 6

-1 -3 2 5
0 -6 1 4
6 4 1 7
2 5 1 3

-2 8 1 4
6 10 1 5
1 8 1 6

-3 1 1 8
-6 5 1 5
2 9 1 7

-6 -5 1 6
5 -4 1 6

;

%let distance_scale = 10;
%let num_days = 2;
%let capacity = 80;
%let depot = 1;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set NODES;
num east {NODES};
num north {NODES};
num frequency {NODES};
num requirement {NODES};
read data farm_data into NODES=[_N_] east north frequency requirement;
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set EDGES = {i in NODES, j in NODES: i < j};
num distance {<i,j> in EDGES} =

&distance_scale * sqrt((east[i]-east[j])^2+(north[i]-north[j])^2);

set DAYS = 1..&num_days;

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

var UseNode {NODES, DAYS} binary;
var UseEdge {EDGES, DAYS} binary;

min TotalDistance
= sum {<i,j> in EDGES, d in DAYS} distance[i,j] * UseEdge[i,j,d];

con Capacity_con {d in DAYS}:
sum {i in NODES} requirement[i] * UseNode[i,d] <= &capacity;

con Frequency_con {i in NODES}:
sum {d in DAYS} UseNode[i,d] = frequency[i];

con Two_match {k in NODES, d in DAYS}:
sum {<i,j> in EDGES: k in {i,j}} UseEdge[i,j,d] = 2 * UseNode[k,d];

The following statements declare optional symmetry-breaking constraints to reduce the number of essentially
identical branch-and-bound nodes that are explored by the mixed integer linear programming solver:

/* several alternatives for symmetry-breaking constraints */

* con Symmetry {d in DAYS diff {1}}:
sum {<i,j> in EDGES} distance[i,j] * UseEdge[i,j,d]

<= sum {<i,j> in EDGES} distance[i,j] * UseEdge[i,j,d-1];

* con Symmetry {d in DAYS diff {1}}:
sum {i in NODES} requirement[i] * UseNode[i,d]

<= sum {i in NODES} requirement[i] * UseNode[i,d-1];
con Symmetry {d in DAYS diff {1}}:

sum {i in NODES} UseNode[i,d]
<= sum {i in NODES} UseNode[i,d-1];

Williams (1999) breaks symmetry instead by fixing UseNode[11,1] D 1. The symmetry-breaking constraints
shown here apply to the general formulation with any number of days and arbitrary frequencies.

In SAS/OR 13.1, the mixed integer linear programming solver automatically detects and exploits sym-
metry without you having to explicitly declare such symmetry-breaking constraints. You can control the
aggressiveness of symmetry detection by using the SYMMETRY= option in the SOLVE WITH MILP
statement.

The following statements declare the subtour elimination constraints:

num num_subtours init 0;
/* subset of nodes not containing depot node */
set SUBTOUR {1..num_subtours};
/* if node k in SUBTOUR[s] is used on day d, then

must use at least two edges across partition induced by SUBTOUR[s] */
con Subtour_elimination {s in 1..num_subtours, k in SUBTOUR[s], d in DAYS}:

sum {i in NODES diff SUBTOUR[s], j in SUBTOUR[s]: <i,j> in EDGES}
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UseEdge[i,j,d]
+ sum {i in SUBTOUR[s], j in NODES diff SUBTOUR[s]: <i,j> in EDGES}

UseEdge[i,j,d]
>= 2 * UseNode[k,d];

The following statements declare the index sets and parameters that are needed to detect violated subtour
elimination constraints:

num iter init 0;
num num_iters init 0;
set ITERS = 1..num_iters;
num num_components {DAYS};
set NODES_TEMP;
set <num,num> EDGES_SOL {ITERS, DAYS};
num component_id {NODES_TEMP};
set COMPONENT_IDS;
set COMPONENT {COMPONENT_IDS};
num ci;
num cj;

The following DO UNTIL loop implements dynamic generation of subtour elimination constraints (“row
generation”):

/* loop until each day's support graph is connected */
do until (and {d in DAYS} num_components[d] = 1);

iter = iter + 1;
num_iters = iter;
solve;
/* find connected components for each day */
for {d in DAYS} do;

NODES_TEMP = {i in NODES: UseNode[i,d].sol > 0.5};
EDGES_SOL[iter,d] = {<i,j> in EDGES: UseEdge[i,j,d].sol > 0.5};
/* initialize each node to its own component */
COMPONENT_IDS = NODES_TEMP;
num_components[d] = card(NODES_TEMP);
for {i in NODES_TEMP} do;

component_id[i] = i;
COMPONENT[i] = {i};

end;
/* if i and j are in different components, merge the two components */
for {<i,j> in EDGES_SOL[iter,d]} do;

ci = component_id[i];
cj = component_id[j];
if ci ne cj then do;

/* update smaller component */
if card(COMPONENT[ci]) < card(COMPONENT[cj]) then do;

for {k in COMPONENT[ci]} component_id[k] = cj;
COMPONENT[cj] = COMPONENT[cj] union COMPONENT[ci];
COMPONENT_IDS = COMPONENT_IDS diff {ci};

end;
else do;

for {k in COMPONENT[cj]} component_id[k] = ci;
COMPONENT[ci] = COMPONENT[ci] union COMPONENT[cj];
COMPONENT_IDS = COMPONENT_IDS diff {cj};

end;
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end;
end;
num_components[d] = card(COMPONENT_IDS);
put num_components[d]=;
/* create subtour from each component not containing depot node */
for {k in COMPONENT_IDS: &depot not in COMPONENT[k]} do;

num_subtours = num_subtours + 1;
SUBTOUR[num_subtours] = COMPONENT[k];
put SUBTOUR[num_subtours]=;

end;
end;
print capacity_con.body capacity_con.ub;
print num_components;

end;

The body of the loop calls the mixed integer linear programming solver, finds the connected components
of the support graph of the resulting solution, and adds any subtours found. Note that the DO UNTIL
loop contains no declaration statements. As the value of num_subtours changes, the SOLVE statement
automatically updates the subtour elimination constraints. See Chapter 27 for an alternative approach that
instead uses the SOLVE WITH NETWORK statement together with the CONCOMP option to find the
connected components.

After the DO UNTIL loop terminates, the following statements output the edges that appear in each iteration
of subtour elimination and write the value of iter to a SAS macro variable named num_iters:

create data sol_data from
[iter d i j]={it in ITERS, d in DAYS, <i,j> in EDGES_SOL[it,d]}
x1=east[i] y1=north[i] x2=east[j] y2=north[j];

call symput('num_iters',put(num_iters,best.));
quit;

The following SAS macro calls PROC SGPLOT to plot the solution that results from each iteration:

%macro showPlots;
%do iter = 1 %to &num_iters;

%do d = 1 %to &num_days;
/* create annotate data set to draw subtours */
data sganno(keep=drawspace linethickness function x1 y1 x2 y2);

retain drawspace "datavalue" linethickness 1;
set sol_data;
where iter = &iter and d = &d;
function = 'line';

run;

title1 "iter = &iter, day = &d";
title2;
proc sgplot data=farm_data sganno=sganno;

scatter y=north x=east / group=frequency datalabel=farm;
xaxis display=(nolabel);
yaxis display=(nolabel);

run;
%end;

%end;
%mend showPlots;
%showPlots;
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Figure 23.2 and Figure 23.3 show the output from the mixed integer linear programming solver for the first
iteration, before any subtour elimination constraints have been generated.

Figure 23.2 Output from Mixed Integer Linear Programming Solver, Iteration 1, Day 1
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Figure 23.3 Output from Mixed Integer Linear Programming Solver, Iteration 1, Day 2



282 F Chapter 23: Milk Collection

Figure 23.4 and Figure 23.5 show the output from the mixed integer linear programming solver for the second
iteration, after the first round of subtour elimination constraints.

Figure 23.4 Output from Mixed Integer Linear Programming Solver, Iteration 2, Day 1
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Figure 23.5 Output from Mixed Integer Linear Programming Solver, Iteration 2, Day 2
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Figure 23.6 and Figure 23.7 show the output from the mixed integer linear programming solver for the third
iteration, after the second round of subtour elimination constraints.

Figure 23.6 Output from Mixed Integer Linear Programming Solver, Iteration 3, Day 1
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Figure 23.7 Output from Mixed Integer Linear Programming Solver, Iteration 3, Day 2
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Since no more subtour elimination constraints are violated, the DO UNTIL loop terminates with an optimal
solution. Figure 23.8 shows the final problem and solution summaries from the mixed integer linear
programming solver.

Figure 23.8 Final Problem and Solution Summaries from Mixed Integer Linear Programming Solver

Problem Summary

Objective Sense Minimization

Objective Function TotalDistance

Objective Type Linear

Number of Variables 462

Bounded Above 0

Bounded Below 0

Bounded Below and Above 462

Free 0

Fixed 0

Binary 462

Integer 0

Number of Constraints 108

Linear LE (<=) 3

Linear EQ (=) 63

Linear GE (>=) 42

Linear Range 0

Constraint Coefficients 4192

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalDistance

Solution Status Optimal

Objective Value 1230.5623785

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 4.440892E-16

Bound Infeasibility 2.220446E-16

Integer Infeasibility 4.440892E-16

Best Bound 1230.5623785

Nodes 1

Iterations 494

Presolve Time 0.03

Solution Time 0.07

The optimal objective value differs slightly from the one given in Williams (1999), perhaps because of
rounding of distances by Williams.
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (vehicle routing)

� sets of tuples

� sets indexed by other sets

� set operators UNION and DIFF

� INIT option

� CARD function

� using a colon (:) to select members of a set

� AND aggregation operator

� symmetry-breaking constraints

� MILP solver option SYMMETRY=

� calling a solver in a DO UNTIL loop

� row generation

� connected components

� .sol variable suffix

� CALL SYMPUT

� SGPLOT procedure
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Problem Statement
An airline is selling tickets for flights to a particular destination.1 The flight will depart in three weeks’ time.
It can use up to six planes each costing £50,000 to hire. Each plane has:

37 First Class seats
38 Business Class seats
47 Economy Class seats

Up to 10% of seats in any one category can be transferred to an adjacent category.

It wishes to decide a price for each of these seats. There will be further opportunities to update these prices
after one week and two weeks. Once a customer has purchased a ticket there is no cancellation option.

For administrative simplicity three price level options are possible in each class (one of which must be
chosen). The same option need not be chosen for each class. These are given in Table 24.1 for the current
period (period 1) and two future periods.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 256–258).
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Table 24.1

Option 1 Option 2 Option 3

First £1200 £1000 £950
Business £900 £800 £600 Period 1
Economy £500 £300 £200
First £1400 £1300 £1150
Business £1100 £900 £750 Period 2
Economy £700 £400 £350
First £1500 £900 £850
Business £820 £800 £500 Period 3
Economy £480 £470 £450

Demand is uncertain but will be affected by price. Forecasts have been made of these demands according
to a probability distribution which divides the demand levels into three scenarios for each period. The
probabilities of the three scenarios in each period are:

Scenario 1 0.1
Scenario 2 0.7
Scenario 3 0.2

The forecast demands are shown in Table 24.2.

Decide price levels for the current period, how many seats to sell in each class (depending on demand),
the provisional number of planes to book and provisional price levels and seats to sell in future periods in
order to maximize expected yield. You should schedule to be able to meet commitments under all possible
combinations of scenarios.

With hindsight (i.e. not known until the beginning of the next period) it turned out that demand in each period
(depending on the price level you chose) was as shown in Table 24.3.

Use the actual demands that resulted from the prices you set in period 1 to rerun the model at the beginning
of period 2 to set price levels for period 2 and provisional price levels for period 3.

Repeat this procedure with a rerun at the beginning of period 3. Give the final operational solution.

Contrast this solution to one obtained at the beginning of period 1 by pricing to maximize yield based on
expected demands.
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Table 24.2

Price option 1 Price option 2 Price option 3

First 10 15 20 Period 1
Business 20 25 35 Scenario 1
Economy 45 55 60
First 20 25 35 Period 1
Business 40 42 45 Scenario 2
Economy 50 52 63
First 45 50 60 Period 1
Business 45 46 47 Scenario 3
Economy 55 56 64
First 20 25 35 Period 2
Business 42 45 46 Scenario 1
Economy 50 52 60
First 10 40 50 Period 2
Business 50 60 80 Scenario 2
Economy 60 65 90
First 50 55 80 Period 2
Business 20 30 50 Scenario 3
Economy 10 40 60
First 30 35 40 Period 3
Business 40 50 55 Scenario 1
Economy 50 60 80
First 30 40 60 Period 3
Business 10 40 45 Scenario 2
Economy 50 60 70
First 50 70 80 Period 3
Business 40 45 60 Scenario 3
Economy 60 65 70

Table 24.3

Price option 1 Price option 2 Price option 3

First 25 30 40
Business 50 40 45 Period 1
Economy 50 53 65
First 22 45 50
Business 45 55 75 Period 2
Economy 50 60 80
First 45 60 75
Business 20 40 50 Period 3
Economy 55 60 75
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Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� period 2 PERIODS

� class 2 CLASSES

� option 2 OPTIONS

� scenario; i 2 SCENARIOS

� .i; j / 2 SCENARIOS2 D SCENARIOS � SCENARIOS

� .i; j; k/ 2 SCENARIOS3 D SCENARIOS2 � SCENARIOS

Parameters
Table 24.4 shows the parameters that are used in this example.

Table 24.4 Parameters

Parameter Name Interpretation

num_seats[class] Number of seats per class per plane
price[period,class,option] Price level (in £)
prob[scenario] Probability of demand level scenario per period
demand[period,scenario,class,option] Demand for period, scenario, and class if price level option is

chosen
actual_demand[period,class,option] Actual demand for period and class if price level option is chosen
expected_demand[period,class,option] Expected demand for period and class if price level option is

chosen
num_periods Number of periods
num_planes Number of planes available to be used
plane_cost Cost to hire each plane (in £)
transfer_fraction_ub Upper bound on fraction of seats that can be transferred to another

category
num_options Number of price level options
actual_price[period,class] Actual price level for period and class
actual_sales[period,class] Actual sales for period and class
actual_revenue[period,class] Actual revenue for period and class
current_period Current period for optimization
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Variables
Table 24.5 shows the variables that are used in this example.

Table 24.5 Variables

Variable Name Interpretation

P1[class,option] 1 if price option is chosen for class in period 1; 0 otherwise
P2[i,class,option] 1 if price option is chosen for class in period 2 as a result of scenario i in period 1; 0

otherwise
P3[i,j,class,option] 1 if price option is chosen for class in period 3 as a result of scenarios i and j in

periods 1 and 2, respectively; 0 otherwise
S1[i,class,option] Sales for class in period 1 under price option and scenario i
S2[i,j,class,option] Sales for class in period 2 under price option and scenarios i and j in periods 1 and

2, respectively
S3[i,j,k,class,option] Sales for class in period 3 under price option and scenarios i; j; k in periods 1, 2, 3,

respectively
R1[i,class,option] Revenue for class in period 1 under price option and scenario i
R2[i,j,class,option] Revenue for class in period 2 under price option and scenarios i and j in periods 1

and 2, respectively
R3[i,j,k,class,option] Revenue for class in period 3 under price option and scenarios i; j; k in periods 1, 2,

3, respectively
TransferFrom[i,j,k,class] Number of seats transferred from class under scenarios i; j; k in periods 1, 2, 3,

respectively
TransferTo[i,j,k,class] Number of seats transferred to class under scenarios i; j; k in periods 1, 2, 3,

respectively
NumPlanes Number of planes to use
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Objective
The objective is to maximize the following quadratic function:

ExpectedYield

D

0BBBBBB@if current_period � 1; then
X

i2SCENARIOS;

class2CLASSES;

option2OPTIONS

prob[i] � R1[i,class,option]

1CCCCCCA

C

0BBBBBB@if current_period � 2; then
X

.i;j /2SCENARIOS2;

class2CLASSES;

option2OPTIONS

prob[i] � prob[j] � R2[i,j,class,option]

1CCCCCCA

C

0BBBBBB@if current_period � 3; then
X

.i;j;k/2SCENARIOS3;

class2CLASSES;

option2OPTIONS

prob[i] � prob[j] � prob[k] � R3[i,j,k,class,option]

1CCCCCCA
C

X
period21:::current_period�1;

class2CLASSES

actual_revenue[period,class]

�plane_cost � NumPlanes
where

R1[i,class,option] D price[1,class,option] � P1[class,option] � S1[i,class,option]

R2[i,j,class,option] D price[2,class,option] � P2[class,option] � S2[i,j,class,option]

R3[i,j,k,class,option] D price[3,class,option] � P3[class,option] � S3[i,j,k,class,option]
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Constraints
The following constraints are used in this example:

� bounds on variables

� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES,X
option2OPTIONS

.S1[i,class,option]C S2[i,j,class,option]C S3[i,j,k,class,option]/

C TransferFrom[i,j,k,class] � TransferTo[i,j,k,class]

� num_seats[class] � NumPlanes

� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES,

TransferFrom[i,j,k,class] � transfer_fraction_ub � num_seats[class]

� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES,

TransferTo[i,j,k,class] � transfer_fraction_ub � num_seats[class]

� for .i; j; k/ 2 SCENARIOS3,X
class2CLASSES

TransferFrom[i,j,k,class] D
X

class2CLASSES

TransferTo[i,j,k,class]

� for class 2 CLASSES,X
option2OPTIONS

P1[class,option] D 1

� for i 2 SCENARIOS and class 2 CLASSES,X
option2OPTIONS

P2[i,class,option] D 1

� for .i; j / 2 SCENARIOS2 and class 2 CLASSES,X
option2OPTIONS

P3[i,j,class,option] D 1

� for i 2 SCENARIOS and class 2 CLASSES and option 2 OPTIONS,

S1[i,class,option] � demand[1,i,class,option] � P1[class,option]

� for .i; j / 2 SCENARIOS2 and class 2 CLASSES and option 2 OPTIONS,

S2[i,j,class,option] � demand[2,j,class,option] � P2[i,class,option]
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� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES and option 2 OPTIONS,

S3[i,j,k,class,option] � demand[3,k,class,option] � P3[i,j,class,option]

� for i 2 SCENARIOS and class 2 CLASSES and option 2 OPTIONS,

R1[i,class,option] � price[1,class,option] � S1[i,class,option]

� for i 2 SCENARIOS and class 2 CLASSES and option 2 OPTIONS,

price[1,class,option] � S1[i,class,option] � R1[i,class,option]

� price[1,class,option] � demand[1,i,class,option] � .1 � P1[class,option]/

� for .i; j / 2 SCENARIOS2 and class 2 CLASSES and option 2 OPTIONS,

R2[i,j,class,option] � price[2,class,option] � S2[i,j,class,option]

� for .i; j / 2 SCENARIOS2 and class 2 CLASSES and option 2 OPTIONS,

price[2,class,option] � S2[i,j,class,option] � R2[i,j,class,option]

� price[2,class,option] � demand[2,j,class,option] � .1 � P2[i,class,option]/

� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES and option 2 OPTIONS,

R3[i,j,k,class,option] � price[3,class,option] � S3[i,j,k,class,option]

� for .i; j; k/ 2 SCENARIOS3 and class 2 CLASSES and option 2 OPTIONS,

price[3,class,option] � S3[i,j,k,class,option] � R3[i,j,k,class,option]

� price[3,class,option] � demand[3,k,class,option] � .1 � P3[i,j,class,option]/

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data class_data;
input class $9. num_seats;
datalines;

First 37
Business 38
Economy 47
;

data price_data;
input period class $9. price1-price3;
datalines;
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1 First 1200 1000 950
1 Business 900 800 600
1 Economy 500 300 200
2 First 1400 1300 1150
2 Business 1100 900 750
2 Economy 700 400 350
3 First 1500 900 850
3 Business 820 800 500
3 Economy 480 470 450
;

data scenario_data;
input prob;
datalines;

0.1
0.7
0.2
;

data demand_data;
input period scenario class $9. demand1-demand3;
datalines;

1 1 First 10 15 20
1 1 Business 20 25 35
1 1 Economy 45 55 60
1 2 First 20 25 35
1 2 Business 40 42 45
1 2 Economy 50 52 63
1 3 First 45 50 60
1 3 Business 45 46 47
1 3 Economy 55 56 64
2 1 First 20 25 35
2 1 Business 42 45 46
2 1 Economy 50 52 60
2 2 First 10 40 50
2 2 Business 50 60 80
2 2 Economy 60 65 90
2 3 First 50 55 80
2 3 Business 20 30 50
2 3 Economy 10 40 60
3 1 First 30 35 40
3 1 Business 40 50 55
3 1 Economy 50 60 80
3 2 First 30 40 60
3 2 Business 10 40 45
3 2 Economy 50 60 70
3 3 First 50 70 80
3 3 Business 40 45 60
3 3 Economy 60 65 70
;

data actual_demand_data;
input period class $9. demand1-demand3;
datalines;
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1 First 25 30 40
1 Business 50 40 45
1 Economy 50 53 65
2 First 22 45 50
2 Business 45 55 75
2 Economy 50 60 80
3 First 45 60 75
3 Business 20 40 50
3 Economy 55 60 75
;

%let num_periods = 3;
%let num_planes = 6;
%let plane_cost = 50000;
%let transfer_fraction_ub = 0.10;
%let num_options = 3;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
set PERIODS = 1..&num_periods;

set <str> CLASSES;
num num_seats {CLASSES};
read data class_data into CLASSES=[class] num_seats;

set OPTIONS = 1..&num_options;

num price {PERIODS, CLASSES, OPTIONS};
read data price_data into [period class]

{option in OPTIONS} <price[period,class,option]=col('price'||option)>;

set SCENARIOS;
num prob {SCENARIOS};
read data scenario_data into SCENARIOS=[_N_] prob;
set SCENARIOS2 = SCENARIOS cross SCENARIOS;
set SCENARIOS3 = SCENARIOS2 cross SCENARIOS;

num demand {PERIODS, SCENARIOS, CLASSES, OPTIONS};
read data demand_data into [period scenario class]

{option in OPTIONS}
<demand[period,scenario,class,option]=col('demand'||option)>;

num actual_demand {PERIODS, CLASSES, OPTIONS};
read data actual_demand_data into [period class]

{option in OPTIONS}
<actual_demand[period,class,option]=col('demand'||option)>;
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num actual_price {PERIODS, CLASSES};
num actual_sales {PERIODS, CLASSES};
num actual_revenue {PERIODS, CLASSES};

num current_period;

The following VAR statements declare the decision variables:

var P1 {CLASSES, OPTIONS} binary;
var P2 {SCENARIOS, CLASSES, OPTIONS} binary;
var P3 {SCENARIOS2, CLASSES, OPTIONS} binary;

var S1 {SCENARIOS, CLASSES, OPTIONS} >= 0;
var S2 {SCENARIOS2, CLASSES, OPTIONS} >= 0;
var S3 {SCENARIOS3, CLASSES, OPTIONS} >= 0;

var R1 {SCENARIOS, CLASSES, OPTIONS} >= 0;
var R2 {SCENARIOS2, CLASSES, OPTIONS} >= 0;
var R3 {SCENARIOS3, CLASSES, OPTIONS} >= 0;

var TransferFrom {SCENARIOS3, CLASSES} >= 0;
var TransferTo {SCENARIOS3, CLASSES} >= 0;

var NumPlanes >= 0 <= &num_planes integer;

The following CON statement declares the constraints that enforce seat capacities:

con NumPlanes_con {<i,j,k> in SCENARIOS3, class in CLASSES}:
sum {option in OPTIONS}

(S1[i,class,option] + S2[i,j,class,option] + S3[i,j,k,class,option])
+ TransferFrom[i,j,k,class] - TransferTo[i,j,k,class]

<= num_seats[class] * NumPlanes;

The following statements declare the constraints that restrict adjustment between classes:

for {<i,j,k> in SCENARIOS3, class in CLASSES} do;
TransferFrom[i,j,k,class].ub = &transfer_fraction_ub * num_seats[class];
TransferTo[i,j,k,class].ub = &transfer_fraction_ub * num_seats[class];

end;
con Balance_con {<i,j,k> in SCENARIOS3}:

sum {class in CLASSES} TransferFrom[i,j,k,class]
= sum {class in CLASSES} TransferTo[i,j,k,class];

The following CON statements declare the constraints that enforce one price level per class:

con P1_con {class in CLASSES}:
sum {option in OPTIONS} P1[class,option] = 1;

con P2_con {i in SCENARIOS, class in CLASSES}:
sum {option in OPTIONS} P2[i,class,option] = 1;

con P3_con {<i,j> in SCENARIOS2, class in CLASSES}:
sum {option in OPTIONS} P3[i,j,class,option] = 1;
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The following CON statements declare the constraints that sales cannot exceed demand:

con S1_con {i in SCENARIOS, class in CLASSES, option in OPTIONS}:
S1[i,class,option] <= demand[1,i,class,option] * P1[class,option];

con S2_con {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS}:
S2[i,j,class,option] <= demand[2,j,class,option] * P2[i,class,option];

con S3_con {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS}:
S3[i,j,k,class,option] <= demand[3,k,class,option] *

P3[i,j,class,option];

The following CON statements encode one possible linearization of the quadratic objective:

/* R1[i,class,option] =
price[1,class,option] * P1[class,option] * S1[i,class,option] */

con R1_con_a {i in SCENARIOS, class in CLASSES, option in OPTIONS}:
R1[i,class,option] <= price[1,class,option] * S1[i,class,option];

con R1_con_b {i in SCENARIOS, class in CLASSES, option in OPTIONS}:
price[1,class,option] * S1[i,class,option] - R1[i,class,option]

<= price[1,class,option] * demand[1,i,class,option] *
(1 - P1[class,option]);

/* R2[i,j,class,option] =
price[2,class,option] * P2[i,class,option] * S2[i,j,class,option] */

con R2_con_a {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS}:
R2[i,j,class,option] <= price[2,class,option] * S2[i,j,class,option];

con R2_con_b {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS}:
price[2,class,option] * S2[i,j,class,option] - R2[i,j,class,option]

<= price[2,class,option] * demand[2,j,class,option] *
(1 - P2[i,class,option]);

/* R3[i,j,k,class,option] =
price[3,class,option] * P3[i,j,class,option] * S3[i,j,k,class,option] */

con R3_con_a {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS}:
R3[i,j,k,class,option] <= price[3,class,option] * S3[i,j,k,class,option];

con R3_con_b {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS}:
price[3,class,option] * S3[i,j,k,class,option] - R3[i,j,k,class,option]

<= price[3,class,option] * demand[3,k,class,option] *
(1 - P3[i,j,class,option]);

An alternative “compact linearization” (not shown) involves fewer constraints, as in Chapter 10.

The following MAX statement declares the linearized objective, which depends on current_period:

max ExpectedYield =
(if current_period <= 1
then sum {i in SCENARIOS, class in CLASSES, option in OPTIONS}

prob[i] * R1[i,class,option])
+ (if current_period <= 2

then sum {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS}
prob[i] * prob[j] * R2[i,j,class,option])

+ (if current_period <= 3
then sum {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS}

prob[i] * prob[j] * prob[k] * R3[i,j,k,class,option])
+ sum {period in 1..current_period-1, class in CLASSES}

actual_revenue[period,class]
- &plane_cost * NumPlanes;
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The following NUM statements use the .sol variable suffix to compute the recommended prices from the
optimal values of the decision variables:

num price_sol_1 {class in CLASSES} =
sum {option in OPTIONS} price[1,class,option] * P1[class,option].sol;

num price_sol_2 {class in CLASSES, i in SCENARIOS} =
sum {option in OPTIONS} price[2,class,option] * P2[i,class,option].sol;

num price_sol_3 {class in CLASSES, <i,j> in SCENARIOS2} =
sum {option in OPTIONS} price[3,class,option] * P3[i,j,class,option].sol;

The following NUM statements use the .sol variable suffix to compute the recommended numbers of seats
to sell:

num remaining_seats {class in CLASSES} =
num_seats[class] * NumPlanes.sol

- sum {period in 1..current_period-1} actual_sales[period,class];
num sell_up_to_1 {class in CLASSES} =

min(
max {i in SCENARIOS, option in OPTIONS} S1[i,class,option].sol,
remaining_seats[class]);

num sell_up_to_2 {class in CLASSES} =
min(

max {<i,j> in SCENARIOS2, option in OPTIONS} S2[i,j,class,option].sol,
remaining_seats[class]);

num sell_up_to_3 {class in CLASSES} =
min(

max {<i,j,k> in SCENARIOS3, option in OPTIONS}
S3[i,j,k,class,option].sol, remaining_seats[class]);

The following statements call the mixed integer linear programming solver to determine the optimal prices
for period 1:

current_period = 1;
solve;
for {i in SCENARIOS, class in CLASSES, option in OPTIONS}

S1[i,class,option] = round(S1[i,class,option].sol);
print price_sol_1;
print sell_up_to_1;
print {i in SCENARIOS, class in CLASSES, option in OPTIONS:

S1[i,class,option].sol > 0} S1;
print price_sol_2;
print price_sol_3;
print NumPlanes ExpectedYield;

The following statements fix the resulting prices for period 1 and use the MIN function to limit sales based
on actual demand:

for {class in CLASSES, option in OPTIONS} do;
if P1[class,option].sol > 0.5 then do;

fix P1[class,option] = 1;
actual_price[1,class] = price_sol_1[class];
actual_sales[1,class] =

min(sell_up_to_1[class], actual_demand[1,class,option]);
for {i in SCENARIOS} fix S1[i,class,option] = actual_sales[1,class];
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end;
else fix P1[class,option] = 0;

end;
for {class in CLASSES}

actual_revenue[1,class] = actual_price[1,class] * actual_sales[1,class];
print actual_price actual_sales actual_revenue;

Figure 24.1 shows the output from the mixed integer linear programming solver for period 1.

Figure 24.1 Output from Mixed Integer Linear Programming Solver, Period 1

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function ExpectedYield

Objective Type Linear

Number of Variables 982

Bounded Above 0

Bounded Below 702

Bounded Below and Above 280

Free 0

Fixed 0

Binary 117

Integer 1

Number of Constraints 1200

Linear LE (<=) 1134

Linear EQ (=) 66

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 3708
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Figure 24.1 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function ExpectedYield

Solution Status Optimal within Relative Gap

Objective Value 169543.6366

Relative Gap 0.0000255607

Absolute Gap 4.333772273

Primal Infeasibility 2.0105357E-9

Bound Infeasibility 3.689858E-10

Integer Infeasibility 8.2453826E-6

Best Bound 169547.97037

Nodes 13

Iterations 3661

Presolve Time 0.04

Solution Time 0.24

[1] price_sol_1

Business 900

Economy 500

First 1200

[1] sell_up_to_1

Business 45

Economy 55

First 45

[1] [2] [3] S1

1 Business 1 20

1 Economy 1 45

1 First 1 10

2 Business 1 40

2 Economy 1 50

2 First 1 20

3 Business 1 45

3 Economy 1 55

3 First 1 45

price_sol_2

1 2 3

Business 1100 1100 1100

Economy 700 700 700

First 1150 1150 1300
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Figure 24.1 continued

[1] [2] [3] price_sol_3

Business 1 1 800

Business 1 2 800

Business 1 3 800

Business 2 1 800

Business 2 2 800

Business 2 3 800

Business 3 1 800

Business 3 2 800

Business 3 3 800

Economy 1 1 480

Economy 1 2 480

Economy 1 3 450

Economy 2 1 480

Economy 2 2 480

Economy 2 3 450

Economy 3 1 480

Economy 3 2 480

Economy 3 3 450

First 1 1 1500

First 1 2 1500

First 1 3 1500

First 2 1 1500

First 2 2 1500

First 2 3 1500

First 3 1 1500

First 3 2 1500

First 3 3 1500

NumPlanes ExpectedYield

3 169544

[1] [2] actual_price actual_sales actual_revenue

1 Business 900 45 40500

1 Economy 500 50 25000

1 First 1200 25 30000

The following statements drop the period 1 constraints and call the mixed integer linear programming solver
to determine the optimal prices for period 2:

drop P1_con S1_con R1_con_a R1_con_b;
current_period = 2;
solve;
for {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS}

S2[i,j,class,option] = round(S2[i,j,class,option].sol);
print price_sol_2;
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print sell_up_to_2;
print {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS:

i = 1 and S2[1,j,class,option].sol > 0} S2;
print price_sol_3;
print NumPlanes ExpectedYield;

The following statements fix the resulting prices for period 2 and use the MIN function to limit sales based
on actual demand:

for {i in SCENARIOS, class in CLASSES, option in OPTIONS} do;
if P2[i,class,option].sol > 0.5 then do;

fix P2[i,class,option] = 1;
actual_price[2,class] = price_sol_2[class,i];
actual_sales[2,class] =

min(sell_up_to_2[class], actual_demand[2,class,option]);
for {j in SCENARIOS} fix S2[i,j,class,option] = actual_sales[2,class];

end;
else fix P2[i,class,option] = 0;

end;
for {class in CLASSES}

actual_revenue[2,class] = actual_price[2,class] * actual_sales[2,class];
print actual_price actual_sales actual_revenue;

Figure 24.2 shows the output from the mixed integer linear programming solver for period 2.

Figure 24.2 Output from Mixed Integer Linear Programming Solver, Period 2

Problem Summary

Objective Sense Maximization

Objective Function ExpectedYield

Objective Type Linear

Number of Variables 982

Bounded Above 0

Bounded Below 693

Bounded Below and Above 271

Free 0

Fixed 18

Binary 117

Integer 1

Number of Constraints 1116

Linear LE (<=) 1053

Linear EQ (=) 63

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 3510
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Figure 24.2 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function ExpectedYield

Solution Status Optimal within Relative Gap

Objective Value 172968.67255

Relative Gap 1.197657E-8

Absolute Gap 0.0020715714

Primal Infeasibility 1.455192E-11

Bound Infeasibility 7.275958E-12

Integer Infeasibility 6.6448008E-6

Best Bound 172968.67462

Nodes 10

Iterations 2303

Presolve Time 0.02

Solution Time 0.10

price_sol_2

1 2 3

Business 1100 1100 1100

Economy 700 700 700

First 1150 1150 1150

[1] sell_up_to_2

Business 50

Economy 60

First 60

[1] [2] [3] [4] S2

1 1 Business 1 42

1 1 Economy 1 50

1 1 First 3 35

1 2 Business 1 50

1 2 Economy 1 60

1 2 First 3 50

1 3 Business 1 20

1 3 Economy 1 10

1 3 First 3 60
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Figure 24.2 continued

[1] [2] [3] price_sol_3

Business 1 1 800

Business 1 2 800

Business 1 3 800

Business 2 1 800

Business 2 2 800

Business 2 3 800

Business 3 1 800

Business 3 2 800

Business 3 3 800

Economy 1 1 480

Economy 1 2 480

Economy 1 3 450

Economy 2 1 480

Economy 2 2 480

Economy 2 3 450

Economy 3 1 480

Economy 3 2 480

Economy 3 3 450

First 1 1 1500

First 1 2 1500

First 1 3 1500

First 2 1 1500

First 2 2 1500

First 2 3 1500

First 3 1 1500

First 3 2 1500

First 3 3 1500

NumPlanes ExpectedYield

3 172969

[1] [2] actual_price actual_sales actual_revenue

1 Business 900 45 40500

1 Economy 500 50 25000

1 First 1200 25 30000

2 Business 1100 45 49500

2 Economy 700 50 35000

2 First 1150 50 57500
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The following statements drop the period 2 constraints and call the mixed integer linear programming solver
to determine the optimal prices for period 3:

current_period = 3;
drop P2_con S2_con R2_con_a R2_con_b;
solve;

for {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS}
S3[i,j,k,class,option] = round(S3[i,j,k,class,option].sol);

print price_sol_3;
print sell_up_to_3;
print {<i,j,k> in SCENARIOS3, class in CLASSES, option in OPTIONS:

<i,j> in {<1,1>} and S3[i,j,k,class,option].sol > 0} S3;
print NumPlanes ExpectedYield;

The following statements fix the resulting prices for period 3 and use the MIN function to limit sales based
on actual demand:

for {<i,j> in SCENARIOS2, class in CLASSES, option in OPTIONS} do;
if P3[i,j,class,option].sol > 0.5 then do;

fix P3[i,j,class,option] = 1;
actual_price[3,class] = price_sol_3[class,i,j];
actual_sales[3,class] =

min(sell_up_to_3[class], actual_demand[3,class,option]);
for {k in SCENARIOS} fix S3[i,j,k,class,option]

= actual_sales[3,class];
end;
else fix P3[i,j,class,option] = 0;

end;

for {class in CLASSES}
actual_revenue[3,class] = actual_price[3,class] * actual_sales[3,class];

print actual_price actual_sales actual_revenue;
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Figure 24.3 shows the output from the mixed integer linear programming solver for period 3.

Figure 24.3 Output from Mixed Integer Linear Programming Solver, Period 3

Problem Summary

Objective Sense Maximization

Objective Function ExpectedYield

Objective Type Linear

Number of Variables 982

Bounded Above 0

Bounded Below 666

Bounded Below and Above 244

Free 0

Fixed 72

Binary 117

Integer 1

Number of Constraints 864

Linear LE (<=) 810

Linear EQ (=) 54

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 2916

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function ExpectedYield

Solution Status Optimal

Objective Value 176392.4

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.219512E-8

Bound Infeasibility 7.579965E-11

Integer Infeasibility 4.662937E-15

Best Bound 176392.4

Nodes 1

Iterations 789

Presolve Time 0.02

Solution Time 0.06
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Figure 24.3 continued

[1] [2] [3] price_sol_3

Business 1 1 800

Business 1 2 800

Business 1 3 800

Business 2 1 800

Business 2 2 800

Business 2 3 800

Business 3 1 800

Business 3 2 800

Business 3 3 800

Economy 1 1 480

Economy 1 2 480

Economy 1 3 480

Economy 2 1 480

Economy 2 2 480

Economy 2 3 480

Economy 3 1 480

Economy 3 2 480

Economy 3 3 480

First 1 1 1500

First 1 2 1500

First 1 3 1500

First 2 1 1500

First 2 2 1500

First 2 3 1500

First 3 1 1500

First 3 2 1500

First 3 3 1500

[1] sell_up_to_3

Business 24

Economy 41

First 36

[1] [2] [3] [4] [5] S3

1 1 1 Business 2 28

1 1 1 Economy 1 41

1 1 1 First 1 30

1 1 2 Business 2 28

1 1 2 Economy 1 41

1 1 2 First 1 30

1 1 3 Business 2 25

1 1 3 Economy 1 36

1 1 3 First 1 40

NumPlanes ExpectedYield

3 176392
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Figure 24.3 continued

[1] [2] actual_price actual_sales actual_revenue

1 Business 900 45 40500

1 Economy 500 50 25000

1 First 1200 25 30000

2 Business 1100 45 49500

2 Economy 700 50 35000

2 First 1150 50 57500

3 Business 800 24 19200

3 Economy 480 41 19680

3 First 1500 36 54000

The following statements print the expected yield that results from the optimal prices, with sales limited by
actual demands:

current_period = 4;
print ExpectedYield;

quit;

Figure 24.4 shows the final expected yield.

Figure 24.4 Final Expected Yield

ExpectedYield

180380

Maximizing yield based on expected demands is much simpler than the stochastic programming approach
and requires only one solver call. The first several PROC OPTMODEL statements are the same as before:

proc optmodel;
set PERIODS = 1..&num_periods;

set <str> CLASSES;
num num_seats {CLASSES};
read data class_data into CLASSES=[class] num_seats;

set OPTIONS = 1..&num_options;

num price {PERIODS, CLASSES, OPTIONS};
read data price_data into [period class]

{option in OPTIONS} <price[period,class,option]=col('price'||option)>;

set SCENARIOS;
num prob {SCENARIOS};
read data scenario_data into SCENARIOS=[_N_] prob;

num demand {PERIODS, SCENARIOS, CLASSES, OPTIONS};
read data demand_data into [period scenario class]

{option in OPTIONS}
<demand[period,scenario,class,option]=col('demand'||option)>;
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num actual_demand {PERIODS, CLASSES, OPTIONS};
read data actual_demand_data into [period class]

{option in OPTIONS}
<actual_demand[period,class,option]=col('demand'||option)>;

num actual_price {PERIODS, CLASSES};
num actual_sales {PERIODS, CLASSES};
num actual_revenue {PERIODS, CLASSES};

The following NUM statement declares the expected_demand parameter as a weighted sum of demand:

num expected_demand {period in PERIODS, class in CLASSES, option in OPTIONS}
= sum {scenario in SCENARIOS}

prob[scenario] * demand[period,scenario,class,option];

Note that the variables, constraints, and parameters are unified and simplified into fewer families than before:

var P {PERIODS, CLASSES, OPTIONS} binary;
var S {PERIODS, CLASSES, OPTIONS} >= 0;
var R {PERIODS, CLASSES, OPTIONS} >= 0;

var TransferFrom {CLASSES} >= 0;
var TransferTo {CLASSES} >= 0;

var NumPlanes >= 0 <= &num_planes integer;

con NumPlanes_con {class in CLASSES}:
sum {period in PERIODS, option in OPTIONS} S[period,class,option]

+ TransferFrom[class] - TransferTo[class]
<= num_seats[class] * NumPlanes;

for {class in CLASSES} do;
TransferFrom[class].ub = &transfer_fraction_ub * num_seats[class];
TransferTo[class].ub = &transfer_fraction_ub * num_seats[class];

end;
con Balance_con:

sum {class in CLASSES} TransferFrom[class]
= sum {class in CLASSES} TransferTo[class];

con P_con {period in PERIODS, class in CLASSES}:
sum {option in OPTIONS} P[period,class,option] = 1;

con S_con {period in PERIODS, class in CLASSES, option in OPTIONS}:
S[period,class,option]

<= expected_demand[period,class,option] * P[period,class,option];

/* R[period,class,option] =
price[period,class,option] * P[period,class,option] *

S[period,class,option] */
con R_con_a {period in PERIODS, class in CLASSES, option in OPTIONS}:

R[period,class,option] <= price[period,class,option] *
S[period,class,option];

con R_con_b {period in PERIODS, class in CLASSES, option in OPTIONS}:
price[period,class,option] * S[period,class,option] -

R[period,class,option]
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<= price[period,class,option] * expected_demand[period,class,option]

* (1 - P[period,class,option]);

max Yield =
sum {period in PERIODS, class in CLASSES, option in OPTIONS}

R[period,class,option]
- &plane_cost * NumPlanes;

num price_sol {period in PERIODS, class in CLASSES} =
sum {option in OPTIONS} price[period,class,option] *

P[period,class,option].sol;

solve;
for {period in PERIODS, class in CLASSES, option in OPTIONS}

S[period,class,option] = round(S[period,class,option].sol);
print price_sol;
print {period in PERIODS, class in CLASSES, option in OPTIONS:

S[period,class,option].sol > 0} S;
print NumPlanes Yield;
for {period in PERIODS, class in CLASSES, option in OPTIONS} do;

if P[period,class,option].sol > 0.5 then do;
actual_price[period,class] = price_sol[period,class];
actual_sales[period,class] =

min(S[period,class,option], actual_demand[period,class,option]);
actual_revenue[period,class] =

actual_price[period,class] * actual_sales[period,class];
R[period,class,option] = actual_revenue[period,class];

end;
end;
print actual_price actual_sales actual_revenue;
print Yield;
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Figure 24.5 shows the output from the mixed integer linear programming solver for the problem based on
expected demands.

Figure 24.5 Output from Mixed Integer Linear Programming Solver, Based on Expected Demands

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function Yield

Objective Type Linear

Number of Variables 88

Bounded Above 0

Bounded Below 54

Bounded Below and Above 34

Free 0

Fixed 0

Binary 27

Integer 1

Number of Constraints 94

Linear LE (<=) 84

Linear EQ (=) 10

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 258

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Yield

Solution Status Optimal

Objective Value 180309

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 4.440892E-16

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 180309

Nodes 1

Iterations 259

Presolve Time 0.01

Solution Time 0.04
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Figure 24.5 continued

price_sol

Business Economy First

1 900 500 1200

2 1100 700 1150

3 800 480 1500

[1] [2] [3] S

1 Business 1 39

1 Economy 1 51

1 First 1 24

2 Business 1 43

2 Economy 1 49

2 First 3 55

3 Business 2 35

3 Economy 1 37

3 First 1 34

NumPlanes Yield

3 180309

[1] [2] actual_price actual_sales actual_revenue

1 Business 900 39 35100

1 Economy 500 50 25000

1 First 1200 24 28800

2 Business 1100 43 47300

2 Economy 700 49 34300

2 First 1150 50 57500

3 Business 800 35 28000

3 Economy 480 37 17760

3 First 1500 34 51000

Yield

174760

As anticipated, the yield is smaller than in Figure 24.4 because there is no opportunity here to change prices
based on actual demand from previous periods.
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The following statements show the modifications to maximize yield based on actual demands:

drop S_con R_con_b;

con S_con_actual {period in PERIODS, class in CLASSES, option in OPTIONS}:
S[period,class,option]

<= actual_demand[period,class,option] * P[period,class,option];

con R_con_b_actual {period in PERIODS, class in CLASSES, option in OPTIONS}:
price[period,class,option] * S[period,class,option] -

R[period,class,option]
<= price[period,class,option] * actual_demand[period,class,option]

* (1 - P[period,class,option]);

solve;
for {period in PERIODS, class in CLASSES, option in OPTIONS}

S[period,class,option] = round(S[period,class,option].sol);
print price_sol;
print {period in PERIODS, class in CLASSES, option in OPTIONS:

S[period,class,option].sol > 0} S;
print NumPlanes Yield;

Since actual demand is considered directly in this formulation, the postprocessing steps do not need to reduce
sales to actual demand:

for {period in PERIODS, class in CLASSES, option in OPTIONS} do;
if P[period,class,option].sol > 0.5 then do;

actual_price[period,class] = price_sol[period,class];
actual_sales[period,class] = S[period,class,option];
actual_revenue[period,class] =

actual_price[period,class] * actual_sales[period,class];
R[period,class,option] = actual_revenue[period,class];

end;
end;
print actual_price actual_sales actual_revenue;

quit;
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Figure 24.6 shows the output from the mixed integer linear programming solver for the problem based on
actual demands.

Figure 24.6 Output from Mixed Integer Linear Programming Solver, Based on Actual Demands

Problem Summary

Objective Sense Maximization

Objective Function Yield

Objective Type Linear

Number of Variables 88

Bounded Above 0

Bounded Below 54

Bounded Below and Above 34

Free 0

Fixed 0

Binary 27

Integer 1

Number of Constraints 94

Linear LE (<=) 84

Linear EQ (=) 10

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 258

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Yield

Solution Status Optimal

Objective Value 193964

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 4.440892E-16

Bound Infeasibility 4.850638E-12

Integer Infeasibility 0

Best Bound 193964

Nodes 3

Iterations 823

Presolve Time 0.01

Solution Time 0.05
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Figure 24.6 continued

price_sol

Business Economy First

1 900 500 1200

2 1100 700 1300

3 820 480 1500

[1] [2] [3] S

1 Business 1 50

1 Economy 1 50

1 First 1 25

2 Business 1 45

2 Economy 1 50

2 First 2 45

3 Business 1 20

3 Economy 1 36

3 First 1 45

NumPlanes Yield

3 193964

[1] [2] actual_price actual_sales actual_revenue

1 Business 900 50 45000

1 Economy 500 50 25000

1 First 1200 25 30000

2 Business 1100 45 49500

2 Economy 700 50 35000

2 First 1300 45 58500

3 Business 820 20 16400

3 Economy 480 36 17280

3 First 1500 45 67500

As anticipated, the yield is highest here because optimal prices and sales are determined with perfect
knowledge of demand.

The stochastic programming formulation shown earlier represents a natural compromise between the deter-
ministic formulations based on expected demand or actual demand.
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (stochastic programming with recourse)

� numeric and string index sets

� multiple input data sets

� CROSS set operator

� sets of tuples

� .ub variable suffix

� linearization of product of continuous variable and binary variable

� compact linearization

� IF-THEN expression

� using a variable suffix (such as .sol) in the declaration of a numeric parameter

� MAX aggregation operator

� ROUND function

� IF-THEN statement

� using a colon (:) to select members of a set

� FIX statement

� MIN function

� DROP statement

� multiple SOLVE statements
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Problem Statement
A small (‘cut price’) car rental company, renting one type of car, has depots in Glasgow, Manchester,
Birmingham and Plymouth.1 There is an estimated demand for each day of the week except Sunday when
the company is closed. These estimates are given in Table 25.1. It is not necessary to meet all demand.

Table 25.1

Glasgow Manchester Birmingham Plymouth

Monday 100 250 95 160
Tuesday 150 143 195 99
Wednesday 135 80 242 55
Thursday 83 225 111 96
Friday 120 210 70 115
Saturday 230 98 124 80

Cars can be rented for one, two or three days and returned to either the depot from which rented or another
depot at the start of the next morning. For example, a 2-day rental on Thursday means that the car has to be
returned on Saturday morning; a 3-day rental on Friday means that the car has to be returned on Tuesday
morning. A 1-day rental on Saturday means that the car has to be returned on Monday morning and a 2-day
rental on Tuesday morning.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 2013, pp. 284–286).
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Table 25.2

From To
Glasgow Manchester Birmingham Plymouth

Glasgow 60 20 10 10
Manchester 15 55 25 5
Birmingham 15 20 54 11
Plymouth 8 12 27 53

Table 25.3

From To
Glasgow Manchester Birmingham Plymouth

Glasgow — 20 30 50
Manchester 20 — 15 35
Birmingham 30 15 — 25
Plymouth 50 35 25 —

The rental period is independent of the origin and destination. From past data, the company knows the
distribution of rental periods: 55% of cars are hired for one day, 20% for two days and 25% for three days.
The current estimates of percentages of cars hired from each depot and returned to a given depot (independent
of day) are given in Table 25.2.

The marginal cost, to the company, of renting out a car (‘wear and tear’, administration etc.) is estimated as
follows:

1-Day hire £20
2-Day hire £25
3-Day hire £30

The ‘opportunity cost’ (interest on capital, storage, servicing, etc.) of owning a car is £15 per week.

It is possible to transfer undamaged cars from one depot to another depot, irrespective of distance. Cars
cannot be rented out during the day in which they are transferred. The costs (£), per car, of transfer are given
in Table 25.3.

Ten percent of cars returned by customers are damaged. When this happens, the customer is charged an
excess of £100 (irrespective of the amount of damage that the company completely covers by its insurance).
In addition, the car has to be transferred to a repair depot, where it will be repaired the following day. The
cost of transferring a damaged car is the same as transferring an undamaged one (except when the repair
depot is the current depot, when it is zero). Again the transfer of a damaged car takes a day, unless it is
already at a repair depot. Having arrived at a repair depot, all types of repair (or replacement) take a day.

Only two of the depots have repair capacity. These are (cars/day) as follows:

Manchester 12
Birmingham 20
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Having been repaired, the car is available for rental at the depot the next day or may be transferred to another
depot (taking a day). Thus, a car that is returned damaged on a Wednesday morning is transferred to a repair
depot (if not the current depot) during Wednesday, repaired on Thursday and is available for hire at the repair
depot on Friday morning.

The rental price depends on the number of days for which the car is hired and whether it is returned to the
same depot or not. The prices are given in Table 25.4 (in £).

Table 25.4

Return to Return to
Same Depot Another Depot

1-Day hire 50 70
2-Day hire 70 100
3-Day hire 120 150

There is a discount of £20 for hiring on a Saturday so long as the car is returned on Monday morning. This is
regarded as a 1-day hire.

For simplicity, we assume the following at the beginning of each day:

(1) Customers return cars that are due that day

(2) Damaged cars are sent to the repair depot

(3) Cars that were transferred from other depots arrive

(4) Transfers are sent out

(5) Cars are rented out

(6) If it is a repair depot, then the repaired cars are available for rental.

In order to maximise weekly profit, the company wants a ‘steady state’ solution in which the same expected
number will be located at the same depot on the same day of subsequent weeks.

How many cars should the company own and where should they be located at the start of each day?

This is a case where the integrality of the cars is not worth modelling. Rounded fractional solutions are
acceptable.
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Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� depot; i; j 2 DEPOTS

� day 2 DAYS D f0; : : : ; num_days � 1g

� length 2 LENGTHS: lengths of rental period in days

Parameters
Table 25.5 shows the parameters that are used in this example.

Table 25.5 Parameters

Parameter Name Interpretation

day_name[day] Name of day
num_days Number of days in periodic planning horizon
demand[depot,day] Estimated number of cars demanded per depot per day
length_prob[length] Probability of each rental length
cost[length] Marginal cost (in pounds) to company for each rental length
price_same[length] Rental price (in pounds) if the car is returned to the same depot
price_diff[length] Rental price (in pounds) if the car is returned to a different depot
transition_prob[i,j] Transition probability from depot i to depot j
transfer_cost[i,j] Cost (in pounds) to transfer a car from depot i to depot j
repair_capacity[depot] Upper bound on number of cars per day repaired at each depot
opportunity_cost_per_week Opportunity cost (in pounds) per week of owning a car
transfer_length Number of days required to transfer a car from depot to another
repair_length Number of days required to repair a car
damage_prob Probability that a car is returned damaged
damage_charge Charge (in pounds) to customer for returning a car damaged
saturday_discount Discount (in pounds) for hiring on Saturday and returning on Monday
rental_price[i,j,day,length] Price (in pounds) to rent a car at depot i and return to depot j for each starting

day and length
max_length max

length2LENGTHS
length
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Variables
Table 25.6 shows the variables that are used in this example.

Table 25.6 Variables

Variable Name Interpretation

NumCars Number of cars owned by the company
NumUndamagedCarsStart[depot,day] Number of undamaged cars at each depot at the beginning of each day
NumDamagedCarsStart[depot,day] Number of damaged cars at each depot at the beginning of each day
NumCarsRented_i_day[i,day] Number of cars rented at depot i on each day
NumCarsRented[i,j,day,length] Number of cars rented at depot i and returned to depot j for each starting

day and length
NumUndamagedCarsIdle[depot,day] Number of undamaged cars idle at each depot at the beginning of each

day
NumDamagedCarsIdle[depot,day] Number of damaged cars idle at each depot at the beginning of each day
NumCarsTransferred[i,j,day] Number of cars transferred from depot i to depot j each day
NumUndamagedCarsTransferred[i,j,day] Number of undamaged cars transferred from depot i to depot j each day
NumDamagedCarsTransferred[i,j,day] Number of damaged cars transferred from depot i to depot j each day
NumDamagedCarsRepaired[i,day] Number of damaged cars repaired at depot i each day

Objective
The objective is to maximize the following function:

Profit D
X

i2DEPOTS;
j2DEPOTS;
day2DAYS;

length2LENGTHS

.rental_price[i,j,day,length] � cost[length]/ � NumCarsRented[i,j,day,length]

C

X
i2DEPOTS;
day2DAYS

damage_prob � damage_charge � NumCarsRented_i_day[i,day]

�

X
i2DEPOTS;

j2DEPOTSnfig;
day2DAYS

transfer_cost[i,j] � NumCarsTransferred[i,j,day]

� opportunity_cost_per_week � NumCars
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Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 DEPOTS and j 2 DEPOTS and day 2 DAYS and length 2 LENGTHS,

NumCarsRented[i,j,day,length] D transition_prob[i,j]�length_prob[length]�NumCarsRented_i_day[i,day]

� for i 2 DEPOTS and j 2 DEPOTS n fig and day 2 DAYS,

NumCarsTransferred[i,j,day] D NumUndamagedCarsTransferred[i,j,day]CNumDamagedCarsTransferred[i,j,day]

� for i 2 DEPOTS and day 2 DAYS,

NumUndamagedCarsStart[i,day]

D .1 � damage_prob/ �
X

j2DEPOTS;
length2LENGTHS

NumCarsRented[j,i,day-length,length]

C

X
j2DEPOTSnfig

NumUndamagedCarsTransferred[j,i,day-transfer_length]

C NumDamagedCarsRepaired[i,day-repair_length]

C NumUndamagedCarsIdle[i,day-1]

� for i 2 DEPOTS and day 2 DAYS,

NumDamagedCarsStart[i,day]

D damage_prob �
X

j2DEPOTS;
length2LENGTHS

NumCarsRented[j,i,day-length,length]

C

X
j2DEPOTSnfig

NumDamagedCarsTransferred[j,i,day-transfer_length]

C NumDamagedCarsIdle[i,day-1]

� for i 2 DEPOTS and day 2 DAYS,

NumUndamagedCarsStart[i,day]

D NumCarsRented_i_day[i,day]

C

X
j2DEPOTSnfig

NumUndamagedCarsTransferred[i,j,day]

C NumUndamagedCarsIdle[i,day]
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� for i 2 DEPOTS and day 2 DAYS,

NumDamagedCarsStart[i,day]

D NumDamagedCarsRepaired[i,day]

C

X
j2DEPOTSnfig

NumDamagedCarsTransferred[i,j,day]

C NumDamagedCarsIdle[i,day]

� NumCars D
X

i2DEPOTS

�
length_prob[3] � NumCarsRented_i_day[i,0]

C

3X
lengthD2

length_prob[length] � NumCarsRented_i_day[i,1]

C NumUndamagedCarsStart[i,2]C NumDamagedCarsStart[i,2]
�

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data depot_data;
input depot $10.;
datalines;

Glasgow
Manchester
Birmingham
Plymouth
;

data demand_data;
input day $10. Glasgow Manchester Birmingham Plymouth;
datalines;

Monday 100 250 95 160
Tuesday 150 143 195 99
Wednesday 135 80 242 55
Thursday 83 225 111 96
Friday 120 210 70 115
Saturday 230 98 124 80
;

data length_data;
input length prob cost price_same price_diff;
datalines;

1 0.55 20 50 70
2 0.20 25 70 100
3 0.25 30 120 150
;
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data transition_prob_data;
input i $10. Glasgow Manchester Birmingham Plymouth;
datalines;

Glasgow 60 20 10 10
Manchester 15 55 25 5
Birmingham 15 20 54 11
Plymouth 8 12 27 53
;

data transfer_cost_data;
input i $10. Glasgow Manchester Birmingham Plymouth;
datalines;

Glasgow . 20 30 50
Manchester 20 . 15 35
Birmingham 30 15 . 25
Plymouth 50 35 25 .
;

data repair_data;
input depot $10. repair_capacity;
datalines;

Manchester 12
Birmingham 20
;

%let opportunity_cost_per_week = 15;
%let transfer_length = 1;
%let repair_length = 1;
%let damage_prob = 0.10;
%let damage_charge = 100;
%let saturday_discount = 20;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters, read the input data, and
calculate additional parameters:

proc optmodel;
set <str> DEPOTS;
read data depot_data into DEPOTS=[depot];

set DAYS;
str day_name {DAYS};
num demand {DEPOTS, DAYS};
read data demand_data into DAYS=[_N_];
num num_days = card(DAYS);
DAYS = 0..num_days-1;
read data demand_data into [_N_]

{depot in DEPOTS} <demand[depot,_N_-1]=col(depot)>;

set LENGTHS;
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num length_prob {LENGTHS};
num cost {LENGTHS};
num price_same {LENGTHS};
num price_diff {LENGTHS};
read data length_data into LENGTHS=[length]

length_prob=prob cost price_same price_diff;

num transition_prob {DEPOTS, DEPOTS};
read data transition_prob_data into [i]

{j in DEPOTS} <transition_prob[i,j]=col(j)>;
for {i in DEPOTS, j in DEPOTS}

transition_prob[i,j] = transition_prob[i,j] / 100;

num transfer_cost {DEPOTS, DEPOTS} init 0;
read data transfer_cost_data nomiss into [i]

{j in DEPOTS} <transfer_cost[i,j]=col(j)>;

num repair_capacity {DEPOTS} init 0;
read data repair_data into [depot] repair_capacity;

num rental_price {i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS} =
(if i = j then price_same[length] else price_diff[length])

- (if day = 5 and length = 1 then &saturday_discount);

Because the company wants a periodic solution, all indices that correspond to days are taken modulo
num_days. For simplicity, this notation is suppressed in the mathematical programming formulation that is
described earlier. The following statements declare parameters to be used for that purpose in the subsequent
constraint declarations:

num max_length = max {length in LENGTHS} length;
num mod {s in -max_length..num_days+max_length} = mod(s+num_days,num_days);

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

var NumCars >= 0;

var NumUndamagedCarsStart {DEPOTS, DAYS} >= 0;
var NumDamagedCarsStart {DEPOTS, DAYS} >= 0;

var NumCarsRented_i_day {i in DEPOTS, day in DAYS} >= 0 <= demand[i,day];
impvar NumCarsRented

{i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS} =
transition_prob[i,j] * length_prob[length] * NumCarsRented_i_day[i,day];

var NumUndamagedCarsIdle {DEPOTS, DAYS} >= 0;
var NumDamagedCarsIdle {DEPOTS, DAYS} >= 0;

var NumUndamagedCarsTransferred {i in DEPOTS, DEPOTS diff {i}, DAYS} >= 0;
var NumDamagedCarsTransferred {i in DEPOTS, DEPOTS diff {i}, DAYS} >= 0;
impvar NumCarsTransferred {i in DEPOTS, j in DEPOTS diff {i}, day in DAYS} =

NumUndamagedCarsTransferred[i,j,day]
+ NumDamagedCarsTransferred[i,j,day];
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var NumDamagedCarsRepaired {i in DEPOTS, DAYS} >= 0 <= repair_capacity[i];

max Profit =
sum {i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS}

(rental_price[i,j,day,length] - cost[length])

* NumCarsRented[i,j,day,length]
+ sum {i in DEPOTS, day in DAYS}

&damage_prob * &damage_charge * NumCarsRented_i_day[i,day]
- sum {i in DEPOTS, j in DEPOTS diff {i}, day in DAYS}

transfer_cost[i,j] * NumCarsTransferred[i,j,day]
- &opportunity_cost_per_week * NumCars;

con Undamaged_Inflow_con {i in DEPOTS, day in DAYS}:
NumUndamagedCarsStart[i,day]

= (1 - &damage_prob) * sum {j in DEPOTS, length in LENGTHS}
NumCarsRented[j,i,mod[day-length],length]

+ sum {j in DEPOTS diff {i}}
NumUndamagedCarsTransferred[j,i,mod[day-&transfer_length]]

+ NumDamagedCarsRepaired[i,mod[day-&repair_length]]
+ NumUndamagedCarsIdle[i,mod[day-1]];

con Damaged_Inflow_con {i in DEPOTS, day in DAYS}:
NumDamagedCarsStart[i,day]

= &damage_prob * sum {j in DEPOTS, length in LENGTHS}
NumCarsRented[j,i,mod[day-length],length]

+ sum {j in DEPOTS diff {i}}
NumDamagedCarsTransferred[j,i,mod[day-&transfer_length]]

+ NumDamagedCarsIdle[i,mod[day-1]];

con Undamaged_Outflow_con {i in DEPOTS, day in DAYS}:
NumUndamagedCarsStart[i,day]

= NumCarsRented_i_day[i,day]
+ sum {j in DEPOTS diff {i}} NumUndamagedCarsTransferred[i,j,day]
+ NumUndamagedCarsIdle[i,day];

con Damaged_Outflow_con {i in DEPOTS, day in DAYS}:
NumDamagedCarsStart[i,day]

= NumDamagedCarsRepaired[i,day]
+ sum {j in DEPOTS diff {i}} NumDamagedCarsTransferred[i,j,day]
+ NumDamagedCarsIdle[i,day];

con NumCars_con:
NumCars = sum {i in DEPOTS} (

length_prob[3] * NumCarsRented_i_day[i,0]
+ sum {length in 2..3} length_prob[length] * NumCarsRented_i_day[i,1]
+ NumUndamagedCarsStart[i,2]
+ NumDamagedCarsStart[i,2]);

The NumCars_con constraint expresses the fact that every car is rented on Monday for three days, rented on
Tuesday for two or three days, or at some depot at the beginning of Wednesday.
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The following statements call the LP solver and use the generic problem symbols _NVAR_ and _VAR_ to
round all variables to integer values, as in Williams (2013):

solve;
for {j in 1.._NVAR_} _VAR_[j] = round(_VAR_[j].sol);

The following statements print the solution and use the .dual variable suffix to print the shadow prices for
repair capacity:

print NumCars;
print NumUndamagedCarsStart;
print NumDamagedCarsStart;
print NumCarsRented_i_day;
print {i in DEPOTS, j in DEPOTS diff {i}, day in DAYS:

NumDamagedCarsTransferred[i,j,day].sol > 0} NumDamagedCarsTransferred;
print NumDamagedCarsRepaired.dual;

quit;

Figure 25.1 shows the output from the linear programming solver.

Figure 25.1 Output from Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function Profit

Objective Type Linear

Number of Variables 289

Bounded Above 0

Bounded Below 241

Bounded Below and Above 36

Free 0

Fixed 12

Number of Constraints 97

Linear LE (<=) 0

Linear EQ (=) 97

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 1145
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Figure 25.1 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function Profit

Solution Status Optimal

Objective Value 119302.04331

Primal Infeasibility 2.415845E-13

Dual Infeasibility 4.547474E-13

Bound Infeasibility 0

Iterations 81

Presolve Time 0.00

Solution Time 0.01

NumCars

681

NumUndamagedCarsStart

0 1 2 3 4 5

Birmingham 183 195 126 127 145 182

Glasgow 111 82 70 79 79 71

Manchester 163 104 99 126 110 100

Plymouth 67 44 42 48 47 43

NumDamagedCarsStart

0 1 2 3 4 5

Birmingham 25 20 20 20 20 25

Glasgow 4 8 10 9 9 14

Manchester 12 12 12 12 12 12

Plymouth 3 5 5 10 16 5

NumCarsRented_i_day

0 1 2 3 4 5

Birmingham 95 195 126 111 70 81

Glasgow 100 82 70 79 79 0

Manchester 163 104 80 126 110 0

Plymouth 67 44 42 48 47 0
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Figure 25.1 continued

[1] [2] [3] NumDamagedCarsTransferred

Glasgow Birmingham 0 3

Glasgow Birmingham 1 4

Glasgow Birmingham 2 8

Glasgow Birmingham 3 8

Glasgow Birmingham 5 8

Glasgow Manchester 0 2

Glasgow Manchester 1 2

Glasgow Manchester 2 1

Glasgow Manchester 3 1

Glasgow Manchester 4 2

Glasgow Manchester 5 6

Plymouth Birmingham 0 3

Plymouth Birmingham 1 5

Plymouth Birmingham 4 16

Plymouth Birmingham 5 5

NumDamagedCarsRepaired.DUAL

0 1 2 3 4 5

Birmingham 591.46 590.99 591.46 591.46 591.46 591.46

Glasgow 625.49 637.39 635.16 632.06 625.49 625.49

Manchester 607.36 602.62 617.62 615.27 610.84 610.84

Plymouth 622.55 634.02 632.50 630.10 625.55 625.55

The optimal solution, objective value, and shadow prices differ from Williams (2013), because of errors that
will be corrected in a subsequent printing by Wiley.

Features Demonstrated
The following features are demonstrated in this example:

� problem type: linear programming (generalized network flow, periodic inventory optimization)

� numeric and string index sets

� INIT option

� NOMISS option

� IMPVAR statement

� reading multiple data sets

� reading dense two-dimensional data

� set operator DIFF
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� IF-THEN/ELSE expression

� MOD function

� CARD function

� generic problem symbols _NVAR_ and _VAR_

� printing sparse multi-dimensional data

� .dual variable suffix
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Problem Statement
In the light of the solution to the problem stated in Chapter 25, the company wants to consider where it
might be most worthwhile to expand repair capacity.1 The weekly fixed costs, given below, include interest
payments on the necessary loans for expansion.

The options are as follows:

(1) Expand repair capacity at Birmingham by 5 cars per day at a fixed cost per week of £18,000.

(2) Further expand repair capacity at Birmingham by 5 cars per day at a fixed cost per week of £8000.

(3) Expand repair capacity at Manchester by 5 cars per day at a fixed cost per week of £20,000.

(4) Further expand repair capacity at Manchester by 5 cars per day at a fixed cost per week of £5000.

(5) Create repair capacity at Plymouth of 5 cars per day at a fixed cost per week of £19,000.

If any of these options is chosen, it must be carried out in its entirety, that is, there can be no partial expansion.
Also, a further expansion at a depot can be carried out only if the first expansion is also carried out, so
for example option (2) at Birmingham cannot be chosen unless option (1) is also chosen. If option (2) is
chosen, thereby also choosing option (1), these count as two options. Similar stipulations apply regarding the
expansions at Manchester. At most three of the options can be carried out.

Mathematical Programming Formulation
This formulation builds on the formulation used in Chapter 25. This section includes only the new elements
of the formulation.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 2013, p. 287).
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Index Sets and Their Members
The following additional index set and its members are used in this example:

� expansion 2 EXPANSIONS

Parameters
Table 26.1 shows the additional parameters that are used in this example.

Table 26.1 Parameters

Parameter Name Interpretation

expansion_depot[expansion] Depot for expansion
expansion_amount[expansion] Additional number of cars per day provided by expansion
expansion_cost[expansion] Cost (in pounds) per week for expansion
expansion_prerequisite[expansion] Other expansion required by this expansion (missing value if none)
max_num_expansions Number of expansions allowed

Variables
Table 26.2 shows the additional variables that are used in this example.

Table 26.2 Variables

Variable Name Interpretation

ExpandCapacity[expansion] 1 if capacity expansion is carried out; 0 otherwise

Objective
The objective is to maximize the following function:

Profit2 D Profit �
X

expansion2EXPANSIONS

expansion_cost[expansion] � ExpandCapacity[expansion]

where Profit is defined in Chapter 25.
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Constraints
The following additional constraints are used in this example:

� for i 2 DEPOTS and day 2 DAYS,

NumDamagedCarsRepaired[i,day] �
�

repair_capacity[i]

C

X
expansion2EXPANSIONSW

expansion_depot[expansion]Di

expansion_amount[expansion] � ExpandCapacity[expansion]
�

� for expansion 2 EXPANSIONS such that expansion_prerequisite[expansion] is not missing,

ExpandCapacity[expansion] � ExpandCapacity[expansion_prerequisite[expansion]]

�

X
expansion2EXPANSIONS

ExpandCapacity[expansion] � max_num_expansions

Input Data
The following data set and macro variable contain the additional input data that are used in this example:

/* missing expansion_prerequisite indicates no prerequisite */
data expansion_data;

input expansion expansion_depot $10. expansion_amount expansion_cost
expansion_prerequisite;

datalines;
1 Birmingham 5 18000 .
2 Birmingham 5 8000 1
3 Manchester 5 20000 .
4 Manchester 5 5000 3
5 Plymouth 5 19000 .
;

%let max_num_expansions = 3;
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PROC OPTMODEL Statements and Output
For completeness, all statements are shown. Statements that are new or changed from Chapter 25 are
indicated.

proc optmodel;
set <str> DEPOTS;
read data depot_data into DEPOTS=[depot];

set DAYS;
str day_name {DAYS};
num demand {DEPOTS, DAYS};
read data demand_data into DAYS=[_N_];
num num_days = card(DAYS);
DAYS = 0..num_days-1;
read data demand_data into [_N_]

{depot in DEPOTS} <demand[depot,_N_-1]=col(depot)>;

set LENGTHS;
num length_prob {LENGTHS};
num cost {LENGTHS};
num price_same {LENGTHS};
num price_diff {LENGTHS};
read data length_data into LENGTHS=[length]

length_prob=prob cost price_same price_diff;

num transition_prob {DEPOTS, DEPOTS};
read data transition_prob_data into [i]

{j in DEPOTS} <transition_prob[i,j]=col(j)>;
for {i in DEPOTS, j in DEPOTS}

transition_prob[i,j] = transition_prob[i,j] / 100;

num transfer_cost {DEPOTS, DEPOTS} init 0;
read data transfer_cost_data nomiss into [i]

{j in DEPOTS} <transfer_cost[i,j]=col(j)>;

num repair_capacity {DEPOTS} init 0;
read data repair_data into [depot] repair_capacity;

num rental_price {i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS} =
(if i = j then price_same[length] else price_diff[length])

- (if day = 5 and length = 1 then &saturday_discount);

num max_length = max {length in LENGTHS} length;
num mod {s in -max_length..num_days+max_length} = mod(s+num_days,num_days);

var NumCars >= 0;

var NumUndamagedCarsStart {DEPOTS, DAYS} >= 0;
var NumDamagedCarsStart {DEPOTS, DAYS} >= 0;

var NumCarsRented_i_day {i in DEPOTS, day in DAYS} >= 0 <= demand[i,day];
impvar NumCarsRented
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{i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS} =
transition_prob[i,j] * length_prob[length] * NumCarsRented_i_day[i,day];

var NumUndamagedCarsIdle {DEPOTS, DAYS} >= 0;
var NumDamagedCarsIdle {DEPOTS, DAYS} >= 0;

var NumUndamagedCarsTransferred {i in DEPOTS, DEPOTS diff {i}, DAYS} >= 0;
var NumDamagedCarsTransferred {i in DEPOTS, DEPOTS diff {i}, DAYS} >= 0;
impvar NumCarsTransferred {i in DEPOTS, j in DEPOTS diff {i}, day in DAYS} =

NumUndamagedCarsTransferred[i,j,day]
+ NumDamagedCarsTransferred[i,j,day];

var NumDamagedCarsRepaired {i in DEPOTS, DAYS} >= 0 <= repair_capacity[i];

max Profit =
sum {i in DEPOTS, j in DEPOTS, day in DAYS, length in LENGTHS}

(rental_price[i,j,day,length] - cost[length])

* NumCarsRented[i,j,day,length]
+ sum {i in DEPOTS, day in DAYS}

&damage_prob * &damage_charge * NumCarsRented_i_day[i,day]
- sum {i in DEPOTS, j in DEPOTS diff {i}, day in DAYS}

transfer_cost[i,j] * NumCarsTransferred[i,j,day]
- &opportunity_cost_per_week * NumCars;

con Undamaged_Inflow_con {i in DEPOTS, day in DAYS}:
NumUndamagedCarsStart[i,day]

= (1 - &damage_prob) * sum {j in DEPOTS, length in LENGTHS}
NumCarsRented[j,i,mod[day-length],length]

+ sum {j in DEPOTS diff {i}}
NumUndamagedCarsTransferred[j,i,mod[day-&transfer_length]]

+ NumDamagedCarsRepaired[i,mod[day-&repair_length]]
+ NumUndamagedCarsIdle[i,mod[day-1]];

con Damaged_Inflow_con {i in DEPOTS, day in DAYS}:
NumDamagedCarsStart[i,day]

= &damage_prob * sum {j in DEPOTS, length in LENGTHS}
NumCarsRented[j,i,mod[day-length],length]

+ sum {j in DEPOTS diff {i}}
NumDamagedCarsTransferred[j,i,mod[day-&transfer_length]]

+ NumDamagedCarsIdle[i,mod[day-1]];

con Undamaged_Outflow_con {i in DEPOTS, day in DAYS}:
NumUndamagedCarsStart[i,day]

= NumCarsRented_i_day[i,day]
+ sum {j in DEPOTS diff {i}} NumUndamagedCarsTransferred[i,j,day]
+ NumUndamagedCarsIdle[i,day];

con Damaged_Outflow_con {i in DEPOTS, day in DAYS}:
NumDamagedCarsStart[i,day]

= NumDamagedCarsRepaired[i,day]
+ sum {j in DEPOTS diff {i}} NumDamagedCarsTransferred[i,j,day]
+ NumDamagedCarsIdle[i,day];

con NumCars_con:
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NumCars = sum {i in DEPOTS} (
length_prob[3] * NumCarsRented_i_day[i,0]

+ sum {length in 2..3} length_prob[length] * NumCarsRented_i_day[i,1]
+ NumUndamagedCarsStart[i,2]
+ NumDamagedCarsStart[i,2]);

The remaining statements are new in this example. The following statements declare an additional index set
and parameters and then read the additional input data:

set EXPANSIONS;
str expansion_depot {EXPANSIONS};
num expansion_amount {EXPANSIONS};
num expansion_cost {EXPANSIONS};
num expansion_prerequisite {EXPANSIONS};
read data expansion_data into EXPANSIONS=[expansion]

expansion_depot expansion_amount expansion_cost expansion_prerequisite;

The BINARY option in the following VAR statement declares ExpandCapacity to be a binary variable:

var ExpandCapacity {EXPANSIONS} binary;

The following statement uses the CONSTANT function to effectively remove the previously declared upper
bound on the NumDamagedCarsRepaired variables by replacing it with the largest machine-representable
number:

for {expansion in EXPANSIONS, day in DAYS}
NumDamagedCarsRepaired[expansion_depot[expansion],day].ub =
constant('BIG');

This large number does not cause any numerical difficulties for the solver, because PROC OPTMODEL rec-
ognizes this special constant and treats the variable as having no upper bound. The following Expansion_con
constraint accounts for the new limit on the number of cars repaired, according to the expansion options that
are chosen:

con Expansion_con {i in DEPOTS, day in DAYS}:
NumDamagedCarsRepaired[i,day]

<= repair_capacity[i]
+ sum {expansion in EXPANSIONS: expansion_depot[expansion] = i}

expansion_amount[expansion] * ExpandCapacity[expansion];

The following ExpansionPrerequisite_con constraint enforces the rule that ExpandCapacity[expansion] D 1

implies that ExpandCapacity[expansion_prerequisite[expansion]] D 1:

con ExpansionPrerequisite_con {expansion in EXPANSIONS:
expansion_prerequisite[expansion] ne .}:

ExpandCapacity[expansion]
<= ExpandCapacity[expansion_prerequisite[expansion]];

The following Cardinality constraint enforces the limit on the number of expansions that are chosen:

con Cardinality:
sum {expansion in EXPANSIONS} ExpandCapacity[expansion]

<= &max_num_expansions;
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The following objective declaration uses the previously declared objective function:

max Profit2 = Profit -
sum {expansion in EXPANSIONS}

expansion_cost[expansion] * ExpandCapacity[expansion];

The following statements call the mixed integer linear programming solver, round all variables, and print the
specified parts of the solution:

solve;
for {j in 1.._NVAR_} _VAR_[j] = round(_VAR_[j].sol);
print expansion_depot ExpandCapacity;
print NumDamagedCarsRepaired;
print NumCars;

quit;

Figure 26.1 shows the output from the mixed integer linear programming solver.

Figure 26.1 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function Profit2

Objective Type Linear

Number of Variables 294

Bounded Above 0

Bounded Below 259

Bounded Below and Above 29

Free 0

Fixed 6

Binary 5

Integer 0

Number of Constraints 124

Linear LE (<=) 27

Linear EQ (=) 97

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 1208
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Figure 26.1 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Profit2

Solution Status Optimal

Objective Value 130792.95192

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.202682E-13

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 130792.95192

Nodes 1

Iterations 144

Presolve Time 0.02

Solution Time 0.03

[1] expansion_depot ExpandCapacity

1 Birmingham 0

2 Birmingham 0

3 Manchester 1

4 Manchester 1

5 Plymouth 0

NumDamagedCarsRepaired

0 1 2 3 4 5

Birmingham 20 20 20 20 20 20

Glasgow 0 0 0 0 0 0

Manchester 22 22 22 22 22 22

Plymouth 0 0 0 0 0 0

NumCars

955

Note that the resulting profit is higher than in Chapter 25. This result is expected because the repair capacity
expansion options allow more flexibility. The optimal solution and objective value differ from Williams
(2013), because of errors that will be corrected in a subsequent printing by Wiley.
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� numeric and string index sets

� INIT option

� NOMISS option

� IMPVAR statement

� reading multiple data sets

� reading dense two-dimensional data

� set operator DIFF

� IF-THEN/ELSE expression

� MOD function

� CARD function

� .ub variable suffix

� CONSTANT function

� fixed cost

� modeling if-then constraints by using binary variables

� cardinality constraint

� declaring an objective in terms of another objective

� generic problem symbols _NVAR_ and _VAR_
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Problem Statement
A small company with six vans has a contract with a number of airlines to pick up lost or delayed baggage,
belonging to customers in the London area, from Heathrow airport at 6 p.m. each evening.1 The contract
stipulates that each customer must have [his or her] baggage delivered by 8 p.m. The company requires a
model, which they can solve quickly each evening, to advise them what is the minimum number of vans they
need to use and to which customers each van should deliver and in what order. There is no practical capacity
limitation on each van. All baggage that needs to be delivered in a two-hour period can be accommodated in
a van. Having ascertained the minimum number of vans needed, a solution is then sought, which minimises
the maximum time taken by any van.

On a particular evening, the places where deliveries need to be made and the times to travel between them (in
minutes) are given in Table 27.1. No allowance is made for drop off times. For convenience, Heathrow will
be regarded as the first location.

Formulate optimisation models that will minimise the number of vans that need to be used, and within this
minimum, minimise the time taken for the longest time delivery.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 2013, pp. 287–289).
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Table 27.1

Heathrow 20 25 35 65 90 85 80 86 25 35 20 44 35 82
Harrow 15 35 60 55 57 85 90 25 35 30 37 20 40

Ealing 30 50 70 55 50 65 10 25 15 24 20 90
Holborn 45 60 53 55 47 12 22 20 12 10 21

Sutton 46 15 45 75 25 11 19 15 25 25
Dartford 15 15 25 45 65 53 43 63 70

Bromley 17 25 41 25 33 27 45 30
Greenwich 25 40 34 32 20 30 10

Barking 65 70 72 61 45 13
Hammersmith 20 8 7 15 25

Kingston 5 12 45 65
Richmond 14 34 56

Battersea 30 40
Islington 27

Woolwich
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Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� i; j 2 NODES

� .i; j / 2 ARCS

� v 2 VEHICLES

� i; j 2 NODES_SOL

� .i; j / 2 ARCS_SOL

� ci 2 COMPONENT_IDS

� k 2 COMPONENTŒci�

� k 2 SUBTOURŒs�

Parameters
Table 27.2 shows the parameters that are used in this example.

Table 27.2 Parameters

Parameter Name Interpretation

travel_time[i,j] Travel time (in minutes) between nodes i and j
num_vehicles Number of vehicles
time_limit Number of minutes in the planning horizon
depot Node name of depot
num_subtours Number of subtours in the current formulation
num_components[v] Number of connected components in the solution for vehicle v
component_id[i] Connected component that contains node i
ci Dummy index for members of COMPONENT_IDS
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Variables
Table 27.3 shows the variables that are used in this example.

Table 27.3 Variables

Variable Name Interpretation

UseNode[i,v] 1 if node i is visited by vehicle v; 0 otherwise
UseArc[i,j,v] 1 if arc .i; j / is traversed by vehicle v; 0 otherwise
UseVehicle[v] 1 if vehicle v is used; 0 otherwise
TimeUsed[v] Number of minutes used by vehicle v
MaxTimeUsed max

v2VEHICLES
TimeUsed[v]

Objectives
The first objective is to minimize the following function:

NumVehiclesUsed D
X

v2VEHICLES

UseVehicle[v]

The second objective is to minimize the following function:

Makespan D max
v2VEHICLES

TimeUsed[v]

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 NODES n fdepotg,X
v2VEHICLES

UseNode[i,v] D 1

� for i 2 NODES and v 2 VEHICLES,X
.i;j /2ARCS

UseArc[i,j,v] D UseNode[i,v]

� for j 2 NODES and v 2 VEHICLES,X
.i;j /2ARCS

UseArc[i,j,v] D UseNode[j,v]
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� for i 2 NODES and v 2 VEHICLES,

UseNode[i,v] � UseVehicle[v]

� for v 2 VEHICLES,

UseVehicle[v] � UseNode[depot,v]

� for v 2 VEHICLES,

TimeUsed[v] D
X

.i;j /2ARCS

travel_time[i,j] � UseArc[i,j,v]

� for v 2 VEHICLES n f1g,X
i2NODES

UseNode[i,v] �
X

i2NODES

UseNode[i,v � 1]

� for s 2 f1; : : : ; num_subtoursg and k 2 SUBTOUR[s] and v 2 VEHICLES,X
i2NODESnSUBTOUR[s];

j2SUBTOUR[s]W
.i;j /2ARCS

UseArc[i,j,v]C
X

i2SUBTOUR[s];
j2NODESnSUBTOUR[s]W

.i;j /2ARCS

UseArc[i,j,v] � 2 � UseNode[k,v]

� for v 2 VEHICLES,

MaxTimeUsed � TimeUsed[v]

Input Data
The following data set and macro variables contain the input data that are used in this example:

data time_data;
input location $11.

Heathrow Harrow Ealing Holborn Sutton Dartford Bromley Greenwich
Barking Hammersmith Kingston Richmond Battersea Islington Woolwich;

datalines;
Heathrow 0 20 25 35 65 90 85 80 86 25 35 20 44 35 82
Harrow . 0 15 35 60 55 57 85 90 25 35 30 37 20 40
Ealing . . 0 30 50 70 55 50 65 10 25 15 24 20 90
Holborn . . . 0 45 60 53 55 47 12 22 20 12 10 21
Sutton . . . . 0 46 15 45 75 25 11 19 15 25 25
Dartford . . . . . 0 15 15 25 45 65 53 43 63 70
Bromley . . . . . . 0 17 25 41 25 33 27 45 30
Greenwich . . . . . . . 0 25 40 34 32 20 30 10
Barking . . . . . . . . 0 65 70 72 61 45 13
Hammersmith . . . . . . . . . 0 20 8 7 15 25
Kingston . . . . . . . . . . 0 5 12 45 65
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Richmond . . . . . . . . . . . 0 14 34 56
Battersea . . . . . . . . . . . . 0 30 40
Islington . . . . . . . . . . . . . 0 27
Woolwich . . . . . . . . . . . . . . 0
;

%let num_vehicles = 6;
%let time_limit = 120;
%let depot = Heathrow;

PROC OPTMODEL Statements and Output
Although you could find the connected components of the support graph of each intermediate solution by
using PROC OPTMODEL’s programming language capabilities as in Chapter 23, the following SAS macro
instead uses the SOLVE WITH NETWORK statement together with the CONCOMP option:

%macro findConnectedComponents;
if card(ARCS_SOL) > 0 then do;

solve with NETWORK /
direction = directed
links = (include=ARCS_SOL)
subgraph = (nodes=NODES_SOL)
concomp
out = (concomp=component_id);

COMPONENT_IDS = setof {i in NODES_SOL} component_id[i];
for {c in COMPONENT_IDS} COMPONENT[c] = {};
for {i in NODES_SOL} do;

ci = component_id[i];
COMPONENT[ci] = COMPONENT[ci] union {i};

end;
end;
else COMPONENT_IDS = {};

%mend findConnectedComponents;

The following SAS macro contains a DO UNTIL loop that implements dynamic generation of subtour
elimination constraints (“row generation”), as in Chapter 23:

%macro subtourEliminationLoop;
/* loop until each vehicle's support graph is connected */
do until (and {v in VEHICLES} num_components[v] <= 1);

solve;
/* find connected components for each vehicle */
for {v in VEHICLES} do;

NODES_SOL = {i in NODES: UseNode[i,v].sol > 0.5};
ARCS_SOL = {<i,j> in ARCS: UseArc[i,j,v].sol > 0.5};
%findConnectedComponents;
num_components[v] = card(COMPONENT_IDS);
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/* create subtour from each component not containing depot node */
for {k in COMPONENT_IDS: depot not in COMPONENT[k]} do;

num_subtours = num_subtours + 1;
SUBTOUR[num_subtours] = COMPONENT[k];
put SUBTOUR[num_subtours]=;

end;
end;
print UseVehicle TimeUsed num_components;

end;
%mend subtourEliminationLoop;

The previous two macros are used within the main PROC OPTMODEL call. The first several PROC
OPTMODEL statements declare index sets and parameters and then read the input data:

proc optmodel;
num num_vehicles init &num_vehicles;
set VEHICLES = 1..num_vehicles;
str depot = "&depot";
set <str> NODES;
read data time_data into NODES=[location];
set ARCS init NODES cross NODES;
num travel_time {ARCS};
read data time_data into [i=location]

{j in NODES} <travel_time[i,j]=col(j)>;

The following statements make the travel times symmetric, except that travel time back to the depot is set to
0:

for {<i,j> in ARCS: travel_time[i,j] = .}
travel_time[i,j] = travel_time[j,i];

/* ignore travel time back to depot */
for {i in NODES}

travel_time[i,depot] = 0;
/* remove self-loops */
ARCS = ARCS diff setof {i in NODES} <i,i>;
print travel_time;
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The PRINT statement results in the first section of output, shown in Figure 27.1.

Figure 27.1 travel_time Parameter

The OPTMODEL Procedure

travel_time

Barking Battersea Bromley Dartford Ealing Greenwich Hammersmith Harrow Heathrow Holborn

Barking 61 25 25 65 25 65 90 0 47

Battersea 61 27 43 24 20 7 37 0 12

Bromley 25 27 15 55 17 41 57 0 53

Dartford 25 43 15 70 15 45 55 0 60

Ealing 65 24 55 70 50 10 15 0 30

Greenwich 25 20 17 15 50 40 85 0 55

Hammersmith 65 7 41 45 10 40 25 0 12

Harrow 90 37 57 55 15 85 25 0 35

Heathrow 86 44 85 90 25 80 25 20 35

Holborn 47 12 53 60 30 55 12 35 0

Islington 45 30 45 63 20 30 15 20 0 10

Kingston 70 12 25 65 25 34 20 35 0 22

Richmond 72 14 33 53 15 32 8 30 0 20

Sutton 75 15 15 46 50 45 25 60 0 45

Woolwich 13 40 30 70 90 10 25 40 0 21

travel_time

Islington Kingston Richmond Sutton Woolwich

Barking 45 70 72 75 13

Battersea 30 12 14 15 40

Bromley 45 25 33 15 30

Dartford 63 65 53 46 70

Ealing 20 25 15 50 90

Greenwich 30 34 32 45 10

Hammersmith 15 20 8 25 25

Harrow 20 35 30 60 40

Heathrow 35 35 20 65 82

Holborn 10 22 20 45 21

Islington 45 34 25 27

Kingston 45 5 11 65

Richmond 34 5 19 56

Sutton 25 11 19 25

Woolwich 27 65 56 25

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

var UseNode {NODES, VEHICLES} binary;
var UseArc {ARCS, VEHICLES} binary;
var UseVehicle {VEHICLES} binary;
var TimeUsed {v in VEHICLES} >= 0 <= &time_limit;

min NumVehiclesUsed =
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sum {v in VEHICLES} UseVehicle[v];

con NodeCover {i in NODES diff {depot}}:
sum {v in VEHICLES} UseNode[i,v] = 1;

con Outflow {i in NODES, v in VEHICLES}:
sum {<(i),j> in ARCS} UseArc[i,j,v] = UseNode[i,v];

con Inflow {j in NODES, v in VEHICLES}:
sum {<i,(j)> in ARCS} UseArc[i,j,v] = UseNode[j,v];

con UseVehicle_con1 {i in NODES, v in VEHICLES}:
UseNode[i,v] <= UseVehicle[v];

con UseVehicle_con2 {v in VEHICLES}:
UseVehicle[v] <= UseNode[depot,v];

con TimeUsed_con {v in VEHICLES}:
TimeUsed[v] = sum {<i,j> in ARCS} travel_time[i,j] * UseArc[i,j,v];

The following statements declare optional symmetry-breaking constraints to reduce the number of essentially
identical branch-and-bound nodes that are explored by the mixed integer linear programming solver:

/* several alternatives for symmetry-breaking constraints */
con Symmetry {v in VEHICLES diff {1}}:

sum {i in NODES} UseNode[i,v] <= sum {i in NODES} UseNode[i,v-1];

* con Symmetry {v in VEHICLES diff {1}}:
UseVehicle[v] <= UseVehicle[v-1];

* con Symmetry {v in VEHICLES diff {1}}:
TimeUsed[v] <= TimeUsed[v-1];

Williams (2013) breaks symmetry by using the first alternative, but you could use one of the other alternatives
instead.

In SAS/OR 13.1, the mixed integer linear programming solver automatically detects and exploits sym-
metry without you having to explicitly declare such symmetry-breaking constraints. You can control the
aggressiveness of symmetry detection by using the SYMMETRY= option in the SOLVE WITH MILP
statement.

The following statements declare the subtour elimination constraints:

num num_subtours init 0;

/* subset of nodes not containing depot node */
set <str> SUBTOUR {1..num_subtours};

/* if node k in SUBTOUR[s] is used by vehicle v, then
must use at least two arcs across partition induced by SUBTOUR[s] */

con Subtour_elimination
{s in 1..num_subtours, k in SUBTOUR[s], v in VEHICLES}:
sum {i in NODES diff SUBTOUR[s], j in SUBTOUR[s]: <i,j> in ARCS}

UseArc[i,j,v]
+ sum {i in SUBTOUR[s], j in NODES diff SUBTOUR[s]: <i,j> in ARCS}

UseArc[i,j,v]
>= 2 * UseNode[k,v];
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The following statements declare the index sets and parameters that are needed to detect violated subtour
elimination constraints:

num num_components {VEHICLES};
set <str> NODES_SOL;
set <str,str> ARCS_SOL;
num component_id {NODES_SOL};
set COMPONENT_IDS;
set <str> COMPONENT {COMPONENT_IDS};
num ci;

The following statements call the %subtourEliminationLoop macro to minimize the number of vehicles used
and then use the .sol objective suffix to update the num_vehicles parameter to the resulting minimum value:

%subtourEliminationLoop;
num_vehicles = round(NumVehiclesUsed.sol);

Changing the value of num_vehicles automatically updates the VEHICLES index set and consequently all
the model declarations that depend on VEHICLES.

The following statements declare the additional variables, objective, and constraints that are needed to
minimize the makespan, given the minimum number of vehicles already found:

var MaxTimeUsed >= 0 <= &time_limit;

min Makespan = MaxTimeUsed;

con MaxTimeUsed_con {v in VEHICLES}:
MaxTimeUsed >= TimeUsed[v];

The following statements call the %subtourEliminationLoop macro again to minimize the makespan and
then print the nodes and arcs that are used by each vehicle in the final solution:

%subtourEliminationLoop;
for {v in VEHICLES: UseVehicle[v].sol > 0.5} do;

print v;
print {<i,j> in ARCS: UseArc[i,j,v].sol > 0.5} travel_time[i,j];

end;
quit;
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Figure 27.2 through Figure 27.9 show the output from each iteration of subtour elimination.

Figure 27.2 Output from Subtour Elimination, Iteration 1

[1] UseVehicle TimeUsed num_components

1 1 95 5

2 1 80 3

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.3 Output from Subtour Elimination, Iteration 2

[1] UseVehicle TimeUsed num_components

1 1 116 3

2 1 110 2

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.4 Output from Subtour Elimination, Iteration 3

[1] UseVehicle TimeUsed num_components

1 1 114 1

2 1 120 2

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.5 Output from Subtour Elimination, Iteration 4

[1] UseVehicle TimeUsed num_components

1 1 115 2

2 1 80 3

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0
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Figure 27.6 Output from Subtour Elimination, Iteration 5

[1] UseVehicle TimeUsed num_components

1 1 114 2

2 1 120 4

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.7 Output from Subtour Elimination, Iteration 6

[1] UseVehicle TimeUsed num_components

1 1 115 2

2 1 100 2

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.8 Output from Subtour Elimination, Iteration 7

[1] UseVehicle TimeUsed num_components

1 1 102 1

2 1 106 1

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

Figure 27.9 Output from Subtour Elimination, Iteration 8

[1] UseVehicle TimeUsed num_components

1 1 95 2

2 1 98 2

Figure 27.10 Output from Subtour Elimination, Iteration 9

[1] UseVehicle TimeUsed num_components

1 1 99 1

2 1 100 1
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Figure 27.11 shows the final problem and solution summaries from the mixed integer linear programming
solver.

Figure 27.11 Final Problem and Solution Summaries from Mixed Integer Linear Programming Solver

Problem Summary

Objective Sense Minimization

Objective Function Makespan

Objective Type Linear

Number of Variables 455

Bounded Above 0

Bounded Below 0

Bounded Below and Above 455

Free 0

Fixed 0

Binary 452

Integer 0

Number of Constraints 215

Linear LE (<=) 33

Linear EQ (=) 76

Linear GE (>=) 106

Linear Range 0

Constraint Coefficients 8420

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Makespan

Solution Status Optimal

Objective Value 100

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.955858E-12

Bound Infeasibility 7.848827E-14

Integer Infeasibility 1.011483E-13

Best Bound 100

Nodes 99

Iterations 8393

Presolve Time 0.32

Solution Time 0.69

Figure 27.12 shows the travel times for the arcs that are used by each vehicle in the final solution.
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Figure 27.12 Travel Times for Arcs Used by Each Vehicle in the Final Solution

v

1

[1] [2]

Bromley Dartford 15

Dartford Heathrow 0

Ealing Hammersmith 10

Hammersmith Richmond 8

Harrow Ealing 15

Heathrow Harrow 20

Kingston Sutton 11

Richmond Kingston 5

Sutton Bromley 15

v

2

[1] [2]

Barking Heathrow 0

Battersea Greenwich 20

Greenwich Woolwich 10

Heathrow Islington 35

Holborn Battersea 12

Islington Holborn 10

Woolwich Barking 13

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming (vehicle routing)

� reading dense (upper triangular) two-dimensional data

� sets of tuples

� sets indexed by other sets

� set operators UNION and DIFF

� multiple objectives

� INIT option

� CARD function

� using a colon (:) to select members of a set
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� aggregation operators SETOF and AND

� modeling if-then constraints by using binary variables

� symmetry-breaking constraints

� MILP solver option SYMMETRY=

� calling a solver in a DO UNTIL loop

� row generation

� .sol variable suffix

� connected components

� SOLVE WITH NETWORK
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Problem Statement
This problem is based on one in the paper by Forrester and Greenberg (2008).1 It is a simplification of a
problem in molecular biology. We take a protein as consisting of a chain of amino acids. For the purpose of
this problem, the amino acids come in two forms: hydrophilic (water-loving) and hydrophobic (water-hating).
An example of such a chain is given in Figure 28.1, with the hydrophobic acids marked in bold.

Figure 28.1

Such a chain naturally folds so as to bring as many hydrophobic acids as possible close together. An optimum
folding for the chain, in two dimensions, is given in Figure 28.2, with the new matches marked by dashed
lines. The problem is to predict the optimum folding. (Forrester and Greenberg also impose a condition that
the resultant protein be confined to a given lattice of points. We do not impose that condition here). This
problem can be modelled by a number of integer programming formulations. Some of these are discussed in
the above reference. Another formulation is suggested in section 13.28 [of Williams (2013)]. The problem
posed here is to find the optimum folding for a chain of 50 amino acids with hydrophobic acids at positions 2,
4, 5, 6, 11, 12, 17, 20, 21, 25, 27, 28, 30, 31, 33, 37, 44 and 46 as shown in Figure 28.3.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 2013, pp. 289–290).
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Figure 28.2

Figure 28.3
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Mathematical Programming Formulation
The mixed integer linear programming formulation shown here matches Williams (2013). An alternative
approach (not shown) formulates the model as a longest-path problem in a directed acyclic network, with node
.i; j / corresponding to folds after positions i and j and not between, and with arcs of the form .i; j /! .j; k/.

Index Sets and Their Members
The following index sets and their members are used in this example:

� i 2 POSITIONS

� i; j 2 HYDROPHOBIC

� .i; j / 2 PAIRS

Parameters
Table 28.1 shows the parameters that are used in this example.

Table 28.1 Parameters

Parameter Name Interpretation

n Number of amino acids in chain
x[i] x coordinate of amino acid at position i, for plot
y[i] y coordinate of amino acid at position i, for plot

Variables
Table 28.2 shows the variables that are used in this example.

Table 28.2 Variables

Variable Name Interpretation

IsFold[i] 1 if fold occurs between positions i and i C 1; 0 otherwise
IsMatch[i,j] 1 if hydrophobic pair at positions i and j are matched; 0 otherwise
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Objective
The objective is to maximize the following function:

NumMatches D
X

.i;j /2PAIRS

IsMatch[i,j]

Constraints
The following constraints are used in this example:

� bounds on variables

� for .i; j / 2 PAIRS and k 2 fi; : : : ; j � 1g n f.i C j � 1/=2g,

IsMatch[i,j]C IsFold[k] � 1

� for .i; j / 2 PAIRS,

IsMatch[i,j] � IsFold[(i+j-1)/2]

Input Data
The following data set and macro variable contain the input data that are used in this example:

data hydrophobic_data;
input position @@;
datalines;

2 4 5 6 11 12 17 20 21 25 27 28 30 31 33 37 44 46
;

%let num_acids = 50;
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PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and parameters and then read the input
data:

proc optmodel;
num n = &num_acids;
set POSITIONS = 1..n;
set HYDROPHOBIC;
read data hydrophobic_data into HYDROPHOBIC=[position];

The following statement uses the MOD function to declare the set of hydrophobic pairs that can possibly be
matched (because they are not contiguous and are an even number of positions apart):

set PAIRS
= {i in HYDROPHOBIC, j in HYDROPHOBIC: i + 1 < j and mod(j-i-1,2) = 0};

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

/* IsFold[i] = 1 if fold occurs between positions i and i + 1; 0 otherwise */
var IsFold {1..n-1} binary;

/* IsMatch[i,j] = 1 if hydrophobic pair at positions i and j are matched;
0 otherwise */

var IsMatch {PAIRS} binary;

/* maximize number of matches */
max NumMatches = sum {<i,j> in PAIRS} IsMatch[i,j];

/* if IsMatch[i,j] = 1 then IsFold[k] = 0 */
con DoNotFold {<i,j> in PAIRS, k in i..j-1 diff {(i+j-1)/2}}:

IsMatch[i,j] + IsFold[k] <= 1;

/* if IsMatch[i,j] = 1 then IsFold[k] = 1 */
con FoldHalfwayBetween {<i,j> in PAIRS}:

IsMatch[i,j] <= IsFold[(i+j-1)/2];

The following statements call the mixed integer linear programming solver and print the positive variables in
the resulting optimal solution:

solve;
print {i in 1..n-1: IsFold[i].sol > 0.5} IsFold;
print {<i,j> in PAIRS: IsMatch[i,j].sol > 0.5} IsMatch;
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Figure 28.4 shows the output from the mixed integer linear programming solver.

Figure 28.4 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function NumMatches

Objective Type Linear

Number of Variables 124

Bounded Above 0

Bounded Below 0

Bounded Below and Above 124

Free 0

Fixed 0

Binary 124

Integer 0

Number of Constraints 1265

Linear LE (<=) 1265

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 2530

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NumMatches

Solution Status Optimal

Objective Value 10

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 10

Nodes 1

Iterations 128

Presolve Time 0.07

Solution Time 0.08
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Figure 28.4 continued

[1] IsFold

3 1

8 1

14 1

18 1

22 1

26 1

28 1

30 1

38 1

[1] [2] IsMatch

2 5 1

5 12 1

6 11 1

12 17 1

17 20 1

20 25 1

25 28 1

27 30 1

31 46 1

33 44 1

The optimal solution and objective value differ from Williams (2013), because of an error that will be
corrected in a subsequent printing by Wiley.

The following statements compute x and y coordinates for each position and write multiple output data sets
to be used by the SGPLOT procedure:

num x {POSITIONS};
num y {POSITIONS};
num xx init 0;
num yy init 0;
num dir init 1;
for {i in POSITIONS} do;

xx = xx + dir;
x[i] = xx;
y[i] = yy;
if i = n or IsFold[i].sol > 0.5 then do;

xx = xx + dir;
dir = -dir;
yy = yy - 1;

end;
end;
create data plot_data from [i] x y is_hydrophobic=(i in HYDROPHOBIC);
create data edge_data from [i]=(1..n-1)

x1=x[i] y1=y[i] x2=x[i+1] y2=y[i+1] linepattern=1;
create data match_data from [i j]={<i,j> in PAIRS: IsMatch[i,j].sol > 0.5}

x1=x[i] y1=y[i] x2=x[j] y2=y[j] linepattern=2;
quit;
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The following DATA step and PROC SGPLOT statements use the output data sets that are created by PROC
OPTMODEL to display the optimal folding that corresponds to the MILP solution:

data sganno(drop=i j);
retain drawspace "datavalue" linethickness 1;
set edge_data match_data;
function = 'line';

run;

proc sgplot data=plot_data sganno=sganno;
scatter x=x y=y / group=is_hydrophobic datalabel=i;
xaxis display=none;
yaxis display=none;

run;

Figure 28.5 shows a plot of the optimal folding that corresponds to the MILP solution.

Figure 28.5 Plot of Optimal Folding
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Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� set of tuples

� MOD function

� set operator DIFF

� modeling if-then constraints by using binary variables

� using a colon (:) to select members of a set

� .sol variable suffix

� creating multiple data sets

� SGPLOT procedure
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Problem Statement
This problem is also based on one in the paper by Forrester and Greenberg (2008).1 It is concerned with
measuring the similarities of two proteins. A protein can be represented by an (undirected) graph with the
acids represented by the nodes and the edges being present when two acids are within a threshold distance
of each other. This graphical representation is known as the contact map of the protein. Given two contact
maps, representing proteins, we would like to find the largest (measured by number of corresponding edges)
isomorphic subgraphs in each graph. The acids in each of the proteins are ordered. We need to preserve this
ordering in each of the subgraphs, which implies that there can be no crossovers in the comparison. This is
illustrated in Figure 29.1. If i < k in the contact map for the first protein then we cannot have l < j in the
second protein, if i is to be associated with j and k with l in the comparison.

Figure 29.1

i k

j l

This problem is well known for being very difficult to solve for even modestly sized proteins.

1Reproduced with permission of John Wiley & Sons Ltd. (Williams 2013, pp. 290–291).
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In Figure 29.2, we give an optimal comparison between two small contact maps leading to 5 corresponding
edges.

Figure 29.2

Map 1

Map 2

The problem we present here is to compare the contact maps given in Figure 29.3 and Figure 29.4.

Figure 29.3

Figure 29.4

Mathematical Programming Formulation

Index Sets and Their Members
The following index sets and their members are used in this example:

� g 2 f1; 2g

� i 2 NODES[g]

� .i; k/; .j; l/ 2 EDGES[g]

� .i; j /; .k; l/ 2 IJ D NODES[1] � NODES[2]

� .i; j; k; l/ 2 EDGE_PAIRS: pairs of edges that can possibly correspond to each other
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Variables
Table 29.1 shows the variables that are used in this example.

Table 29.1 Variables

Variable Name Interpretation

Assign[i,j] 1 if node i 2 NODES[1] is assigned to node j 2 NODES[2]; 0 otherwise
IsCorrespondingEdge[i,j,k,l] 1 if edge .i; k/ 2 EDGES[1] corresponds to edge .j; l/ 2 EDGES[2]; 0 otherwise

Objective
The objective is to maximize the following function:

NumCorrespondingEdges D
X

.i;j;k;l/2EDGE_PAIRS

IsCorrespondingEdge[i,j,k,l]

Constraints
The following constraints are used in this example:

� bounds on variables

� for i 2 NODES[1],X
.i;j /2IJ

Assign[i,j] � 1

� for j 2 NODES[2],X
.i;j /2IJ

Assign[i,j] � 1

� for .i; j / 2 IJ and .k; l/ 2 IJ such that i < k and j > l ,

Assign[i,j]C Assign[k,l] � 1

� for .i; j; k; l/ 2 EDGE_PAIRS,

IsCorrespondingEdge[i,j,k,l] � Assign[i,j]

� for .i; j; k; l/ 2 EDGE_PAIRS,

IsCorrespondingEdge[i,j,k,l] � Assign[k,l]
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Input Data
The following data sets contain the input data that are used in this example:

data edge_data1;
input i j;
datalines;

1 2
2 9
3 4
3 5
5 6
6 7
7 9
8 9
;

data edge_data2;
input i j;
datalines;

1 4
2 3
4 6
4 7
5 6
6 8
7 8
7 10
9 10
10 11
;

PROC OPTMODEL Statements and Output
The first several PROC OPTMODEL statements declare index sets and read the input data:

proc optmodel;
set <num,num> EDGES {1..2};
read data edge_data1 into EDGES[1]=[i j];
read data edge_data2 into EDGES[2]=[i j];

The following statements declare and initialize the NODES[g] sets and then use the INTER operator to store
their elements in increasing order:

set NODES {g in 1..2} init union {<i,j> in EDGES[g]} {i,j};
for {g in 1..2} NODES[g] = 1..card(NODES[g]) inter NODES[g];
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The following statements declare the remaining sets:

set IJ = NODES[1] cross NODES[2];
set EDGE_PAIRS = {<i,j> in IJ, <k,l> in IJ: i < k and j ne l and

(<i,k> in EDGES[1]) and (<j,l> in EDGES[2])};

The following model declaration statements correspond directly to the mathematical programming formula-
tion that is described earlier:

/* Assign[i,j] = 1 if node i in NODES[1] assigned to node j in NODES[2] */
var Assign {IJ} binary;

/* IsCorrespondingEdge[i,j,k,l] = 1 if edge <i,k> in EDGES[1]
corresponds to edge <j,l> in EDGES[2] */

var IsCorrespondingEdge {EDGE_PAIRS} binary;

/* maximize number of corresponding edges */
max NumCorrespondingEdges =

sum {<i,j,k,l> in EDGE_PAIRS} IsCorrespondingEdge[i,j,k,l];

/* assign each i to at most one j */
con Assign_i {i in NODES[1]}:

sum {<(i),j> in IJ} Assign[i,j] <= 1;

/* assign at most one i to each j */
con Assign_j {j in NODES[2]}:

sum {<i,(j)> in IJ} Assign[i,j] <= 1;

/* disallow crossing edges */
con NoCrossover {<i,j> in IJ, <k,l> in IJ: i < k and j > l}:

Assign[i,j] + Assign[k,l] <= 1;

/* if IsCorrespondingEdge[i,j,k,l] = 1 then Assign[i,j] = Assign[k,l] = 1 */
con Corresponding1 {<i,j,k,l> in EDGE_PAIRS}:

IsCorrespondingEdge[i,j,k,l] <= Assign[i,j];
con Corresponding2 {<i,j,k,l> in EDGE_PAIRS}:

IsCorrespondingEdge[i,j,k,l] <= Assign[k,l];

The following statements call the mixed integer linear programming solver and use the FILE and PUT
statements to write log output to the listing:

solve;
file print;
for {<i,j> in IJ: Assign[i,j].sol > 0.5}

put ('Node '||i||' in graph 1 corresponds to node '||j||' in graph 2.');
for {<i,j,k,l> in EDGE_PAIRS: IsCorrespondingEdge[i,j,k,l].sol > 0.5} do;

put ('Edge ('||i||','||k||') in graph 1 corresponds to') @@;
put ('edge ('||j||','||l||') in graph 2.');

end;
quit;
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Figure 29.5 shows the output from the mixed integer linear programming solver.

Figure 29.5 Output from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function NumCorrespondingEdges

Objective Type Linear

Number of Variables 179

Bounded Above 0

Bounded Below 0

Bounded Below and Above 179

Free 0

Fixed 0

Binary 179

Integer 0

Number of Constraints 2160

Linear LE (<=) 2160

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 4478

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function NumCorrespondingEdges

Solution Status Optimal

Objective Value 5

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 5

Nodes 1

Iterations 111

Presolve Time 0.06

Solution Time 0.07
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Figure 29.6 shows the output from the PUT statements.

Figure 29.6 Output from PUT Statements

                             The OPTMODEL Procedure                             
                                                                                
Node 1 in graph 1 corresponds to node 2 in graph 2.                             
Node 2 in graph 1 corresponds to node 3 in graph 2.                             
Node 3 in graph 1 corresponds to node 4 in graph 2.                             
Node 4 in graph 1 corresponds to node 6 in graph 2.                             
Node 5 in graph 1 corresponds to node 7 in graph 2.                             
Node 6 in graph 1 corresponds to node 8 in graph 2.                             
Node 7 in graph 1 corresponds to node 9 in graph 2.                             
Node 9 in graph 1 corresponds to node 10 in graph 2.                            
Edge (1,2) in graph 1 corresponds to edge (2,3) in graph 2.                     
Edge (3,4) in graph 1 corresponds to edge (4,6) in graph 2.                     
Edge (3,5) in graph 1 corresponds to edge (4,7) in graph 2.                     
Edge (5,6) in graph 1 corresponds to edge (7,8) in graph 2.                     
Edge (7,9) in graph 1 corresponds to edge (9,10) in graph 2.                    

Figure 29.7 shows the optimal solution as a comparison between contact maps, with the matched nodes
indicated by dashed lines and the edges of the isomorphic subgraphs highlighted.

Figure 29.7 Optimal Comparison between Contact Maps

Features Demonstrated
The following features are demonstrated in this example:

� problem type: mixed integer linear programming

� sets of tuples

� sets indexed by other sets

� reading multiple input data sets

� set operators UNION, INTER, and CROSS
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� CARD function

� using a colon (:) to select members of a set

� modeling if-then constraints by using binary variables

� FILE statement

� PUT statement
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Subject Index

binary variables
modeling if-then constraints, 154, 177, 207, 243,

340, 352, 365, 375
product of, 127

.body constraint suffix, 30, 112, 228

calculated numeric parameter, 85
cardinality constraint, 340
colon (W) operator

selecting members of a set, 8, 27, 57, 75, 99, 177,
228, 243, 251, 264, 276, 301, 329, 338, 351,
365, 375

compact linearization, 129, 300
concatenation, string, 164
connected components, 274, 278, 350
constraint suffix

.body suffix, 30, 112, 228

.dual suffix, 42, 187, 228, 251, 331

.lb suffix, 114, 219
modifying the right-hand side of a constraint, 114,

219
.ub suffix, 114, 219, 228

data envelopment analysis, 259
data set

multiple input, 6, 27, 45, 56, 84, 96, 109, 124,
163, 175, 196, 215, 226, 240, 250, 262, 296,
327, 338, 374

multiple output, 14, 30, 46, 58, 86, 101, 184, 198,
265, 367

.dual constraint suffix, 42, 187, 228, 251, 331
dynamic Leontief input-output model, 105

fixed costs, 239, 335

generalized network flow with side constraints, 65

if-then constraints
modeling with binary variables, 154, 177, 207,

243, 340, 352, 365, 375
implicit slice, 58, 73, 154, 228, 242
index set

creating an output data set, 177
in PRINT statement, 75
numeric, 4, 27, 34, 45, 53, 68, 82, 92, 106, 122,

134, 151, 161, 261, 292, 338
sets indexed by other sets, 164, 206, 278, 354
string, 4, 27, 34, 45, 53, 68, 82, 92, 106, 122, 151,

161, 261, 292, 338

subset, 177
input data set

multiple, 6, 27, 45, 56, 84, 96, 109, 124, 163, 175,
196, 215, 226, 240, 250, 262, 296, 327, 338,
374

L1 and L1 norms, 159
polynomial regression, 133

.lb constraint suffix
modifying the right-hand side of a constraint, 114,

219
.lb variable suffix, 111
linear programming, 3, 33, 51, 65, 91, 105, 133, 181,

211, 221, 259, 321
linearization

compact, 129, 300
product of binary variables, 129
product of continuous variable and binary

variable, 300
ratio constraint, 9, 74, 75, 86

loop
calling a solver, 264, 278, 350
running in parallel, 264

mixed integer linear programming, 25, 43, 81, 121,
149, 159, 173, 181, 193, 203, 237, 271, 289,
335, 345, 361, 371

modeling startup costs, 181, 193
modifying the right-hand side of a constraint

.lb constraint suffix, 114, 219

.ub constraint suffix, 114, 219
multiple objectives, 58, 106, 107, 111, 133, 134, 136,

160, 162, 211, 212, 215, 225, 354
multiple solutions, 218

network flow with side constraints, 221
nonlinear programming, quadratic, 247
numeric parameter, calculated, 85

objective
in terms of another objective, 341
multiple, 58, 106, 107, 111, 133, 134, 136, 160,

162, 211, 212, 215, 225, 354
output data set

creating from index set, 177
multiple, 14, 30, 46, 58, 86, 101, 184, 198, 265,

367

parallel COFOR loop, 264
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polynomial regression with L1 and L1 norms, 133
problem type

linear programming, 3, 33, 51, 65, 91, 105, 133,
181, 211, 221, 259, 321

mixed integer linear programming, 25, 43, 81,
121, 149, 159, 173, 181, 193, 203, 237, 271,
289, 335, 345, 361, 371

nonlinear programming, 247
quadratic programming, 247

product
of binary variables, 127
of continuous variable and binary variable, 300
of decision variables, 251

quadratic assignment problem, 121
quadratic program, 247

range constraint, 9, 75, 100
ratio constraint, 9, 74, 75, 86
reading data, 7, 37

dense, 7, 27, 38, 45, 57, 109, 125, 263, 328, 338
dense (upper triangular), 351
sparse, 38, 57, 73, 251
sparse (upper triangular), 126
two-dimensional, 7, 27, 38, 45, 57, 73, 109, 125,

126, 251, 263, 338, 351
row generation, 278, 350

selecting members of a set
colon (W) operator, 8, 27, 57, 75, 99, 177, 228, 243,

251, 264, 276, 301, 329, 338, 351, 365, 375
sets indexed by other sets, 164, 206, 278, 354, 374
sets of tuples, 57, 73, 127, 154, 206, 227, 242, 276,

298, 351, 365, 374
slice

implicit, 58, 73, 154, 228, 242
.sol variable suffix, 14, 207, 218, 264, 278, 301, 350,

365
solution

multiple, 218
solution, storing in numerical parameter, 264
startup costs, modeling, 181, 193
stochastic programming with recourse, 289
storing a solution in a numeric parameter, 264
string concatenation, 164
suffix

constraint suffix, 30, 42, 112, 114, 187, 219, 228,
251, 331

variable suffix, 14, 27, 28, 57, 73, 75, 83, 85, 86,
98, 111, 137, 165, 197, 207, 264, 278, 299,
301, 350

symmetry-breaking constraints, 277, 353

totally unimodular, 173, 177

tuples, sets of, 57, 73, 127, 154, 206, 227, 242, 276,
298, 351

.ub constraint suffix, 228
modifying the right-hand side of a constraint, 114,

219
.ub variable suffix, 28, 57, 73, 83, 86, 98, 111, 197,

299, 340

variable suffix
.sol suffix, 218, 365
in parameter declaration, 14, 27, 75, 83, 85, 137,

165, 264, 301
.lb suffix, 111
.sol suffix, 14, 207, 264, 278, 301, 350
.ub suffix, 28, 57, 73, 83, 86, 98, 111, 197, 299,

340
vehicle routing, 271, 345

writing data
dense, 101, 265
sparse, 101, 265
two-dimensional, 101, 265
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_NSOL_ parameter, 218
_NVAR_ symbol, 331, 341
_VAR_ symbol, 331, 341

ABS function, 137, 165, 215
ALGORITHM= option, SOLVE statement, 14, 230,

253
AND aggregation operator, 278, 350
AND logical operator, 177

BINARY option, VAR statement, 28, 340

CALL SYMPUT, 279
CARD function, 165, 185, 197, 207, 278, 328, 338,

350, 374
CLP procedure, 214
COFOR loop, calling a solver, 264
colon (W) operator, 8, 27, 57, 75, 99, 177, 228, 243, 251,

264, 276, 301, 329, 351
CONSTANT function, 219, 340
CREATE DATA statement, 14, 30, 42, 46, 58, 75, 86,

101, 136, 137, 177, 185, 198, 264, 279
CROSS set operator, 73, 206, 298, 375

DIFF set operator, 8, 27, 57, 73, 86, 99, 232, 264, 277,
329, 338, 353, 365

DO loop, calling a solver, 264
DO UNTIL loop, calling a solver, 278, 350
DROP statement, 129, 304

EXPAND statement, 9

FILE statement, 208, 375
FINANCE function, 98
FINDALLSOLNS option, SOLVE WITH CLP

statement, 218
FIX statement, 8, 27, 39, 45, 57, 97, 154, 187, 197,

243, 301

IF-THEN/ELSE expression, 39, 45, 111, 185, 197,
243, 300, 328, 338

IF-THEN/ELSE statement, 301
IMPVAR statement, 8, 27, 39, 45, 85, 99, 111, 127,

136, 185, 196, 215, 243, 254, 329, 338
IN expression, 177
INDEX function, 75
INIT option, VAR statement, 38, 126, 228, 242, 251,

277, 328, 338, 353
INTEGER option, VAR statement, 46
INTER set operator, 374

MAX aggregation operator, 8, 27, 39, 45, 137, 165,
301

MIN function, 301
MOD function, 329, 338, 365

NOMISS option, READ DATA statement, 73, 328, 338

OBJ option, SOLVE statement, 58

PRIMALIN option, SOLVE WITH MILP statement,
168

PRINT statement, 112, 127, 166, 185, 198, 208, 217,
228, 243, 251, 264, 278, 301, 331, 350

with index set, 75, 331
PROBLEM statement, 112, 137, 219
PUT statement, 207, 375

READ DATA statement, 7, 27, 37, 45, 57, 73, 85, 97,
109, 125, 164, 177, 184, 196, 206, 215, 227,
242, 251, 263, 276, 298, 351

NOMISS option, 73, 328, 338
RELAXINT option, SOLVE WITH LP statement, 187
ROUND function, 301, 331

set operator
CROSS, 73, 206, 298, 375
DIFF, 8, 27, 57, 73, 86, 99, 232, 264, 277, 353,

365
INTER, 374
SETOF, 73, 165, 207, 232, 350
UNION, 8, 27, 73, 97, 109, 154, 164, 215, 228,

242, 278, 350, 374
SETOF set operator, 73, 165, 207, 232, 350
SGPLOT procedure, 145, 279, 367
SLICE expression, 58
SOLVE statement

ALGORITHM= option, 14, 230, 253
multiple, 301
OBJ option, 58
WITH clause, 253

SOLVE WITH CLP statement, 218
FINDALLSOLNS option, 218

SOLVE WITH LP statement, RELAXINT option, 187
SOLVE WITH MILP statement

PRIMALIN option, 168
SYMMETRY= option, 277, 353

SOLVE WITH NETWORK statement, 350
SUBSTR function, 8, 27



384 F Syntax Index

SYMMETRY= option, SOLVE WITH MILP
statement, 277, 353

UNFIX statement, 189
UNION set operator, 8, 27, 73, 97, 109, 154, 164, 215,

228, 242, 278, 350, 374
USE PROBLEM statement, 112, 137, 219

VAR statement
BINARY option, 28, 340
bounds, 8, 27, 39, 45, 57, 73, 85, 97
INIT option, 251, 277, 328, 338, 353
INTEGER option, 46

WITH clause, SOLVE statement, 253
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