Contents

Syntax Conventions for the SAS Language .. vii
What's New in SAS ODS Graphics Procedures 9.4 .. xiii
Accessibility .. xxxiii

PART 1 Getting Started 1

Chapter 1 / Get Started Using the ODS Graphics Procedures ... 3
 - About the SAS ODS Graphics Procedures ... 3
 - Summary of the Procedures .. 5
 - Example: Create Your First Graph .. 8
 - Common Tasks Associated with Using the Procedures 11
 - Where to Go from Here .. 14

Chapter 2 / Gallery of Plots and Charts .. 15
 - Alphabetical List of Plots and Charts .. 16
 - Basic Plots and Charts .. 16
 - Fit and Confidence Plots .. 40
 - Distribution Plots ... 46
 - Categorization Plots and Charts .. 51

PART 2 Overview: Using the Procedures 65

Chapter 3 / Concepts for Creating Graphs .. 67
 - Creating Single-Cell Graphs .. 67
 - Creating Multi-Cell Classification Panels ... 69
 - Creating Paneled Scatter Plots ... 70
 - Rendering Graphs from GTL Templates or ODS Graphics Editor Files 71
 - Producing Graphs That Were Created with ODS Graphics Designer 73
 - Producing Maps Using the SGMAP Procedure .. 74
 - Plotting a Cloud Analytic Services (CAS) In-Memory Table 74
 - Using SAS Studio ... 78
 - About ODS Destinations and Styles ... 79

Chapter 4 / Elements of a Program .. 81
 - A Typical Program .. 81
 - About the PROC Step ... 83
 - About SAS Statements .. 85
 - About ODS Destination Statements .. 85
 - About the ODS GRAPhics Statement Options .. 86
 - About Using an Annotation Data Set .. 87
Contents

About Using an Attribute Map Data Set ... 87

Chapter 5 / SAS Statements That Are Used with ODS Graphics Procedures .. 89
 Overview of SAS Statements That Are Used with ODS Graphics Procedures 89
 Dictionary ... 90

Chapter 6 / About the Examples, Sample Data, and Additional Resources 137
 About the Examples in This Book 137
 About the SASHELP and the SAS Sample Library 138
 Examples and Resources on the Web 138

PART 3 The Procedures 141

Chapter 7 / SGDESIGN Procedure .. 143
 Overview: SGDESIGN Procedure 143
 Concepts: SGDESIGN Procedure 145
 Syntax: SGDESIGN Procedure ... 147
 Examples: SGDESIGN Procedure 150

Chapter 8 / SGPANEL Procedure .. 153
 Overview: SGPANEL Procedure 154
 Concepts: SGPANEL Procedure 156
 Syntax: SGPANEL Procedure .. 158
 Examples: SGPANEL Procedure 776

Chapter 9 / SGPIE Procedure: Preproduction .. 787
 Overview: SGPIE Procedure: Preproduction 787
 Syntax: SGPIE Procedure: Preproduction 789
 Examples: SGPIE Procedure: Preproduction 811

Chapter 10 / SGPLOT Procedure .. 817
 Overview: SGPLOT Procedure 818
 Concepts: SGPLOT Procedure .. 820
 Syntax: SGPLOT Procedure .. 822
 Examples: SGPLOT Procedure 1527

Chapter 11 / SGRENDER Procedure .. 1549
 Overview: SGRENDER Procedure 1549
 Syntax: SGRENDER Procedure 1550
 Examples: SGRENDER Procedure 1557

Chapter 12 / SGSCATTER Procedure .. 1565
 Overview: SGSCATTER Procedure 1565
 Concepts: SGSCATTER Procedure 1567
 Syntax: SGSCATTER Procedure 1570
 Examples: SGSCATTER Procedure 1620

Chapter 13 / Common Concepts .. 1627
 Overview of the Common Concepts 1627
 Plot Type Compatibility ... 1628
 Plot Axes .. 1634
 Legends .. 1635
Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language elements. These conventions enable you to easily identify the components of SAS syntax. The conventions can be divided into these parts:

- syntax components
- style conventions
- special characters
- references to SAS libraries and external files

Syntax Components

The components of the syntax for most language elements include a keyword and arguments. For some language elements, only a keyword is necessary. For other language elements, the keyword is followed by an equal sign (=). The syntax for arguments has multiple forms in order to demonstrate the syntax of multiple arguments, with and without punctuation.

keyword

specifies the name of the SAS language element that you use when you write your program. Keyword is a literal that is usually the first word in the syntax. In a CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

- **CHAR** *(string, position)*
- **CALL RANBIN** *(seed, n, p, x)*;
- **ALTER** *(alter-password)*
- **BEST** *w.*
In this example, the first two words of the CALL routine are the keywords:

```sas
CALL RANBIN(seed, n, p, x)
```

The syntax of some SAS statements consists of a single keyword without arguments:

```sas
DO;
... SAS code ...
END;
```

Some system options require that one of two keyword values be specified:

```sas
DUPLex | NODUPLex
```

Some procedure statements have multiple keywords throughout the statement syntax:

```sas
CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <, column-2, ...>)
```

argument

specifies a numeric or character constant, variable, or expression. Arguments follow the keyword or an equal sign after the keyword. The arguments are used by SAS to process the language element. Arguments can be required or optional. In the syntax, optional arguments are enclosed in angle brackets (< >).

In this example, `string` and `position` follow the keyword CHAR. These arguments are required arguments for the CHAR function:

```sas
CHAR (string, position)
```

Each argument has a value. In this example of SAS code, the argument `string` has a value of 'summer', and the argument `position` has a value of 4:

```sas
x=char('summer', 4);
```

In this example, `string` and `substring` are required arguments, whereas `modifiers` and `startpos` are optional.

```sas
FIND(string, substring <, modifiers> <, startpos>
```

argument(s)

specifies that one argument is required and that multiple arguments are allowed. Separate arguments with a space. Punctuation, such as a comma (,) is not required between arguments.

The MISSING statement is an example of this form of multiple arguments:

```sas
MISSING character(s);
```

```sas
<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
```

specifies that one argument is required and that a literal argument can be associated with the argument. You can specify multiple literals and argument pairs. No punctuation is required between the literal and argument pairs. The ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

```sas
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;
```
argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

```
PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> ...>;
```

argument-1=value-1 <argument-2=value-2 ...

specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

```
LABEL variable-1=label-1 <variable-2=label-2 ...>;
```

argument-1 <, argument-2, ...

specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...) indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

```
AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, ...>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, ...>
```

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Style Conventions

The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

UPPERCASE BOLD

identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

```
ERROR <message>;
```

UPPERCASE

identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:
Special Characters

The syntax of SAS language elements can contain the following special characters:

- **=** an equal sign identifies a value for a literal in some language elements such as system options.

 In this example of the MAPS system option, the equal sign sets the value of MAPS:

  ```sas```
  MAPS=location-of-maps
  ```

- **< >** angle brackets identify optional arguments. A required argument is not enclosed in angle brackets.

 In this example of the CAT function, at least one item is required:

  ```sas```
  CAT (item-1 <, item-2, …>)
  ```

- **|** a vertical bar indicates that you can choose one value from a group of values. Values that are separated by the vertical bar are mutually exclusive.

 In this example of the CMPMODEL= system option, you can choose only one of the arguments:

  ```sas```
  CMPMODEL=BOTH | CATALOG | XML
  ```

- **...** an ellipsis indicates that the argument can be repeated. If an argument and the ellipsis are enclosed in angle brackets, then the argument is optional. The repeated argument must contain punctuation if it appears before or after the argument.

 In this example of the CAT function, multiple item arguments are allowed, and they must be separated by a comma:

  ```sas```
  CAT (item-1 <, item-2, …>)
'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in quotation marks:

    FOOTNOTE <n> <ods-format-options 'text' | "text">;

; a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

    data namegame;
    length color name $8;
    color = 'black';
    name = 'jack';
    game = trim(color) || name;
    run;

References to SAS Libraries and External Files

Many SAS statements and other language elements refer to SAS libraries and external files. You can choose whether to make the reference through a logical name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement (LIBNAME or FILENAME) or the operating environment's control language to make the reference. Several methods of referring to SAS libraries and external files are available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase file-specification. In the examples that use SAS libraries, SAS documentation uses the italicized phrase SAS-library enclosed in quotation marks:

    infile file-specification obs = 100;
    libname libref 'SAS-library';
What's New in SAS ODS Graphics Procedures 9.4

Overview

The procedures have the following enhancements for SAS 9.4 as well as for subsequent maintenance releases:

- general changes
- new statements for the SGPLOT and SGPANEL procedures
- updates to plots and charts
- plot and chart updates in SAS 9.4M1
- enhancements to the SGRENDER procedure in SAS 9.4M1
- plot and chart updates in the SAS 9.4M2
- plot and chart updates in SAS 9.4M3
- updates in the SAS 9.4M4
- updates in SAS 9.4M5
- new SGPIE procedure in SAS 9.4M6
- updates in SAS Viya 3.5
- axis update in SAS 9.4M7
- new gradient legend
- axis updates
- axis table updates
- annotation enhancements in the SAS 9.4M1
- attribute map updates
General Changes

Changes to the Default ODS Output

- A new ATTRPRIORITY= option specifies a priority for cycling the attributes for group values. The ATTRPRIORITY= option is available in the ODS GRAPHICS statement.
- HTMLBlue is the default style for the HTML ODS destination when using SAS in the window environment as well as in batch mode. Previously, HTMLBlue was the default style only when using SAS in the window environment.

Unicode Values in User-Defined Formats

Starting with SAS 9.4M3, the ODS Graphics procedures support Unicode values in user-defined formats. The Unicode value must be escaped with the (*ESC*) escape sequence as shown in the following examples:

"(*ESC*){unicode beta}"
"(*ESC*){unicode '03B2'x}"  

ODS Graphics does not support the use of a user-defined ODS escape character to escape Unicode values in user-defined formats.

Changes to the Appearance of Grouped Data

The GROUP= option is used to plot data when a classification or grouping variable is available. By default, this option automatically uses the GraphData elements for the presentation of each unique group value. Previously, if you wanted to change the appearance of the GraphData output, you had to modify the ODS style template.

You can now specify appearance attributes for group values without having to change the ODS style template by using the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options. These options override the corresponding defaults from the current style. The appearance options affect only the procedure in which they are specified.

These options are available in the SGPANEL, SGPLOT, and SGSCATTER procedures. For the SGPLOT and SGPANEL procedures, those options are in the
Changes to the Graph's Appearance

The following changes were made in SAS 9.4M3.

- The AXISBREAK= option was added to the STYLEATTRS statement. This option specifies a symbol to use on a broken axis created by the RANGES option. This change applies to the SGPLOT procedure only.

- The AXISEXTENT option specifies the extent of the axis line for all axes. This option was added to the STYLEATTRS statement in the SGPLOT procedure and to the PLOT statement in the SGSCATTER procedure.

- The BACKCOLOR= and WALLCOLOR= options enable you to specify the graph background color and the wall color, respectively. These options were added to the STYLEATTRS statement in the SGPLOT procedure and the SGPANEL procedure. The options were also added to the PROC SGSCATTER statement in the SGSCATTER procedure.

New Statements for the SGPLOT and SGPANEL Procedures

New Statements in SAS 9.4

- The INSET statement in the SGPANEL procedure adds a text box to each panel cell of the graph. You specify one or more variables to use for the data-driven text inside the inset.

- The BLOCK statement creates a plot that highlights ranges. This highlight can extend to the height of the plot area, or it can be represented as blocks along the axis. The BLOCK statement has been added to the SGPLOT and SGPANEL procedures.

- The STYLEATTRS statement specifies group attributes for a graph. The statement enables you to change group colors, markers, and so on, within the procedure, and without having to change the ODS style template. See “Changes to the Appearance of Grouped Data” on page xiv.

- The XAXISTABLE and YAXISTABLE statements create an axis-aligned row or column of textual data. The XAXISTABLE and YAXISTABLE statements place data values at specific locations inside or outside of the axis. The statements are available only in the SGPLOT procedure.
New Statements in SAS 9.4M1

The following new statements were added in SAS 9.4M1.

- FRINGE creates a fringe plot on the X or X2 axis of a plot.
- DROPLINE creates one or more drop lines from data points to one or both axes. The lines can be horizontal, vertical, or both.
- POLYGON creates a polygon plot from data stored in a data set.
- You can define your own marker symbols to be used in plots that contain markers.
  - The SYMBOLCHAR statement defines a marker symbol using a Unicode character.
  - The SYMBOLIMAGE statement defines a marker symbol using an image that exists in the local file system.

New Statements in SAS 9.4M2

The following new statements were added in SAS 9.4M2.

- The GRADLEGEND statement maps the data range of a response variable to a range of colors. See "New Gradient Legend" on page xxviii.
- The TEXT statement displays the associated text from the column at the (x, y) location. The text can be numbers or characters.

New Statements in SAS 9.4M3

The following new statements were added in SAS 9.4M3.

- The HBARBASIC and VBARBASIC statements create bar charts that are compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.
- The SPLINE statement creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.
- The HEATMAP and HEATMAPPARM statements create heat maps, in which data values are represented as rectangular regions with varying colors.
New Statements in SAS 9.4M4

The following new statements were added in SAS 9.4M4.

- The ELLIPSE statement was added to the SGPANEL procedure. The statement adds a confidence or prediction ellipse to a primary plot.

- A new ELLIPSEPARM statement was added to the SGPlot and SGPANEL procedures. The ELLIPSEPARM statement plots an ellipse with specified axis lengths, a specified slope for the major axis, and the ellipse center. The ELLIPSEPARM statement does not perform computations on input data to derive the location and shape of the ellipse.

New Statement in SAS 9.4M5

A new LEGENDITEM statement was added to the SGPLOT and SGPANEL procedures in SAS 9.4M5. The statement creates a legend item that can be included in the legend.

Updates to Plots and Charts

General Plot Updates

The following options and enhancements have been added to multiple plot statements in the SGPANEL and SGPlot procedures:

- The SPLITCHAR= option enables you to split the text for data labels or curve labels when there is not enough room to display the text normally. This option applies to any plot statement that supports data labels or curve labels.

- The SPLITCHARNODROP and SPLITJUSTIFY= options specify the appearance of text that has been split using the SPLITCHAR= option.

  For vertical bar charts, you can specify split options for the data labels that appear above the bars by using the DATALABELFITPOLICY= option. The default for the display of the data labels has been changed to AUTO.

- The STAT= option supports two new values: MEDIAN and PERCENT. This option applies to bar charts, line plots, and dot plots.
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT or PROC SGPANEL statement.

Previously, the DATALABELPOS= option was available only with vertical bar and vertical line plots in the SGPLOT procedure. The option is now also available with a large number of plots.

The DATALABELPOS= option is also available in the SGSCATTER procedure.

The DATALABELPOS= option specifies the location of the data labels. This option also turns off the automatic data label placement for collision avoidance.

The following options and enhancements have been added to multiple plot statements in the SGPANEL, SGPLOT, and SGSCATTER procedures:

- When your graph contains filled markers, such as those found in scatter plots, you can now change the appearance of both the marker fill and its outline.

  The following new options are provided:
  - FILLEDOUTLINEDMARKERS specifies that filled markers have a fill and an outline.
  - MARKERFILLATTRS= specifies the attributes of the marker fill.
  - MARKEROUTLINEATTRS= specifies the color and thickness of the marker outline.

  These options are available for the DOT, SCATTER, SERIES, and STEP plots in the SGPANEL and SGPLOT procedures. They are also available for the PLOT and COMPARE statements in the SGSCATTER procedure.

- A new TIP= option adds data tips to various charts and plots. You can apply formats and labels to the data tips using the TIPFORMAT= and TIPLABEL= options.

  An AUTOITEMSIZE option changes the size of the markers in legends in proportion to the font size of the legend labels. This change enables you to control the size of the markers in your legends. The AUTOITEMSIZE option has been added to the KEYLEGEND statement in the SGPANEL and SGPLOT procedures. It has also been added to the LEGEND option in theCOMPARE and PLOT statements in the SGSCATTER procedure.

Updates to Individual Plots

The following options and enhancements are specific to particular statements:

- An OPAQUE option has been added to the KEYLEGEND statement in the SGPLOT procedure. This feature is useful when the legend is positioned within the graph area, and you want to hide the graphics elements that are behind the legend.

- The SMOOTHCONNECT option has been added to the SERIES plot statement. This option specifies that a smoothed line passes through all vertices.

- Limits can be displayed in bar charts when the bars are grouped.
In bar charts, you can add limit lines to the plot. Previously, if you used the GROUP= option in the HBAR or VBAR plot statement, the limits were ignored. Now, the limit lines appear if you also specify GROUPDISPLAY=CLUSTER.

- The OUTLINEATTRS= option has been added to bar charts. This option specifies the appearance of the outlines for your bars. The option is available with the HBAR, HBARPARM, VBAR, and VBARPARM statements.

- The LABEL= option in the REFLINE plot now accepts a variable for the label value. This label variable is used only when a variable is used for the REFLINE value.

- In the SGPLOT procedure, bar charts now support assignment of secondary X2 and Y2 axes.
  
  This change affects the following plot statements: HBAR, HBARPARM, VBAR, and VBARPARM.

- An INTBOXWIDTH= option has been added to box plots in the SGPLOT and SGPANEL procedures. This feature specifies the box width when an interval category variable is specified for the plot.

  This change affects the HBOX and VBOX statements.

- The JITTER option specifies that scatter plot data markers are jittered when multiple observations have the same response value. When used with fit plots, the JITTER option affects only the scatter plot that is drawn with the fit plot.

  This option affects the following plot statements in the SGPANEL and SGPLOT procedures: SCATTER, LOESS, PBSPLINE, REG. In addition, the JITTER option is available in the PLOT and COMPARE statements in the SGSCATTER procedure.

Updates to the PROC Statements

The following options and enhancements are specific to the procedure (PROC) statements:

- The PCTLEVEL= option specifies the scope of graph data that is calculated in percentages. The PCTNDEC= option specifies the number of decimal spaces to be used to calculate the percent values. These options take effect when the procedure contains a plot statement that specifies a percentage statistical calculation.

  The PCTLEVEL= option applies to the PROC SGPANEL and PROC SGPLOT statements.

- The ASPECT= option specifies the aspect ratio of the plot's wall area.

  The ASPECT= option applies to the PROC SGPANEL and PROC SGPLOT statements, and is also available in the PLOT statement in the SGSCATTER procedure.

- The NOSUBPIXEL | SUBPIXEL option specifies whether subpixel rendering should be used for rendering plots and bars.

  This option applies to the PROC SGPANEL, the PROC SGPLOT, and the PROC SGSCATTER statements.
Updates to Panels in the SGPANEL Procedure

The PANELBY statement PROC SGPANEL support several new options:

- The HEADERATTRS= option specifies text attributes for column headings.
- The NOHEADER option hides the cell headings. This option is useful when a legend is displayed for the plot.
- The SKIPEMPTYCELLS option specifies whether the external axes skip the empty cells in a partially filled grid.
- The SORT= option specifies the sort order of the panel cells.
- The PROPORTIONAL option changes the size of the cells in proportion to the content of the discrete axis.

Plot and Chart Updates in SAS 9.4M1

These updates apply to the SGPLOT and SGPANEL procedures:

- The DATASKIN= option has been added to the following plot types: DOT, DROPLINE, HBOX, VBOX, HLINE, VLINE, HIGHLOW, REFLINE, NEEDLE, SERIES, STEP, and VECTOR
- Support has been added to the TIP= option to suppress data tips from elements of a plot. Specify TIP=NONE in the plot statement. The list is as follows: DOT, HBOX, VBOX, HLINE, VLINE, HIGHLOW, HISTOGRAM, REFLINE, NEEDLE, SERIES, STEP, and VECTOR
- Box plots can now be combined with any other basic plot types. You can combine box plots with reference lines and other box plots, as well as with the following plot statements:

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Alternate Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>HIGHLow</td>
</tr>
<tr>
<td>BLOCK</td>
<td>NEEDLE</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>SCATTER</td>
</tr>
<tr>
<td>HBARPARm</td>
<td>SERIES</td>
</tr>
</tbody>
</table>

- The DATALABEL option has been added to histograms. This option enables you to display a statistic at the end of each bin.
- When using the CATEGORYORDER= option in the past, the option was ignored if you also specified a group variable. This restriction has been removed. The
CATEGORYORDER= is available with the following plots: DOT, HBAR, HLINE, VBAR, and VLINE.

- The SCATTER statement has a new LABELSTRIP option that strips leading and trailing blanks from marker characters or data labels. This feature helps center each string relative to its data point.
- BASELINE= specifies the response axis intercept for the baseline in bar charts. The BASELINEATTRS= option controls the visual attributes of the baseline.
- The WEIGHT= option has been added to box plots, density plots, and histograms.
- The NOERRORCAPS option suppresses the serif cap on error bars when they are displayed in scatter and step plots.

**Enhancements to the SGRENDER Procedure in SAS 9.4M1**

A discrete attribute map can be defined outside of the StatGraph template and applied to the rendered output. The following enhancements have been added to the SGRENDER procedure to support this new feature:

- The DATTRMAP= option specifies a data set that contains discrete attribute map descriptions. The attribute map descriptions are read from the data set and are rendered in the graph output.
- The DATTRVAR statement specifies one or more input variables to be associated with an attribute map at run time.

**Plot and Chart Updates in SAS 9.4M2**

In the SGPANEL procedure, the INSET statement has been enhanced with two new options:

- The SEPARATOR= option specifies one or more characters to place between the data label and the data value.
- The NOLABEL option suppresses the data label from the text.

The following updates apply to the SGPLOT and SGPANEL procedures:

- The WHISKERPCT= option has been added to HBOX and VBOX statements. This option specifies the whisker length in percentile units.
- The TRANSPARENCY= option has been added to the PBSPLINE, REG, and LOESS statements.
The FILLTYPE= option has been added to bar charts and histograms. This option enables you to specify a color gradient for the fill.

The GROUP= option has been added to histograms and density plots.

Bar charts include new options that enable and control the appearance of labels added to bar segments. For a grouped bar chart when GROUPDISPLAY=STACK, these options display and format a label inside each bar segment.

- SEGLABEL displays a label inside each segment of a stacked bar.
- SEGLABELATTRS= specifies the text properties of the bar segment label text.
- SEGLABELFITPOLICY= specifies a policy for fitting the bar segment labels within the bar segments.
- SEGLABELFORMAT= specifies the text format used to display the bar segment labels.

The JITTERWIDTH= option has been added to the SCATTER statement.

The SERIES plot statement includes four group options that give you additional control over grouped output.

- GROUPLC= specifies a variable that determines the line colors for the grouped series plot.
- GROUPLP= specifies a variable that determines the line patterns for the grouped series plot.
- GROUPMC= specifies a variable that determines the marker colors for the grouped series plot.
- GROUPMS= specifies a variable that determines the marker symbols for the grouped series plot.

The LINELENGTH= option has been added to the KEYLEGEND statement. This option specifies the length of the line glyph for line entries in the legend.

The TYPE= option has been added to the KEYLEGEND statement. This option specifies which visual attributes to display for legend entries in the legend.

The SORTORDER= option specifies the sort order to use for the legend entry labels. This option has been added to the KEYLEGEND statements for the SGPLOT and SGPANEL procedures. The option has also been added to the LEGEND option of theCOMPARE, MATRIX, and PLOT statements in the SGSCATTER procedure.

Plot and Chart Updates in SAS 9.4M3

SGPLOT and SGPANEL Procedures

These updates apply to the SGPLOT and SGPANEL procedures:
The following options have been added to the BUBBLE statement:

- The ABSSCALE option specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.
- The DRAWORDER= option specifies whether the bubbles are drawn according to bubble size or according to data order.

The following options have been added to the KEYLEGEND statement:

- The EXCLUDE= option specifies a list of legend entries to exclude from the display.
- The AUTOOUTLINE=, FILLASPECT=, FILLHEIGHT=, and SCALE= options control the size and appearance of the fill markers in the legend.

The TEXT statement has the following new options for sizing the font in text markers when a response variable is used to specify the size:

- SIZERESPONSE= specifies a response variable that is used to determine the font size for each text value.
- SIZEMIN= and SIZEMAX= limit the minimum and maximum font size for the text values.
- SIZEMAXRESPONSE= specifies the response value that corresponds to the maximum font size for text markers.

The GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse data order of the group variable.

The SERIES, STEP, and VECTOR statements enable you specify a response variable to control the thickness of the lines in your grouped plot.

The following options were added:

- THICKRESP= specifies a response variable that is used to map a line thickness to each group value.
- THICKMAX= specifies the maximum line thickness when a response variable is used.
- THICKMAXRESP= specifies the response value that corresponds to the maximum line thickness.

The SERIES and STEP statements support arrowheads added to the lines.

The following options were added:

- ARROWHEADPOS= specifies a position for arrowheads.
- ARROWHEADSCALE= specifies an arrowhead scale factor based on the thickness of the arrow line.
- ARROWHEADSHAPE= specifies a shape for arrowheads.

The COLORRESPONSE= and COLORMODEL= options were added to the following plots: DOT, HBAR, HBARBASIC, HBARPARM, HIGHLOW, SERIES, VBAR, VBARBASIC, VBARPARM, VECTOR, WATERFALL (SGPLOT procedure only).

A COLORSTAT option was added to DOT, HBAR, HBARBASIC, VBAR, and VBARBASIC charts. The COLORSTAT option specifies a statistic to determine the chart colors.
The NOZEROBARS option was added to HBAR, HBARBASIC, HBARPARM, VBAR, VBABAR BASIC, and VBARPARM charts. This option suppresses zero-length bars (bars that have a length of 0).

In the previous maintenance release, the SERIES plot statement included four group options that give you additional control over grouped output. SAS 9.4M3 enables you to associate those group variables with an attribute map.

The following attribute ID variables were added:
- `LCATTRID=` associates the `GROUPLC=` variable with an attribute map ID.
- `LPATTRID=` associates the `GROUPLP=` variable with an attribute map ID.
- `MCATTRID=` associates the `GROUPMC=` variable with an attribute map ID.
- `MSATTRID=` associates the `GROUPMS=` variable with an attribute map ID.

SGPANEL Procedure

These updates apply to the SGPANEL procedure only:
- The `HEADERBACKCOLOR=` option was added to the PANELBY statement. The option specifies a background color for the cell headers.
- The `NOHEADERBORDER` option was added to the PANELBY statement. This option removes the border from the cell headings.

Updates to the PROC Statements

The range restriction was removed from the `ASPECT` option in the SGPLOT statement, the SGPANEL statement, and the PLOT statement in the SGSCATTER procedure. Previously, the range was constrained to 0.0 – 1.

Updates in SAS 9.4M4

In addition to the new plot statements on page xvii, the following updates were made in SAS 9.4M4:
- The `NBINSMAX` and `NXYBINSMAX` options were added to the ODS GRAPHICS statement. These options specify the maximum number of bins that are processed for histograms and heat maps, respectively.
- The accessibility topic in the SAS ODS Graphics: Procedures Guide was enhanced with information about the accessibility of the graphs that you create with the procedures.
Updates in SAS 9.4M5

In addition to the new LEGENDITEM statement, the following updates were made in SAS 9.4M5.

These changes were made to ODS Graphics:

- Vector graphics output can be generated for text plot back light, background fill, and background outline.
  
  For a table showing the cases for which vector graphics output can be generated, see Table 5.12 on page 122.

- Image maps are supported with vector graphics when using HTML5. Image maps are enabled by specifying the IMAGemap option in the ODS GRAPHICS statement.

- If a BY statement is in effect for the data, then you can uniquely name image files based on BY iterations by inserting #BY substitution items into the image file name. You can specify BY variable values, BY variable names, or BY lines for the IMAGENAME= option in the ODS GRAPHICS statement.

- The following options were added to the ODS GRAPHICS statement:
  
  - The OBSMAX= option specifies the maximum number of observations that are processed. If the number of observations in the data set exceeds the value specified for OBSMAX=, the procedure step terminates with a log message.
  
  - The TOTALCELLMAX= option specifies the maximum number of cells in a graph where the number of cells is determined dynamically by classification variables.
  
  - The LINEPATTERNOBSMAX= option specifies the maximum number of vertices for a patterned line.

The following changes apply to the SGPLOT and SGPANEL procedures unless otherwise specified:

- The FILLPATTERN and FILLPATTERNATTRS options were added to several plot types. These options enable you to display and change the appearance of line fill patterns in the plot.

  The options are available with the following types of plots:

<table>
<thead>
<tr>
<th>BAND</th>
<th>HBARBASIC</th>
<th>POLYGON</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUBBLE</td>
<td>HBARPARM</td>
<td>VBAR</td>
</tr>
<tr>
<td>ELLIPSE</td>
<td>HBOX</td>
<td>VBARBASIC</td>
</tr>
<tr>
<td>ELLIPSEPARM</td>
<td>HIGHLow</td>
<td>VBARPARM</td>
</tr>
<tr>
<td>HBAR</td>
<td>HISTOGRAM</td>
<td>VBOX</td>
</tr>
</tbody>
</table>

- The following enhancements apply to categorical charts (dot, bar, and line charts):
  
  - The URL= option has been enhanced. If your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable.
The LIMITCAPSCALE= option enables you to change the default width of the limit-bar cap.

For horizontal bar charts, the DATALABELFITPOLICY= accepts a new INSIDEPREFERRED value. This value places the bar labels inside the bar unless there is not enough room.

Bar charts and histograms support enhancements for controlling the chart’s fill:

- The FILLTYPE= option accepts the ALPHAGRADIENT argument. When this argument is used, each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.
- The FILLENDCOLOR= option was added. This option specifies a fill color that is applied to the chart at the baseline. This option is used when FILLTYPE=GRADIENT.

In bar charts and needle plots, the DISPLAYBASELINE= option enables you to control whether the baseline is displayed.

The CAPSCALE= option was added to box plots. This option enables you to change the default width of the whisker cap.

The ERRORCAPSCALE= option was added to scatter and step plots. This option enables you to change the default width of the error-bar cap.

The OPAQUE option was added to the INSET statement in the SGPLOT procedure. (The SG PANEL procedure already has the OPAQUE option.)

In the TEXT statement, the POSITION option accepts a variable argument. You can specify either a position option or the name of a variable that contains one or more position options.

The DISCRETETHICKNESS= option was added to the REFLINE statement. This option enables you to specify the line thickness as a percentage of the mid-point spacing.

In scatter plots, the JITTER option accepts a UNIFORM argument. JITTER=UNIFORM specifies that data markers should first be jittered and then squeezed together uniformly across all category values. If UNIFORM is not specified, data markers are squeezed together only for those categories whose data markers cannot fit within the jittering space.

The DISPLAYSTATS option was added to the HBOX and VBOX statements. This option enables you to display one or more statistics for each box in the plot.

The PROPORTIONAL option was added to the BUBBLE statement. This option specifies that proportional scaling be applied to the bubble size values.

The DATAFILLPATTERNS= option was added to the STYLEATTRS statement. When this option is specified, the fill patterns rotate through the specified fill-pattern list rather than through the fill patterns that are defined in the GraphData1 ... GraphDataN style elements.

The DATALABELATTRS= option was added to the HISTOGRAM statement. This option enables you to control the font properties of data labels.

The REVERSEAUTO value was added to the SORTORDER option in the KEYLEGEND statement. Specifying this value reverses the order of the legend entry labels.

The following enhancements apply to the axis statements:
The TICKSTYLE= option was added to all axis statements. This option enables you to control the placement of tick marks in relation to the axis line. This option applies only to the SGPLOT procedure.

In the X-axis statements, the VALUESROTATE= option supports a DIAGONAL2 argument. This argument rotates the tick values to a reverse diagonal angle.

In the X-axis statements, the FITPOLICY= option supports the STACKEDALWAYS and STACKEDALWAYSTHIN arguments. These arguments stack the tick mark values vertically. The STACKEDALWAYSTHIN argument applies a thinning algorithm if a collision is detected after stacking.

---

New SGPIE Procedure in SAS 9.4M6

A new SGPIE procedure enables you to create pie and donut charts. This procedure is considered preproduction. The SGPIE procedure is supported only on 64-bit Windows systems and on 64-bit Linux systems.

---

Updates in SAS Viya 3.5

The following changes apply to the SGPLOT and SGPANEL procedures:

- The NOLIMITCAPS option was added to the DOT, HLINE, and VLINE statements. This option suppresses the serif cap on limit lines.

- In the fit plots (LOESS, REG, and PBSPLINE), the FILL | NOFILL and OUTLINE | NOOUTLINE suboptions were added to the CLIATTRS= option and the CLMATTRS= option. These suboptions give you more control over the display of confidence band features. You can now easily specify fills, outlines, and their attributes.

The STATFMT= option was added to the PIE and DONUT statements in the SGPIE procedure. This option specifies the format of the displayed statistical value in the pie or donut chart.

---

Axis Update in SAS 9.4M7

The ROTATEALWAYS suboption was added to the FITPOLICY option for all horizontal axes in the SGPLOT and SGPANEL procedures. When this suboption is used, the tick value text is always rotated, even when there is enough room to draw the text normally.
New Gradient Legend

The ability to generate a gradient legend was added in SAS 9.4M2. A gradient legend maps the data range of a response variable to a range of colors.

Gradient legends can be used with the following plot statements:
- SCATTER, TEXT, BUBBLE, and POLYGON statements in the SGPLOT and SGPANEL procedures
- PLOT, COMPARE, and MATRIX statements in the SGSCATTER procedure

To generate the gradient legend, specify the COLORRESPONSE= option in any of those statements. The COLORRESPONSE= option indicates the numeric variable that is used to map colors to a gradient. The COLORRESPONSE= option is used in conjunction with the GRADLEGEND statement in the SGPLOT and SGPANEL procedures. The GRADLEGEND statement can associate the gradient legend with a plot statement and can specify options for the legend. In the SGSCATTER procedure, a GRADLEGEND= option is used in the PLOT, COMPARE, and MATRIX statements to control the title, position, and border of the legend.

The INTEGER option was added in SAS 9.4M3. This option specifies that integers are used for the gradient legend.

Axis Updates

Axis Updates in SAS 9.4

The XAXIS, X2AXIS (SGPLOT procedure), and COLAXIS (SGPANEL procedure) statements support several new options:
- The SPLITCHAR= option enables you to split the text for tick values when there is not enough room to display the text normally.
- The SPLITCHARNODROP and SPLITJUSTIFY= options specify the appearance of text that has been split using the SPLITCHAR= option.

All axes in the SGPANEL and SGPLOT procedures have the following changes and new options:
- The default behavior for the tick values has changed for character values. The new default fit policy is SPLITROTATE.
- The LABELPOS= option specifies the position of the axis label. For X axes, the label can be positioned left, right, or center. For Y axes, the label can be positioned top, bottom, or center. Labels can be centered over the plot axis area.
or over the data area. When positioned at the top or bottom of the Y axis, the label is oriented horizontally (unrotated).

- You can specify split options as part of the fit policy by using the FITPOLICY= option.

- The following enhancements affect minor tick marks.
  - The MINOR option now adds minor tick marks to a linear, log, or time axis. Previously, the option affected only log and time axes.
  - MINORCOUNT= adds minor tick marks and specifies the number of minor tick marks for the axis.
  - For a time axis, MINORINTERVAL= adds minor tick marks and specifies the time interval between minor ticks.

- The DISCRETEORDER= option applies to any plot with a discrete axis. Previously, the option applied only to box plots, dot plots, bar charts, and line plots, or for any axis where TYPE=DISCRETE.

- The VALUES= option specifies tick values for the axis. The VALUES= option has been enhanced as follows:
  - Values can be specified for discrete axes. The values can be numeric or character.
  - Logarithmic axis values are now supported. In addition, a new option called LOGVTYPE= controls how the values in the VALUES= option and the MIN= and MAX= options are interpreted. The values can be interpreted as decimal numbers or as exponents.

- A new VALUESDISPLAY option specifies replacement text for the values that are specified in the VALUES= option.

- The TICKVALUEFORMAT= option was renamed VALUESFORMAT=.

- For discrete axes, the COLORBANDS= option specifies the display of alternating color bands corresponding to the discrete axis bins. You can use the COLORBANDATTRS= option to customize the color bands.

The axes in the SGPLOT and SGSCATTER procedures have an enhancement to the REFTICKS option. You can now specify whether labels and values are added to the tick marks. (This feature already exists for the axes in the SGPANEL procedure.) In the SGSCATTER procedure, the REFTICKS option applies to the COMPARE and PLOT statements.

---

### Axis Updates in SAS 9.4M2

In the SGPLOT procedure, the RANGES= option specifies the ranges for a broken axis.

In the SGPLOT and SGPANEL procedures, specifying the MINORCOUNT= option no longer adds minor tick marks to the axis. You can use the MINOR option to add tick marks.

Options have been added for managing grid lines. The following options have been added to the axis statements for the SGPLOT and SGPANEL procedures. They
have also been added to the PLOT and COMPARE statements in the SGSCATTER procedure:

- GRIDATTRS= enables you to modify the visual attributes of grid lines.
- MINORGRID enables grid lines for minor tick marks.
- MINORGRIDATTRS= enables you to modify the visual attributes of the minor grid lines.

Axis Updates in SAS 9.4M3

Axes in the SGPANEL and SGPLOT procedures have the following changes and new options starting with SAS 9.4M3:

- The VALUESFORMAT= option now supports discrete and logarithmic axes.
- The VALUESROTATE= option was added to the X axes. This option rotates tick values diagonally or vertically when a ROTATE fit policy is used.
- The VALUESHALIGN= option was added to the Y axes. This option specifies the horizontal alignment for all of the tick values that are displayed on the axis.
- Bar charts now support a linear category axis. You can specify TYPE=LINEAR in the axis statement.

Axis Table Updates

Starting with SAS 9.4M1, axis tables support the TEXTGROUP= option, which customizes the text attributes of a graph based on group values. You specify this option only if you are using an attribute map to control visual attributes of the graph. A TEXTGROUPID= option specifies an attribute ID for the TEXTGROUP= option.

The following enhancements were made in SAS 9.4M2.

- DROPONMISSING specifies that the entire axis table is dropped when all of the values are missing.
- The CLASSDISPLAY= option controls whether the class values are clustered or stacked.
- The following options have been added to give you control over text alignment in Y-axis tables:

  - LABELHALIGN= specifies the horizontal alignment of the column labels, when displayed.
  - LABELJUSTIFY= specifies the justification of the column labels.
  - VALUEHALIGN= specifies the horizontal alignment of the column values relative to the column width
  - VALUEJUSTIFY= specifies the justification of the column values relative to the column width
The following enhancements were made in SAS 9.4M3.

- Axis tables are supported in the SGPANEL procedure. The COLAXISTABLE and ROWAXISTABLE statements were added.
- The CLASSORDER= option controls the order in which the class values are displayed.
- The LABEL="<text-string"> option enables you to specify the text that is used for table labels.
- The following indentation options have been added. These options apply to the SGPLOT procedure only.
  - INDENT= specifies a value to be used with the INDENTWEIGHT= option to determine the indention for each text value.
  - INDENTWEIGHT= specifies the indention weight (multiplier) for each observation.
- The PAD= option specifies the amount of extra space that is added inside the table border.
- The NOMISSINGCLASS option specifies that missing values of the class variable are not included in the axis table.
- The NOMISSINGCHAR option suppresses the display of the MISSING character (.) for missing numeric values.
- The TITLEHALIGN= and TITLEJUSTIFY= options were added to the YAXISTABLE and ROWAXISTABLE statements. These options specify title alignment and justification, respectively.

Annotation Updates in SAS 9.4M1

- You can use annotation macros within a SAS DATA step to simplify the process of creating annotation observations.
- Annotations now support the URL option for linking to websites.
- New LINESTYLEELEMENT=, FILLSTYLEELEMENT=, and TEXTSTYLEELEMENT= options enable you to specify style elements for the lines, fills, and text annotations.

Attribute Map Updates

Starting in SAS 9.4M1, attribute maps support the following new variables:

- LINETHICKNESS=, MARKERSIZE=, and TRANSPARENCY=
- TEXTCOLOR=, TEXTFAMILY=, TEXTSTYLE=, TEXTSTYLEELEMENT=, and TEXTWEIGHT=. These attributes can be applied only to axis tables.
Starting with **SAS 9.4M3**, attribute maps support the following features:

- Range attribute maps are now available. Range attribute maps enable you to map ranges of continuous numeric values to graphical properties.
- The following variables were added to discrete attribute map data sets:
  - **NOCASE=** specifies whether value comparisons in the attribute map are case sensitive.
  - **SHOW=** specifies whether values in the attribute map are displayed in the legend. You can display all attribute map values or only the values for which there is data.
Accessibility

Accessibility Features of ODS Graphics Procedures

Overview

The ODS Graphics Procedures have been tested against the accessibility standards for electronic information technology that were adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act of 1973 (2008 draft proposal initiative update). The procedures are also tested against Web Content Accessibility Guidelines (WCAG) 2.0, part of the Web Accessibility Initiative (WAI) of the Worldwide Web Consortium (W3C). For detailed information about the accessibility of this product, send email to accessibility@sas.com, or call SAS Technical Support.

Documentation Format

Please contact accessibility@sas.com if you need this document in an alternative digital format.

Creation of Accessible Graphs

For information about generating accessible graphs using the procedures in conjunction with the Output Delivery System (ODS) and ODS Graphics software, see Creating Accessible SAS Output Using ODS and ODS Graphics.
Accessibility
PART 1

Getting Started

Chapter 1
Get Started Using the ODS Graphics Procedures .................................. 3

Chapter 2
Gallery of Plots and Charts ............................................................... 15
Get Started Using the ODS Graphics Procedures

About the SAS ODS Graphics Procedures

Summary of the Procedures
- Procedures That Create Graphs and Panels
- Procedure That Creates Geographical Maps
- Procedures That Render Graphs That Are Defined Externally
- Facilities Used to Customize and Annotate Procedure Output

Example: Create Your First Graph
- About This Example
- Code for the Example
- Output

Common Tasks Associated with Using the Procedures
- Setting the Output Environment
- Creating Graphs
- Enhancing Graphs

Where to Go from Here

About the SAS ODS Graphics Procedures

The ODS Graphics procedures, sometimes called Statistical Graphics procedures, use ODS Graphics functionality to produce plots for exploratory data analysis and for customized statistical displays. The procedures support statistical analysis and create simple or complex graphical views of your data. Though the procedures were initially designed to facilitate the production of standard statistical graphs, the procedures are also well suited for the production of non-statistical or business graphs.
The procedures provide a simple, high-level syntax that enables you to produce sophisticated graphs by using a wide array of plot types and layouts. You can create scatter plots, histograms, bar charts, box plots, classification panels, scatter plot matrices, and many other types of statistical and business graphs. Your graphs can have titles, footnotes, legends, and other graphics elements.

The ODS Graphics procedures create graphs that are based on the SAS Graph Template Language (GTL). However, you do not need to know the details of templates and the GTL in order to use the ODS Graphics procedures. With very little coding effort, you can use the procedures to create the most commonly used graphs that are supported by the GTL.

The following table lists the ODS Graphics procedures that are included with Base SAS.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPLOT</td>
<td>Creates single-cell plots with a variety of plot and chart types and overlays. The SGPLOT procedure is described in this document.</td>
</tr>
<tr>
<td>SGPIE</td>
<td>Creates pie and donut charts. The SGPIE procedure is described in this document.</td>
</tr>
<tr>
<td>SGMAP</td>
<td>Creates geographical maps. The SGMAP procedure is described in “SGMAP Procedure” in SAS/GRAPH and Base SAS: Mapping Reference.</td>
</tr>
<tr>
<td>SGPANEL</td>
<td>Creates classification panels for one or more classification variables. The SGPANEL procedure is described in this document.</td>
</tr>
<tr>
<td>SGSCATTER</td>
<td>Creates scatter plot panels and scatter plot matrices with optional fits and ellipses. The SGSCATTER procedure is described in this document.</td>
</tr>
<tr>
<td>SGDESIGN</td>
<td>Creates graphical output based on a graph file that has been created by using the ODS Graphics Designer application. The SGDESIGN procedure is described in this document.</td>
</tr>
<tr>
<td>SGRENDER</td>
<td>Renders graphs from graph templates, which are written in the Graph Template Language (GTL). The SGRENDER procedure is described in this document. GTL is described in SAS Graph Template Language: User’s Guide and SAS Graph Template Language: Reference.</td>
</tr>
</tbody>
</table>

For more information about these procedures, see “Summary of the Procedures” on page 5.

An ODS destination must be open to create output from these procedures. In SAS Studio, the ODS HTML5, ODS RTF, and ODS PDF destinations are open by default. The HTML output is displayed automatically when you execute the procedure. In addition, you can use the ODS GRAPHICS statement options along with the ODS
destination statements to control many aspects of your graphics. For more information, see Chapter 16, “Managing Your Graphics with ODS,” on page 1717.

Summary of the Procedures

Procedures That Create Graphs and Panels

Here are the ODS Graphics procedures that create graphs:

**SGPLOT**
creates single-cell plots with a variety of plot and chart types and overlays.

![Histogram and Kernel Density Estimation](image)


**SGPIE**
Introduced with SAS 9.4M6, the SGPIE procedure includes the ability to create pie and donut charts. This procedure is considered preproduction.

Here is a pie chart.
SGPANEL creates classification panels for one or more classification variables. The layout contains paneled cells determined by the classification variables. Each panel can contain either a simple plot or multiple, overlaid plots. All panels are the same size. Changes that you make to plot attributes, such as line patterns and fill colors, apply to all panels in the graph.

Here is a graph with three panels.

Note: The SGPLOT and SGPANEL procedures largely support the same types of plots and charts. For this reason, the two procedures have an almost identical syntax. The main distinction between the two procedures is that the SGPANEL procedure produces a panel of graphs, one for each level of a classification variable.

See “Creating Multi-Cell Classification Panels” on page 69.

SGSCATTER creates scatter plot panels and scatter plot matrices with optional fits and ellipses. The following example shows a paneled graph of scatter plots.
Procedure That Creates Geographical Maps

Starting with SAS 9.4M5, the SGMAP procedure is included with Base SAS. This procedure provides concise syntax for creating geographical maps. You can also overlay plots such as scatter plots, bubble plots, and text plots onto the map.

Note: This document does not describe the SGMAP procedure. For complete documentation about the SGMAP procedure, see “SGMAP Procedure” in SAS/GRAPH and Base SAS: Mapping Reference.

Procedures That Render Graphs That Are Defined Externally

Some of the procedures can render graphical output from external sources, such as the Graph Template Language (GTL) and, in SAS 9.4M7 and earlier releases, the SAS ODS Graphics Designer and SAS ODS Graphics Editor.

Note:
- Starting with SAS 9.4M8, the ODS Graphics Designer is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- The ODS Graphics Designer is not included in SAS Viya.
- Starting with SAS 9.4M8, the ODS Graphics Editor is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- The ODS Graphics Editor is not included in SAS Viya.
Here are the ODS Graphics procedures:

**SGDESIGN**
creates graphical output based on a graph file that has been created by using the ODS Graphics Designer application.

*Note:* This procedure is not available in SAS Viya.

See “Producing Graphs That Were Created with ODS Graphics Designer” on page 73.

**SGRENDER**
produces graphs from graph templates that are written in the GTL. You can also render a graph from a SAS ODS Graphics Editor (SGE) file.

See “Rendering Graphs from GTL Templates or ODS Graphics Editor Files” on page 71.

---

**Facilities Used to Customize and Annotate Procedure Output**

The procedures have two facilities that enable you to modify graph output:

- The SG annotation feature enables you to add text, shapes, images, and other annotations to graph output.
- SG attribute maps enable you to control the visual attributes that are applied to specific data values in your graphs. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data rather than the position of the data in the data set.

---

**Example: Create Your First Graph**

**About This Example**

This example produces a simple bar chart that shows the mean highway miles per gallon for various types of vehicles. A bar chart summarizes the values of a category variable. In this example, the bars in the chart are grouped by country of origin. The example takes you through the basic steps that are needed to create a chart or plot using the SGPLOT procedure.

In this example, you perform the following tasks:

- use the ODS statement to specify the ODS destination, the graph’s style, and the graph’s file name.
- use the ODS GRAPHICS statement to specify the graph size.
Example: Create Your First Graph

- use the TITLE and FOOTNOTE statements to add a title and footnote to the graph.
- use the SGPLOT procedure to identify the data and create the bar chart. You specify the mean statistic to use for the chart’s response variable. You also specify the variable used to group the data.
  
  Finally, you specify a custom label for the Y axis.

Using what you learn from this example, you can begin exploring how to create other charts and plots with the procedures.

---

### Code for the Example

```sas
ods html5 (id=web) style=daisy path="file-path" /* 1 */
ods graphics / width=4.5in; /* 2 */
title "Mean Highway MPG By Vehicle Type and Origin"; /* 3 */
footnote "Data: SASHELP.CARS";
proc sgplot data=sashelp.cars (where=(type ne 'Hybrid')); /* 4 */
 vbar type / response=mpg_highway /* 5 */
 stat=mean
 group=origin
 groupdisplay=cluster;
 yaxis label="Mean Highway MPG"; /* 6 */
run;

title; /* 7 */
footnote;
ods graphics / reset; /* 8 */
ods html5 (id=web) close; /* 9 */
```

1. The ODS HTML5 statement opens the HTML5 destination if it is not already open and sets the ODS environment.

Here are details about the ODS environment:
- The (ID=WEB) option is required for use only with SAS Studio.

**TIP** If you remove (ID=WEB) from the statement, be sure to also remove it from the ODS HTML5 CLOSE statement at the end of the program.

- The STYLE= option specifies the Daisy style.
If you are using SAS Studio, you can configure the STYLE= option as a default preference.

- You must supply a valid file path and filename. Alternatively, you can omit the PATH= and FILE= options.

2 The WIDTH option of the ODS GRAPHICS statement specifies the graph width.

---

Note: The procedure uses a standard aspect ratio for the graph. If the width is specified but not the height, then the procedure determines the height automatically to maintain the default aspect of the graph.

---

3 The TITLE and FOOTNOTE statements add a title and footnote to the graph.

4 The PROC SGPLOT statement begins the procedure block that defines and creates the graph. The statement also identifies the plot data. In this example, the Sashelp.Cars data set is used. The data is subset to omit hybrid type vehicles.

5 The VBAR statement defines a vertical bar chart. The forward slash (/) and everything that follows it within the VBAR statement are optional. You specify the mean statistic to use for the chart’s response variable. You also specify the variable used to group the data.

Here are the details about the bar chart options:

- The RESPONSE=mpg_highway option specifies that the MPG_Highway variable is used for the response axis (Y axis). If you do not specify a response variable, the procedure displays the frequency count of the category variable.

- The STAT=MEAN option specifies the calculated statistic for the response axis.

- The GROUP=ORIGIN option specifies the variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. In this example, the data is grouped by the country of origin.

- The GROUPDISPLAY=CLUSTER option specifies how to display the grouped bars. By default, groups are stacked in bars without any clustering.

6 The LABEL= option in the YAXIS statement enables you to specify a custom label for the Y axis. The default Y-axis label for this example is MPG (Highway).

7 The TITLE and FOOTNOTE statements cancel the current title and footnote.

8 The ODS GRAPHICS statement resets all options to their defaults. In this example, the global reset includes the graph width.

9 The ODS HTML5 (id=web) CLOSE statement closes the HTML destination.
Common Tasks Associated with Using the Procedures

Setting the Output Environment

Table 1.2  Tasks for Setting the Output Environment

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the style</td>
<td>ODS styles determine the overall appearance of your output. By default, ODS applies a style to all output. A style controls the default colors, fonts, line styles, fill colors, and other presentation aspects. Many of these style attributes can be overridden in the procedure syntax. For more information and sample styles, see “Understanding Styles” on page 1675.</td>
</tr>
<tr>
<td>Learn about image size, format, resolution, and more</td>
<td>The ODS GRAPHICS statement enables ODS Graphics output and controls many aspects of your graphics. ODS GRAPHICS is enabled by default.</td>
</tr>
</tbody>
</table>
Creating Graphs

Table 1.3  Tasks for Creating Graphs

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn about the types of graphs you can create</td>
<td>The plot gallery shows the many plots and charts that you can create with the procedures. See Chapter 2, “Gallery of Plots and Charts,” on page 15.</td>
</tr>
<tr>
<td>Learn about the graph layouts</td>
<td>You can create single-cell graphs, classification panels, and scatter plot matrices. See “Summary of the Procedures” on page 5.</td>
</tr>
<tr>
<td>Overlay plots one on top of the other</td>
<td>You can add multiple plots and reference lines to a graph. Each plot or line is specified in its own plot statement. All overlaid plots must be compatible. See “Plot Type Compatibility” on page 1628.</td>
</tr>
<tr>
<td>Create accessible graphs</td>
<td>You can produce a wide range of plot types that can be read and interpreted by the SAS Graphics Accelerator. See Creating Accessible SAS Output Using ODS and ODS Graphics and SAS Graphics Accelerator: Supported Types of Data Visualizations on the SAS Graphics Accelerator product page on the SAS support site.</td>
</tr>
<tr>
<td>Control graph appearance</td>
<td>The procedures contain many options for controlling the appearance and output of graphics. For example, you can customize labels, markers, fills, lines, and so on. You can also manage the appearance of group data. See Chapter 15, “Controlling the Appearance of Your Graphs,” on page 1673.</td>
</tr>
<tr>
<td>Titles and footnotes</td>
<td>You can specify titles and footnotes for your graphs by using the TITLE and FOOTNOTE global statements. See “TITLE, FOOTNOTE Statements” on page 127.</td>
</tr>
</tbody>
</table>
Task Description

Create legends  The procedures create a legend automatically based on the plot statements and options that you specify. You can create discrete legends and color gradient legends manually. You can also customize the appearance of your legends using the legend options.

See “Legends” on page 1635.

Control the axes  You can change the appearance of the axes, customize axis labels, add grid lines, and more. You can also change an axis type and customize the range of values that are displayed on the axis.

See “Plot Axes” on page 1634.

---

**Enhancing Graphs**

*Table 1.4  Tasks for Enhancing Graphs*

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add data tips and drill-down links</td>
<td>You can add data tips and URL drill-down functionality to your graphs.</td>
</tr>
<tr>
<td></td>
<td>See “Adding Data Tips and Other Features” on page 1727.</td>
</tr>
<tr>
<td>Use persistent attributes</td>
<td>You can use attribute mapping to assign particular graphical properties to specific values or ranges of values regardless of data order or the data range. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data instead of the position of the data in the data set. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country.</td>
</tr>
<tr>
<td>Add annotations</td>
<td>The annotation feature enables you to add text, shapes, images, and other annotations to graph output.</td>
</tr>
</tbody>
</table>
### Where to Go from Here

**Table 1.5  Tasks for Exploration**

<table>
<thead>
<tr>
<th>Task</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explore the charts and plots that you can create with the procedures.</td>
<td>Chapter 2, “Gallery of Plots and Charts,” (p. 15)</td>
</tr>
<tr>
<td>Learn more about the elements of a typical procedure.</td>
<td>Chapter 4, “Elements of a Program,” (p. 81)</td>
</tr>
<tr>
<td>Learn more about the procedures and what they can do.</td>
<td>Chapter 3, “Concepts for Creating Graphs,” (p. 67)</td>
</tr>
<tr>
<td>Learn about ODS destinations and styles.</td>
<td>“About ODS Destinations and Styles” (p. 79)</td>
</tr>
<tr>
<td>Learn about the ODS GRAPHICS statement.</td>
<td>“Using the ODS GRAPHICS Statement” (p. 1722)</td>
</tr>
</tbody>
</table>
Gallery of Plots and Charts

Alphabetical List of Plots and Charts .................................................. 16
See Also .............................................................................................. 16

Basic Plots and Charts ......................................................................... 16
About Basic Plots and Charts .............................................................. 16
About Band Plots .............................................................................. 17
About Block Plots .............................................................................. 18
About Bubble Plots ............................................................................ 19
About Fringe Plots ............................................................................. 20
About Heat Maps ............................................................................... 21
About High-Low Plots ....................................................................... 23
About Lines ....................................................................................... 25
About Needle Plots ........................................................................... 29
About Scatter Plots ........................................................................... 30
About Series Plots ............................................................................ 32
About Spline Plots ............................................................................ 33
About Step Plots ............................................................................... 34
About Text Plots ............................................................................... 36
About Text Insets ............................................................................ 37
About Vector Plots ............................................................................ 39

Fit and Confidence Plots ..................................................................... 40
About Fit and Confidence Plots .......................................................... 40
About Ellipse Plots ........................................................................... 41
About Loess Plots ............................................................................ 42
About Penalized B-Spline Plots ......................................................... 43
About Regression Plots .................................................................... 44

Distribution Plots ............................................................................... 46
About Distribution Plots ................................................................... 46
About Box Plots ................................................................................ 46
About Density Plots ........................................................................... 48
About Histograms ............................................................................. 50

Categorization Plots and Charts ........................................................... 51
About Categorization Plots and Charts ............................................. 51
About Bar Charts .............................................................................. 51
About Dot Plots ................................................................................. 58
About Line Charts ............................................................................. 60
# Alphabetical List of Plots and Charts

The following table lists all of the plots and charts in alphabetical order for easy access. Select a plot or chart to see its description.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band plot</td>
<td>Line, parameterized</td>
</tr>
<tr>
<td>Bar chart</td>
<td>Line, reference</td>
</tr>
<tr>
<td>Block plot</td>
<td>Loess plot</td>
</tr>
<tr>
<td>Box plot</td>
<td>Needle plot</td>
</tr>
<tr>
<td>Bubble plot</td>
<td>Penalized B-Spline plot</td>
</tr>
<tr>
<td>Density plot</td>
<td>Pie chart</td>
</tr>
<tr>
<td>Donut chart</td>
<td>Regression plot</td>
</tr>
<tr>
<td>Dot plot</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>Ellipse plot</td>
<td>Series plot</td>
</tr>
<tr>
<td>Fringe plot</td>
<td>Spline plot</td>
</tr>
<tr>
<td>Heat map</td>
<td>Step plot</td>
</tr>
<tr>
<td>High-Low plot</td>
<td>Text Inset</td>
</tr>
<tr>
<td>Histogram</td>
<td>Text plot</td>
</tr>
<tr>
<td>Line chart</td>
<td>Vector plot</td>
</tr>
<tr>
<td>Line, drop</td>
<td>Waterfall chart</td>
</tr>
</tbody>
</table>

## See Also

“Plot Type Compatibility” on page 1628

## Basic Plots and Charts

### About Basic Plots and Charts

You can use the SGPLOT and SGPANEL procedures to produce basic plots and charts.

The plot and chart statements include options for controlling how the output is displayed. Many of the options are unique to the particular plot or chart. However, some general options apply to most of the basic plots and charts.
For example, options enable you to do the following:

- specify colors, line attributes, and other visual features.
- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
- use a secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.
- reference an ID variable in attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

The basic plots and charts are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size, usually 4 inches or 4.5 inches wide. You can specify the size in the ODS GRAPHICS statement. See “WIDTH=dimension” on page 117.

See Also

“Plot Type Compatibility” on page 1628

About Band Plots

A band plot creates a band that highlights part of the plot and shows upper and lower limits. The input data should be sorted by the X or Y variable.

The following examples show upper and lower mean weight values for a class of students. The first two examples use the SGPLOT procedure to show the same band plotted along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a matrix that is paneled by gender.

```plaintext
title "Weight Limits on the Y Axis";
proc sgplot data=sashelp.classfit;
 where age > 12;
 band x=name lower=lowermean upper=uppermean;
run;
title;
```
Options are available that enable you to customize the band plot and enhance its appearance. For example, you can do the following:

- add labels to the upper and lower edges of the band, specify how the labels are positioned, and set other attributes for the labels
- specify fill and outline attributes
- specify legend labels and plot transparency

**Note:** This list does not include all available options.

### See Also

- "BAND Statement" on page 182 (SGPANEL procedure)
- "BAND Statement" on page 839 (SGPLOT procedure)

### About Block Plots

Block plots show continuous ranges of data that have the same BLOCK= value. Block plots are available in the SGPLOT and SGPANEL procedures.

In the following example, blocks represent students of different ages.
Block plots can also be used with an interval (numeric linear or time) X variable. Options are available that enable you to customize the block plot and enhance its appearance. For example, you can do the following:

- specify attributes for the blocks, such as outlines, fill color, and transparency.
- alternate the fill color used by the blocks.
- control the display of the text within the blocks. For example, you can split block text into multiple lines in order to fit within the containing block.

**Note:** This list does not include all available options.

---

### About Bubble Plots

Bubble plots show the relative magnitude of the values of a variable. The values of two variables determine the position of the bubble on the plot, and the value of a third variable determines the size of the bubble.

The following examples show the height and weight values for a class. The size of each bubble is determined by the student’s age. Examples are provided for the SGPLOT and SGPANEL procedures.
Options are available that enable you to customize the bubble plot and enhance its appearance. For example, you can do the following:

- control the size of the largest and the smallest bubble
- specify fill and outline attributes, and data labels and their attributes
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page

Note: This list does not include all available options.

See Also

- “BUBBLE Statement” on page 200 (SGPANEL procedure)
- “BUBBLE Statement” on page 860 (SGPLOT procedure)

About Fringe Plots

A fringe plot displays data values as a fringe on the X or X2 axis of the plot, and often is used to enhance a histogram or a density plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The following examples use fringe lines to compare miles-per-gallon ratings for vehicles from different regions.
proc sgplot data=sashelp.cars;
  histogram mpg_highway;
  fringe mpg_highway / group=origin height=lin;
run;

proc sgpanel data=sashelp.cars noautolegend;
  where origin in(“Europe” “USA”);
  panelby origin;
  histogram mpg_highway;
  fringe mpg_highway / height=20 lineattrs=(color=red);
run;

Options are available that enable you to customize the fringe plot and enhance its appearance. For example, you can do the following:

- specify the height of the fringe lines, and control line attributes
- control the data tips that are displayed and their attributes
- specify legend labels and plot transparency

Note: This list does not include all available options.

See Also

- “FRINGE Statement” on page 255 (SGPANEL procedure)
- “FRINGE Statement” on page 920 (SGPLOT procedure)

About Heat Maps

Heat maps present data values as rectangular areas with varying colors. The rectangles correspond to X and Y crossings.

Note: This feature applies to SAS 9.4M3 and later releases.
In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The frequency or some other statistic is computed for the response variable. The grid is displayed by coloring each bin with a shade of color computed from a color gradient.

The following two examples create heat maps for participants in a heart disease study. The graphs plot weight and cholesterol. The heat map colors correspond to the frequency for the cholesterol count, as indicated by the gradient legend.

```
proc sgplot data=sashelp.heart;
heatmap x=weight y=cholesterol;
run;
```

```
proc sgpanel data=sashelp.heart;
panelby sex;
heatmap x=weight y=cholesterol;
run;
```

Parameterized heat maps create colored rectangles for each X and Y crossing based on specified response values.

```
ods graphics / nxbinsmax=120000;
proc sgplot data=sashelp.heart;
heatmapparm x=weight y=cholesterol
 colorresponse=height;
run;
ods graphics / reset=nxbinsmax;
```
Options are available that enable you to customize the heat map and enhance its appearance. For example, you can do the following:

- (HEATMAP statement only) control aspects of the bins. For example, you can specify the sizes of the bins.
- control the color ramp that is used for the color response.
- (HEATMAP statement only) specify the statistic to use for the response variable.
- specify outlines for the colored rectangles.
- control data tips. For example, you can specify the information to display as well as the format.

Note: This list does not include all available options.

See Also

- “HEATMAP Statement” on page 347 (SGPANEL procedure)
- “HEATMAP Statement” on page 1015 (SGPLOT procedure)
- “HEATMAPPARM Statement” on page 355 (SGPANEL procedure)
- “HEATMAPPARM Statement” on page 1026 (SGPLOT procedure)

About High-Low Plots

High-low plots show how several values of one variable relate to one value of another variable. Typically, each variable value on the horizontal axis has several corresponding values on the vertical axis.

The following examples show the stock trend for IBM during a particular year. The first two examples use the SGPLOT procedure to show the same plot along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a paneled graph for Intel and Microsoft stock prices in the same year. Optional values have been specified for the closing stock prices, which are represented as tick marks on the high-low lines.
Options are available that enable you to customize the high-low plot and enhance its appearance. For example, you can do the following:

- use bars instead of lines to represent the data. If you use bars, then you can specify the fill and outline attributes for the bars.
- show tick marks for the open and closing values.
- specify labels and arrowheads for the high and low values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines or bars within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
See Also

- “HIGHLOW Statement” on page 363 (SGPANEL procedure)
- “HIGHLOW Statement” on page 1034 (SGPLOT procedure)

About Lines

About Reference Lines

You can add horizontal or vertical reference lines to your graphics. You can draw a reference line for each value of a specified variable. Or you can specify one or more explicit values for the reference lines.

The following examples show the height values for a class of students. A horizontal reference line is overlaid on a series plot to show the average height. Examples are provided for the SGPLOT and SGPANEL procedures.

In the first example, a value of 60.8 is specified for the reference line. The second example uses the MEANS procedure to obtain the averages for males and females in the class. The SGPANEL procedure then specifies the variable that contains these averages in order to obtain the reference lines.

```
proc sgplot data=sashelp.class;
 where (sex="F");
 series x=name y=height;
 reflow 60.8;
run;
```

```
proc means data=sashelp.class mean;
 var height;
 class sex;
 output out= classAverages
 mean=averageWeight;
run;

data classHeightAverage;
 set sashelp.class work.classAverages;
run;

proc sgpanel data=classHeightAverage;
 panelby sex / uniscale=row
 spacing=8;
 series x=name y=height;
 reflow averageWeight;
```
Options are available that enable you to customize the reference line and enhance its appearance. For example, you can do the following:

- specify a horizontal or vertical line. In the SGPLOT procedure, you can associate the line with a secondary axis.
- specify line attributes, labels, and label attributes.
- specify legend labels and line transparency.
- specify an amount to offset all lines from discrete axis values.
- extend the plot axes to contain the reference lines.

Note: This list does not include all available options.

About Drop Lines

You can create one or more drop lines from data points to one or both axes. The lines can be horizontal, vertical, or both. A drop line is always drawn perpendicular from the specified point to the X, X2, Y, or Y2 axis.

Note: This feature applies to SAS 9.4M1 and later releases.

The following examples show the weight values for a class of students. The example drops lines from the point (13, 90) to the respective points on both axes. The LINEATTRS= option specifies that line appearance is determined by the GraphData2 style element. The examples show drop lines in the SGPLOT and SGPANEL procedures.

```sas
proc sgplot data=sashelp.class;
 scatter x=age y=weight;
 dropline x=13 y=90 / dropto=both
 lineattrs=GraphData2;
run;
```
proc sgpanel data=sashelp.class;
panel by sex;
scatter x=age y=weight;
dropline x=13 y=90 / dropto=both
   lineattrs=GraphData2;
run;

Options are available that enable you to customize the drop line and enhance its appearance. For example, you can do the following:

- specify a horizontal line, a vertical line, or both. In the SGPLOT procedure, you can associate the line with a secondary axis.
- draw a drop line for each value of a specified variable.
- specify line attributes, labels, and label attributes.
- specify legend labels.
- specify an amount to offset all lines from discrete axis values.
- extend the plot axes to contain the drop lines.

Note: This list does not include all available options.

About Parameterized Lines

Parameterized lines are straight lines specified by a point and a slope. The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

The following example shows weight with respect to height for a class of students. A single line is generated by specifying values for the point and for the slope. The line in the example approximates a line of best fit.
You can generate multiple lines by specifying a numeric variable for any or all required arguments. Examples are provided for the SGPLOT and SGPANEL procedures. The following two examples create lines of best fit for male and female participants in a heart disease study. The lines show weight with respect to height.

The examples first sort the data set by male and female participants. The sorted data is written to a data set named HEART.

```plaintext
proc sort data=sashelp.heart(keep=height weight sex)
 out=heart;
by sex;
run;
```

The examples then use the REG procedure and output the regression statistics to a data set named STATS. The STATS data set includes the slope and the Y-intercept for the regression.

```plaintext
proc reg data=heart
 outest=stats(rename=(height=slope));
by sex;
model weight=height;
run;
```

Finally, the examples merge the HEART and STATS data sets.

```plaintext
data heartStats;
merge heart stats(keep=intercept slope sex);
run;
```

The first example uses the SGPLOT procedure to show lines of best fit for females and males in the study. The regression lines are labeled and have their own legend.

```plaintext
proc sgplot data=heartStats;
scatter x=height y=weight;
lineparm x=0 y=intercept slope=slope /
 name="Line" group=sex
 curvelabel;
keylegend "Line";
run;
```

The following example uses the SGPANEL procedure to create the same information, which is paneled by gender.

```plaintext
proc sgpanel data=heartStats
 noautolegend;
panelby sex;
scatter x=height y=weight;
lineparm x=0 y=intercept slope=slope;
run;
```
Options are available that enable you to customize the line and enhance its appearance. For example, you can do the following:

- specify line attributes, labels, and label attributes
- specify legend labels and line transparency
- prevent the line from being extended beyond the axis offset

**Note:** This list does not include all available options.

## See Also

- “REFLINE Statement” on page 485 (SGPANEL procedure)
- “REFLINE Statement” on page 1164 (SGPLOT procedure)
- “LINEPARM Statement” on page 424 (SGPANEL procedure)
- “LINEPARM Statement” on page 1099 (SGPLOT procedure)

## About Needle Plots

Needle plots use vertical line segments, or needles, to connect each data point to a baseline.

The following examples show the stock trend during a particular year. Examples are provided for the SGPLOT and SGPANEL procedures. Each example specifies an optional baseline value on the Y axis.

```
Options are available that enable you to customize the needle plot and enhance its appearance. For example, you can do the following:

- specify a baseline value, as shown in the example.
- add markers to the tips of the needles and specify marker attributes.
- add data labels and specify label attributes.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of needles within a group.
- specify an amount to offset all needle lines from discrete X values.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “NEEDLE Statement” on page 442 (SGPANEL procedure)
- “NEEDLE Statement” on page 1118 (SGPLOT procedure)

About Scatter Plots

Scatter plots show the relationship of one variable to another, often revealing concentrations or trends in the data. Typically, each variable value on the horizontal axis can have any number of corresponding values on the vertical axis.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The third example includes error bars.
Options are available that enable you to customize the scatter plot and enhance its appearance. For example, you can do the following:

- add and customize error bars. The previous example shows error bars.
- specify how many times observations are repeated for computational purposes.
- specify marker attributes, data labels, and label attributes.
- specify an amount to offset all markers from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of markers within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
See Also

- “SCATTER Statement” on page 505 (SGPANEL procedure)
- “SCATTER Statement” on page 1185 (SGPLOT procedure)

About Series Plots

Series plots display a series of line segments that connect observations of input data.

The following examples show series plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.

Options are available that enable you to customize the series plot and enhance its appearance. For example, you can do the following:

- specify line and marker attributes, data labels, curve labels, and label attributes.
- specify an amount to offset all markers from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
See Also

- “SERIES Statement” on page 521 (SGPANEL procedure)
- “SERIES Statement” on page 1201 (SGPLOT procedure)

About Spline Plots

Spline plots are similar to series plots but have a quadratic Bézier spline interpolation that produces smooth curves.

Note: This feature applies to SAS 9.4M3 and later releases.

The following examples show spline plots for the SGPLOT and SGPANEL procedures. Each spline curve consists of three points. The curves are smooth and do not pass through the middle point.

Both examples use the following data:

``` SAS
data lines;
  input X Y Group $;
datalines;
  30  5  A
  15  15 A
  5   10 A
  30  5  B
  15  20 B
  7   15 B
;
run;
```

``` SAS
proc sgplot data=lines;
spline y=y x=x / group=group
  arrowheadpos=end;
run;
```

![Spline Plot Example](image)
Options are available that enable you to customize the spline plot and enhance its appearance. For example, you can do the following:

- add arrows to the spline plot, as shown in the examples.
- specify line and arrow attributes, curve labels, and label attributes.
- specify an amount to offset all lines from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “SPLINE Statement” on page 543 (SGPANEL procedure)
- “SPLINE Statement” on page 1226 (SGPLOT procedure)

About Step Plots

Step plots display a series of horizontal and vertical line segments that connect observations of input data. The plots use a step function to connect the data points. The vertical line can change at each step.

The following examples show step plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.
Options are available that enable you to customize the step plot and enhance its appearance. For example, you can do the following:

- add and customize markers and error bars.
- specify line attributes, data labels, curve labels, and label attributes.
- specify an amount to offset all step lines from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- "STEP Statement" on page 556 (SGPANEL procedure)
- "STEP Statement" on page 1240 (SGPLOT procedure)
About Text Plots

The TEXT statement displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

Note: This feature applies to SAS 9.4M2 and later releases.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SG PANEL procedures. The first two examples apply fills and outlines to the text markers.

```sas
title "Height and Weight";
proc sgplot data=sashelp.class;
  where (age>13);
  text x=weight y=height text=name / outline backfill;
run;
title;
```

```sas
proc sgpanel data=sashelp.class;
  where (age>13);
  panelby sex;
  text x=weight y=height text=name / outline backfill;
run;
title;
```

```sas
proc sgpanel data=sashelp.class;
  where (age>13);
  panelby sex;
  text x=weight y=height text=name / textattrs=(size=10);
run;
title;
```

Although you can achieve similar results using the SCATTER statement with the MARKERCHAR= option, the TEXT statement gives you more control over the appearance of the text. For example, you can do the following:
- add fills and outlines to the text markers, as shown in the previous examples. You can also specify a back-light effect for the text.
- rotate the text, reposition the text, and specify text attributes such as font size.
- split the text at one or more specified characters.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the axis to use for clustering.
- specify legend labels, plot transparency, and URLs for web pages that are displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “TEXT Statement” on page 584 (SGPANEL procedure)
- “TEXT Statement” on page 1267 (SGPLOT procedure)

About Text Insets

A text inset provides an easy way to add text to a graphic. You can insert a text string as well as a series of label-value pairs.

The following example shows a linear regression curve with a text inset in the upper left corner. This text inset specifies a text string and is available only with the SGPLOT procedure.

```sas
proc sgplot data=sashelp.class;
  reg x=height y=weight / CLM;
inset ("Confidence level (*ESC*)
     {unicode alpha} = "0.05");
run;
```

Insets are also available with the SGPANEL procedure. Unlike the SGPLOT procedure, panel insets do not accept text strings as arguments. The INSET statement in the SGPANEL procedure generates data-driven text from one or more variables. Typically, the variable is a computed numeric value, such as a mean or a sum. For non-computed variables, the statement displays the value of the first observation for each classification.
The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using a NOLABEL option.) The inset values come from the variable data.

The following example shows a panel of histograms along with a text inset for each panel.

To see the code for this example, see "Example: Panel with Insets" on page 410.

Options are available that enable you to customize the text inset and enhance its appearance. For example, you can do the following:

- show or hide a border
- position the text box within the plot
- specify text attributes, add a title, and specify title attributes
- align the labels and values when you specify label-value pairs (SGPLOT procedure only)

Note: This list does not include all available options.

See Also

- "INSET Statement" on page 1078 (SGPLOT procedure)
- "INSET Statement" on page 407 (SGPANEL procedure)
About Vector Plots

Vectors are directed line segments. A vector plot is a two-dimensional graphic that uses vectors to represent both direction and magnitude at each point.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. Both examples specify optional X and Y origins and data labels.

```sas
title "Height and Weight - Females";
proc sgplot data=sashelp.class;
  where(sex="F");
  vector x=height y=weight
    / yorigin=75 xorigin=60
datalabel;
run;
title;
```

```sas
title "Height and Weight - All";
proc sgpanel data=sashelp.class;
  panelby sex;
  vector x=height y=weight
    / yorigin=75 xorigin=60
datalabel;
run;
title;
```

Options are available that enable you to customize the vector plot and enhance its appearance. For example, you can do the following:

- specify the origin, as shown in the examples.
- specify line attributes, data labels, and data label attributes. You can also show or hide the arrows, change the arrowhead shape, and change the arrow direction.
- specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

- “VECTOR Statement” on page 685 (SGPANEL procedure)
Fit and Confidence Plots

About Fit and Confidence Plots

You can use the SGPLOT and SGPANEL procedures to produce fit plots and ellipses (the ellipses plot is available with the SGPLOT procedure only). Fit plots represent the line of best fit (trend line) with confidence limits.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. However, some general options apply to most of the fit and confidence plots. For example, options enable you to do the following:

- add confidence limits (CLM) to the plot. When you add CLM limits, you can specify the confidence level, the transparency for the confidence limits, and other visual attributes. You can add CLM limits to loess, penalized B-spline, and regression plots.

- add prediction limits (CLI) for the individual predicted values. When you add CLI limits, you can specify the text that appears for the limits and other visual attributes. You can add CLI limits to penalized B-spline and regression plots.

- control the appearance of the markers and the fit line. You can also specify a smoothing parameter.

- add and customize curve and data labels.

- specify legend labels. You can also show or hide the legend entries for the CLM limits, the CLI limits, and the fit line.

- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: Not all of these features are available for all of the plots. Also, the list does not include all available options.

The fit and confidence plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size, usually 4 inches or 4.5 inches wide. You can specify the size in the ODS GRAPHICS statement. See “WIDTH=dimension” on page 117.
About Ellipse Plots

Starting with SAS 9.4M4, the SGPANEL procedure supports ellipses. Prior to that release, ellipses were available only for the SGPLOT procedure.

Ellipse plots create a confidence or prediction elliptical curve computed from input data. In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes. When creating an ellipse with the SGPANEL procedure, the ellipse must be used with another plot.

The following examples show the relationship of height to weight for a class of students.

Here are the noteworthy features of the examples:

- The ELLIPSE statements use TYPE=PREDICTED. This is the default.
- In the SGPLOT procedure, one ELLIPSE statement uses ALPHA=.2 and the other uses ALPHA=.05. The ELLIPSE statement in the SGPANEL procedure uses ALPHA=.3.
- A legend was created with entries only for the ellipses. Each ELLIPSE statement specifies a plot name. The KEYLEGEND statement uses the NAME value to determine the entries in the legend.

```
proc sgplot data=sashelp.class;
  scatter x=height y=weight;
  ellipse x=height y=weight / alpha=.2
      name="eighty"
      legendlabel="80% Prediction";
  ellipse x=height y=weight / alpha=.05
      name="ninetyfive"
      legendlabel="95% Prediction";
  keylegend "eighty" "ninetyfive";
run;

proc sgpanel data=sashelp.class;
  panelby sex;
  scatter x=height y=weight;
  ellipse x=height y=weight / alpha=.3
      name="seventy"
      legendlabel="70% Prediction Ellipse";
  keylegend "seventy";
run;
```
The ELLIPSEPARM statement plots an ellipse with specified axis lengths, a specified slope for the major axis, and the ellipse center. This feature applies to SAS 9.4M4 and later releases.

The ELLIPSEPARM statement does not perform computations on input data to derive the location and shape of the ellipse. Another plot that is derived from data values that provide boundaries for the axis area must be included in the graph.

This example resembles a correlation loading plot that is produced using the PLS procedure in the SAS/STAT product. See Spectrometric Calibration in SAS/STAT User's Guide.

For details and code, see "Example: Simple Correlation Loading Plot" on page 918.

See Also

- "ELLIPSE Statement" on page 906 (SGPLOT procedure)
- "ELLIPSE Statement" on page 243 (SGPANEL procedure)
- "ELLIPSEPARM Statement" on page 911 (SGPLOT procedure)
- "ELLIPSEPARM Statement" on page 249 (SGPANEL procedure)

About Loess Plots

A loess plot includes a scatter plot of two numeric variables along with an overlaid nonlinear fit line that enables you to perform locally weighted polynomial regression. You can specify the degree of the local polynomials to use for each local regression. You can also change the default smoothing technique that is applied to the fit.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL
procedures. In both examples, the automatically generated legend for the fit line is not needed and has been suppressed.

```
proc sgplot data=sashelp.cars
   noautolegend;
where (origin = "Europe");
loess x=weight y=mpg_highway;
run;
```

```
proc sgpanel data=sashelp.cars
   noautolegend;
where (origin = "Europe");
panelby drivetrain;
loess x=weight y=mpg_highway;
run;
```

See Also

- “LOESS Statement” on page 429 (SGPANEL procedure)
- “LOESS Statement” on page 1105 (SGPLOT procedure)

About Penalized B-Spline Plots

A penalized B-spline curve includes a scatter plot of two numeric variables along with an overlaid nonlinear fit line. You can specify the degree of the local polynomials to use for each local regression. You can also change the default smoothing technique that is applied to the fit.

The first example below shows the relationship of height to weight and the line of best fit for a class of students. The second example, which uses the SGPANEL procedure, shows the city and highway mileage for vehicles, classified by region of origin. In both examples, the automatically generated legend for the fit line is not needed and has been suppressed.
About Regression Plots

A regression plot includes a scatter plot of two numeric variables along with an overlaid linear or nonlinear fit line that enables you to perform a regression analysis. You can specify one of three types of regression equation: linear, quadratic, or cubic. You can display confidence limits for mean predicted values or individual predicted values.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The first two examples show the same plot with a linear fit line and a cubic fit line, respectively. The third example shows a paneled graph. In all three examples, the automatically generated legend for the fit line is not needed and has been suppressed.
title "Linear Fit Function";
proc sgplot data=sashelp.class
 noautolegend;
 reg x=height y=weight;
run;
title;

title "Cubic Fit Function";
proc sgplot data=sashelp.class
 noautolegend;
 reg x=height y=weight / degree=3;
run;
title;

proc sgpanel data=sashelp.class
 noautolegend;
 panelby sex;
 reg x=height y=weight;
run;

See Also

- “REG Statement” on page 491 (SGPANEL procedure)
- “REG Statement” on page 1170 (SGPLOT procedure)
Distribution Plots

About Distribution Plots

You can use the SGPLOT and SGPANEL procedures to produce plots that characterize the frequency or the distribution of your data.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each plot and the options that are available.

The distribution plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size, usually 4 inches or 4.5 inches wide. You can specify the size in the ODS GRAPHICS statement. See “WIDTH=dimension” on page 117.

See Also

“Plot Type Compatibility” on page 1628

About Box Plots

A box plot summarizes the data and indicates the median, upper and lower quartiles, and minimum and maximum values. The plot provides a quick visual summary that easily shows center, spread, range, and any outliers. The SGPLOT and SGPANEL procedures have separate statements for creating horizontal and vertical box plots.

The following examples show product sales summaries. Examples are provided for the SGPLOT and SGPANEL procedures.

The following two examples use the SGPLOT procedure to create a horizontal box plot and a vertical plot, respectively.
The following two examples use the SGPANEL procedure to create a horizontal box plot and a vertical plot, respectively. The box plots are paneled by product type.

Options are available that enable you to customize the box plot and enhance its appearance. For example, you can do the following:
control the box width, the whisker cap shape, and the visual attributes for the mean marker, median line, and the connect lines. You can also hide the whisker caps, mean marker, median line, and the outliers.

- specify data labels and font attributes for the labels.

- specify the method to use for computing the percentiles for the plot.

- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

- control the display of grouped boxes. For example, you can specify whether the boxes are overlaid or clustered, and the width of each cluster.

- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.

- specify legend labels and plot transparency.

- assign the analysis variable to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

See Also

- “HBOX Statement” on page 328 (SGPANEL procedure)
- “VBOX Statement” on page 667 (SGPANEL procedure)
- “HBOX Statement” on page 996 (SGPLOT procedure)
- “VBOX Statement” on page 1353 (SGPLOT procedure)

About Density Plots

After creating a histogram, you might use a density plot to fit various distributions to the data. The most common density plot uses the normal distribution, which is defined by the mean and the standard deviation.

A density plot can be used by itself, combined with another density plot, and overlaid on a histogram.

The following examples show a density plot overlaid on a histogram. Examples are provided for the SGPlot and SGPANEL procedures.
The SGPANEL example shows output that is paneled by gender. The UNISCALE= ROW option specifies that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

Options are available that enable you to customize the density plot and enhance its appearance. For example, you can do the following:

- control the visual attributes of the density line.
- specify a kernel distribution instead of normal. You can also specify the scaling that is used for the response axis.
- specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

- “DENSITY Statement” on page 213 (SGPANEL procedure)
- “DENSITY Statement” on page 875 (SGPLOT procedure)
About Histograms

Histograms consist of a series of columns representing the frequency of a variable over a discrete interval or class.

The following examples show the height distribution for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures.

```sas
proc sgplot data=sashelp.class;
  histogram height;
run;
```

The SGPANEL example shows output that is paneled by gender. The UNISCALE=ROW option ensures that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

```sas
proc sgpanel data=sashelp.class;
  panelby sex /
    uniscale=row;
  histogram height;
run;
```

Options are available that enable you to customize the histogram and enhance its appearance. For example, you can do the following:

- control the visual attributes of the bins, such as fill color and outlines.
- specify the number of bins, their width, and the X coordinate of the first bin.
- specify legend labels and plot transparency.
- assign the response variable and the calculated values to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

Note: This list does not include all available options.
Categorization Plots and Charts

About Categorization Plots and Charts

Categorization plots and charts produce a series of graph elements, one for each selected category of cases. For example, the relation between the age and the risk of a heart attack might differ between males and females. Categorization plots and charts can reveal patterns, complex interactions, exceptions, and anomalies.

You can use the SGPLOT and SGPANEL procedures to produce a variety of categorization plots and charts. The plot and chart statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each type and the options that are available.

The categorization plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size, usually 4 inches or 4.5 inches wide. You can specify the size in the ODS GRAPHICS statement. See “WIDTH=dimension” on page 117.

See Also

“Plot Type Compatibility” on page 1628

About Bar Charts

Overview of Standard and Parameterized Bar Charts

Bar charts use bars to represent statistics based on the values of a category variable. Bar charts are useful for displaying magnitudes and emphasizing differences.
You can use the SGPLOT and SGPANEL procedures to create the following:

- **horizontal and vertical bar charts** that summarize the values of a category variable. Use the HBAR and VBAR statements for the charts. These charts are compatible only with other categorization charts and plots. A response variable is optional. If not specified, the summary is the category variable frequency count.

- **basic-compatible horizontal and vertical bar charts** that summarize the values of a category variable. Use the HBARBASIC and VBARBASIC statements for the charts. These bar charts are compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots. A response variable is optional. If not specified, the summary is the category variable frequency count.

- **parameterized horizontal and vertical bar charts** that require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. All of the summarizations that are performed by the HBAR, VBAR, HBARBASIC, and VBARBASIC statements can be used. Use the HBARPARM and VBARPARM statements with the presummarized data for the charts. These bar charts are compatible with other basic charts and plots.

Options are available that enable you to customize both types of bar charts and enhance their appearance. For example, you can do the following:

- control the visual attributes of the bars, such as bar width, fill color, fill skin, and outlines.

- add data labels and specify font attributes for the labels.

- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

- control the display of grouped bars. For example, you can specify the width of each cluster.

- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.

- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

Bar Chart Examples

The following examples show statistics for different categories of smokers. The examples use the SGPLOT procedure to create a horizontal bar chart and a vertical bar chart, respectively. By default, the charts show the frequency for each category. The examples specify an optional response variable to show the average age at death for each category rather than the frequency.
The following two examples use the SGPANEL procedure to create a horizontal chart and a vertical chart, respectively. The bar charts are paneled by gender.

Bar charts includes options that are not applicable to parameterized bar charts. For example, you can do the following:

- specify the response variable and the statistic to use for its axis
specify the order in which the response values are arranged
show limit lines, specify the statistic to use for the limit lines, and specify the confidence level
for grouped data, you can specify whether the bars are stacked or clustered
specify how many times observations are repeated for computational purposes

Note: This list does not include all available options.

Basic-Compatitive Bar Chart Examples

Note: This feature applies to SAS 9.4M3 and later releases.

The following examples combine a bar chart with a scatter plot to show the age and height of students in a class. The examples specify an optional response variable and statistic to show the height average rather than the frequency.

```
proc sgplot data=sashelp.class;
  hbarbasic age /
    response=height stat=mean;
  scatter x=height y=age;
run;
```

```
proc sgplot data=sashelp.class noautolegend;
  vbarbasic age /
    response=height stat=mean;
  scatter x=age y=height;
run;
```
Parameterized Bar Chart Examples

Note: Parameterized bar charts are considered basic charts rather than categorization charts. However, all bar charts are described here in one place.

The following examples show height averages for a class of students. The averages are obtained using the following program.

```plaintext
proc means data=sashelp.class alpha=.05 clm mean std;
  class age sex;
  var height;
  output out=classMean uclm=uclm lclm=lclm mean=mean;
run;
```

The following two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively. The response variable contains the computed mean values that were created with the MEANS procedure.
The following two examples use the SGPANEL procedure to create horizontal and vertical bar charts, respectively. The charts are paneled by gender.

You can also assign variables to the upper and lower limits of the bar chart. Parameterized bar charts enable you to pass in your own precomputed limits.
Bar Chart Statement Option Applicability

There are several statement options that are common to all of the bar chart statements. However, there are options that apply only to a subset of the bar chart statements. If you want to try a different bar chart statement in your SAS program, you must know which options in your current bar chart statement apply to the new statement and which options are available for you to use in the new statement. The following table lists the bar chart statement options that are not common to all of the bar chart statements. For each option, an X indicates the bar chart statements to which it applies.

Table 2.1 Statement Options That Are Not Common to All Bar Chart Statements

<table>
<thead>
<tr>
<th>Option</th>
<th>HBAR</th>
<th>HBARBASIC</th>
<th>HBARPARM</th>
<th>VBAR</th>
<th>VBARBASIC</th>
<th>VBARPARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CATEGORYORDER</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLORSTAT=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATALABEL=</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATALABELFORMAT=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATALABELPOS=</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FREQ=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIMITATTRS=</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIMITCAPSCALE=</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LIMITS=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LIMITLOWER=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Option Table

<table>
<thead>
<tr>
<th>Option</th>
<th>HBAR</th>
<th>HBARBASIC</th>
<th>HBARPARM</th>
<th>VBAR</th>
<th>VBARBASIC</th>
<th>VBARPARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMITUPPER=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LIMITSTAT=</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOSTATLABEL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMSTD=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPONSE=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPLITCHAR=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SPLITCHARNODROP</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STAT=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATLABEL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

See Also

- “Plot Type Compatibility” on page 1628
- “HBAR Statement” on page 264 (SGPANEL procedure)
- “VBAR Statement” on page 600 (SGPANEL procedure)
- “HBAR Statement” on page 929 (SGPLOT procedure)
- “VBAR Statement” on page 1284 (SGPLOT procedure)
- “HBARBASIC Statement” on page 955 (SGPLOT procedure)
- “VBARBASIC Statement” on page 1311 (SGPLOT procedure)
- “HBARPARM Statement” on page 308 (SGPANEL procedure)
- “VBARPARM Statement” on page 645 (SGPANEL procedure)
- “HBARPARM Statement” on page 974 (SGPLOT procedure)
- “VBARPARM Statement” on page 1330 (SGPLOT procedure)

About Dot Plots

Dot plots summarize horizontally the values of a category variable. By default, each dot represents the frequency for each value of the category variable.

The following examples show the frequency of different weights of patients in a study. The examples use the SGPLOT and SGPANEL procedures.
Options are available that enable you to customize the dot plot and enhance its appearance. For example, you can do the following:

- Specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.
- Show limits for the plot. You can also specify the statistic for the limit lines and visual attributes of the lines.
- Specify the color, size, and symbol for the markers.
- Add data labels and specify font attributes for the labels.
- Control the display of grouped markers, lines, and bars. For example, you can specify whether the groups are overlaid or clustered, and the ordering of dots within a group.
- Specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- Specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “DOT Statement” on page 220 (SGPANEL procedure)
- “DOT Statement” on page 883 (SGPLOT procedure)
About Line Charts

Line charts display information as a series of data points connected by straight line segments. The SGPLOT and SGPANEL procedures have separate statements for creating horizontal and vertical line charts.

The following examples show mean weight values for a class. Examples are provided for the SGPLOT and SGPANEL procedures. The examples specify an optional response variable and use the mean statistic for that variable. The examples also add data point markers.

These two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively.

```
proc sgplot data=sashelp.class;
  hline age / response=height stat=mean markers;
run;
```

```
proc sgplot data=sashelp.class;
  vline age / response=height stat=mean markers;
run;
```

The following two examples use the SGPANEL procedure to create panels of horizontal and vertical charts, respectively.
Options are available that enable you to customize the line chart and enhance its appearance. For example, you can do the following:

- specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.
- show limits for the chart. You can also specify the statistic for the limit lines and visual attributes of the lines.
- add data point markers and specify the color, size, and symbol for the markers.
- add curve and data labels and specify font attributes for the labels.
- control the display of grouped lines. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the ordering of lines within a group.
- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
- assign the category variable, the response variable, or both variables to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.
- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.
About Pie and Donut Charts (Preproduction)

The SGPIE procedure produces pie charts and donut charts. The angles of pie and donut slices are used to graphically represent the value of a statistic for a data range. The charts are useful for examining how the values of a variable contribute to the whole and for quickly comparing the values of several variables.

Note: The SGPIE procedure is a preproduction feature in the SAS 9.4M6 release, which means that it has not been fully developed, tested, or documented.

Table 2.2 Pie and Donut Charts

See the code for this example.

See the code for this example.
About Waterfall Charts

Waterfall charts show how the value of a variable increases or decreases until it reaches a final value. In the chart, bars represent an initial value of Y and a series of intermediate values identified by X leading to a final value of Y. Waterfall charts are available only for the SGPLOT procedure.

The following example shows average failure counts for capacitors.

```sas
proc sgplot data=sashelp.failure;
  waterfall category=cause response=count;
run;
```

Options are available that enable you to customize the waterfall chart and enhance its appearance. For example, you can do the following:

- specify the statistic for the response variable.
- specify an initial bar for the chart. You can also specify the tick value that is used for the initial bar and visual attributes of the bar.
- control the appearance of the bars. For example, you can do the following:
 - show or hide the bar outline
 - show or hide the bar fill
 - use a special effect (data skin) for the fill
 - specify a variable to use for the bar colors
 - specify attributes separately for the final bar
- add data labels and specify font attributes for the labels.
- specify plot transparency and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
See Also

"WATERFALL Statement" on page 1400 (SGPLOT procedure)
Creating Single-Cell Graphs

The SGPLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is
assigned to a different vertical axis. Data labels have been added for easy reference.

```sas
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
xaxis type=discrete;
series x=year y=coal / datalabel;
series x=year y=naturalgas / datalabel y2axis;
run;
title;
```

The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```sas
proc sgplot data=sashelp.class;
histogram height;
density height;
density height / type=kernel;
run;
```

Starting with **SAS 9.4M6**, you can use the **SGPIE** procedure to create pie and donut charts. This procedure is considered preproduction.

Here is a pie chart:

Figure 3.1 Pie Chart
Creating Multi-Cell Classification Panels

The SGPANEL procedure creates a panel for the values of one or more classification variables. Each graph cell in the panel can contain either a single plot or multiple overlaid plots.

The SGPANEL procedure supports most of the plots and overlays that the SGPLOT procedure supports. For this reason, the two procedures have an almost identical syntax. As with the SGPLOT procedure, options are available for specifying colors, marker symbols, and other attributes.

The procedure syntax supports four types of panel layouts: PANEL, LATTICE, COLUMNLATTICE, and ROWLATTICE.

The following example creates a panel of loess curves using the default PANEL layout. In the PANEL layout, each graph cell represents a specific crossing of values for one or more classification variables. A label above each cell identifies the crossing of values that is represented in the cell. By default, cells are created only for crossings that are represented in the data set.

```sas
proc sgpanel data=sashelp.heart(where=(AgeAtStart > 60));
panelby sex / novarname;
loess x=weight y=cholesterol / clm;
run;
```

The following example creates a panel of box plots in a LATTICE layout. The graph cells are arranged in rows and columns by using the values of two classification variables. Labels above each column and to the right of each row identify the classification value that is represented by that row or column. A cell is created for each crossing of classification values.

```sas
proc sgpanel data=sashelp.heart;
panelby sex / noborder;  
loess x=weight y=cholesterol / clm; 
run;
```
Creating Paneled Scatter Plots

The SGGSCATTER procedure creates a paneled graph for multiple combinations of variables.

The procedure syntax supports the following features:

- three types of graph layouts: PLOT, COMPARE, and MATRIX
- basic scatter plots
- fit and confidence plots: loess curves, regression curves, penalized B-spline curves, and ellipses
- distribution plots: histograms and density curves (in the diagonal cells of a matrix)
- legends

The following example creates a panel using the PLOT layout. The PLOT statement creates a paneled graph of scatter plots where each cell has its own independent set of axes.

The following example creates a panel using the COMPARE layout. The COMPARE statement creates a paneled graph that uses common axes for each row and column of cells. Cells are created for all crossing of the X and Y variables.
The following example creates a panel using the MATRIX layout. The MATRIX
statement creates a matrix of scatter plots where each cell represents a different
combination of variables. In the diagonal cells, you can place labels or histograms
with or without density curves.

For more information about the SGSCATTER procedure and the procedure syntax,
see Chapter 12, “SGSCATTER Procedure,” on page 1565.

Rendering Graphs from GTL Templates or ODS Graphics Editor Files

The SGRENDER procedure creates graphical output from templates that are
created using the Graph Template Language (GTL). You can use the GTL to create
many different types of plots, paneled graphs, and matrices. Some of these types
cannot be created with the ODS Graphics procedures.

The SGRENDER procedure can also produce graphical output from graphs that
were edited in the SAS ODS Graphics Editor. An ODS Graphics Editor file (SGE) is
created in SAS by using the SGE = ON option in the ODS destination statement.
The SGRENDER procedure enables you to run one or more graphs in batch mode
and render the graphs to any ODS destination using any of the supported ODS
options. For more information about the editor, see the SAS ODS Graphics Editor:
User’s Guide.

Note:
- Starting with SAS 9.4M8, the ODS Graphics Editor is a retired product and no
 longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- The ODS Graphics Editor is not included in SAS Viya.

The following example shows a layout that you can create by using the TEMPLATE
procedure and the SGRENDER procedure.

```
proc template;
  define statgraph surface;
  begingraph;
    layout overlay3d;
      surfaceplotparm x=height y=weight z=density;
    endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.gridded template=surface;
run;
```

For more information about the SGRENDER procedure, see Chapter 11,
“SGRENDER Procedure,” on page 1549. For more information about the GTL, see
SAS Graph Template Language: User’s Guide.
Producing Graphs That Were Created with ODS Graphics Designer

The SGDESIGN procedure creates graphical output based on a graph file (SGD) that has been created by using the SAS ODS Graphics Designer application.

Note:
- Starting with SAS 9.4M8, the ODS Graphics Designer is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- In SAS 9.4M8 and later releases, you can use the SGDESIGN procedure to render graphs from SGD files that you created in earlier releases.
- The ODS Graphics Designer is not included in SAS Viya.

Here are the main features of the SGDESIGN procedure:
- By default, the procedure uses the data set or data sets that are currently referenced by the SGD file.
- The procedure can generate any graph type that is created in the ODS Graphics Designer in SAS 9.4M7 and earlier releases.
- You can render the graph to any ODS destination by using standard ODS syntax. When it renders the graph, the procedure applies the style of the active destination rather than the style that was used in the SGD file.
- As with all the ODS Graphics procedures, you can use the ODS GRAPHICS statement options to control many aspects of your graphics.
- If the SGD file has been defined with dynamic variables, these variables can be initialized with the DYNAMIC statement of the procedure. You can use dynamic variables to generate the same graph with different data variables, a different data set, and different text elements.
- The procedure supports SAS statements such as FORMAT, LABEL, BY, and WHERE. These statements can be applied only if the DATA= option is used with the procedure.

For more information about the SGDESIGN procedure and the procedure syntax, see Chapter 7, “SGDESIGN Procedure,” on page 143.
Producing Maps Using the SGMAP Procedure

Starting with SAS 9.4M5, the SGMAP procedure is included with Base SAS. This procedure provides concise syntax for creating maps. You can also overlay plots such as scatter plots, bubble plots, and text plots onto the map. The procedure uses ODS Graphics to produce output. ODS Graphics provides the power and flexibility to create many types of complex and appealing maps.

This document does not describe the SGMAP procedure. For complete documentation about the SGMAP procedure, see SAS/GRAPH and Base SAS: Mapping Reference.

Plotting a Cloud Analytic Services (CAS) In-Memory Table

Overview of Using Data That Is Processed in CAS

When data resides in the SAS Cloud Analytic Services (CAS) environment, the data can be accessed by the ODS Graphics procedures through the CAS LIBNAME engine. The CAS LIBNAME engine enables the procedures to access and download CAS tables to the SAS client, such as SAS Studio. For more information about creating a CAS libref, see SAS Cloud Analytic Services: User’s Guide.

For this release of SAS Viya, the analytics for the ODS Graphics procedures are performed in the SAS client instead of the CAS environment. Therefore, for large data situations, it is recommended that you summarize or reduce the data before attempting to graph it. For example, in the CAS procedure, you can use the AGGREGATE action to summarize your large data to another CAS table. Then, you can reference the summarized CAS data from the SGPLOT or SGPANEL procedures to create a bar chart using the HBARPARM or VBARPARM statements.

User-Defined Formats

When using user-defined formats, be aware that a format created in the FORMAT procedure is not automatically made available to the CAS environment. To make sure the format is available to both the CAS environment and the SAS client, use the CASFMTLIB option in the FORMAT procedure to export the format to the CAS.
environment. With this option, the format is also written locally in the SAS client environment. The CASFMTLIB option enables the format used for the summarization process in CAS to match the format used for the graph rendering.

See Also
SAS Cloud Analytic Services: User-Defined Formats

Data Order

The ODS Graphics procedures use data order in many instances to display your data. For example, when you create a graph that contains grouped data, the group attribute assignment of the GraphData1 ... GraphData style elements normally uses data order.

Data order in CAS tables can be unpredictable. Graphs generated using SAS local data are consistent across multiple runs. Graphs generated using CAS data might vary across multiple runs. Because of this unpredictability, when the procedures use CAS data, the group attribute assignment of GraphData1 ... GraphData style elements is changed from data order to ascending order. For character data, the assignment is based on an ascending formatted order. For numeric data, the assignment is based on an unformatted ordinal order.

This sorting affects the following:
- style attributes
- group order
- order for the GroupDisplay= option
- discrete axes

The connect order for series, band, step, and line plots uses the axis order. The connect order specifies how to connect the data points to form the step or line.

Note: If you use a discrete attribute map, the group assignment mentioned above has no effect.

In addition, the following options that support DATA order do not support that value when using CAS data:
- SORT= option in the PANELBY statement (SGPANEL procedure)
- GROUPORDER= option in several statements including those for categorization plots, box plots, high-low plots, and others
- SORTORDER= option in the KEYLEGEND statement
- DISCRETEORDER option on the axis statement
Example: Preprocessing Data in CAS and Plotting the Results

This example shows how to summarize an in-memory table in CAS and how to graph the result using the SGPLOT procedure. For very large in-memory tables, it is recommended that you preprocess the data in CAS to reduce the size of the data before you graph it. The example uses the data in SAS data set Sashelp.Cars as sample data.

The MDSUMMARY procedure is used to summarize the data before it is graphed. The MDSUMMARY procedure generates descriptive statistics of numeric variables such as the sample mean, sample variance, sample size, sum of squares, and so on. The procedure is supported on the CAS server and can process a very large in-memory table. For more information about the MDSUMMARY procedure, see “MDSUMMARY Procedure” in SAS Cloud Analytic Services: User’s Guide.

Here is the SAS code for this example.

```sas
*options cashost="cloud.example.com" casport=5560; /* 1 */
cas casauto sessopts=(caslib=casuser); /* 2 */
libname mycas cas; /* 3 */
proc casutil; /* 4 */
  load data=sashelp.cars casout="cars";
quit;
proc mdsummary data=mycas.cars; /* 5 */
  var mpg_highway;
  groupby type origin;
  output out=mycas.cars_summary;
run;
proc print data=mycas.cars_summary; /* 6 */
  var origin type _mean_;
run;
title "Summarized Highway MPG"; /* 7 */
proc sgplot data=mycas.cars_summary; /* 8 */
  format _mean_ 2.;
  vbarparm category=type response=_mean_
    / group=origin;
  yaxis label="Summary MPG Values";
run;
title;
cas casauto terminate;
```

1. If necessary, set system options CASHOST= and CASPORT= to the host name and port for your CAS server, and then uncomment the OPTIONS statement.
2. Connect to your CAS server. Specify caslib CASUSER as the active caslib.
Create a CAS engine libref to the active caslib, CASUSER.

Load the SAS data set Sashelp.Cars into the in-memory table Cars.

Use the MDSUMMARY procedure to summarize variable Mpg_Highway, and group the results by variables Type and Origin. Store the results in the in-memory table Cars_Summary in caslib CASUSER. The table includes a row of summary statistics for each unique combination of origin and type.

Optional: Print columns Type, Origin, and _Mean_ in table Cars_Summary.

Optional: Specify a title for the graph.

Use the SGПLOT procedure to generate the bar chart using data Mycas.Cars_Summary. The procedure creates a parameterized vertical bar chart that shows the mean statistic for highway miles-per-gallon.

The summarized data generated by the MDSUMMARY procedures contains 15 observations as shown here:

<table>
<thead>
<tr>
<th>Obs</th>
<th>Origin</th>
<th>Type</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Europe</td>
<td>Sedan</td>
<td>27.115384615</td>
</tr>
<tr>
<td>2</td>
<td>Europe</td>
<td>SUV</td>
<td>19.7</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>Truck</td>
<td>20.5</td>
</tr>
<tr>
<td>4</td>
<td>Asia</td>
<td>Sedan</td>
<td>29.968085106</td>
</tr>
<tr>
<td>5</td>
<td>Asia</td>
<td>Truck</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Europe</td>
<td>Sports</td>
<td>25.130434763</td>
</tr>
<tr>
<td>7</td>
<td>Asia</td>
<td>SUV</td>
<td>21.68</td>
</tr>
<tr>
<td>8</td>
<td>USA</td>
<td>Sedan</td>
<td>28.644444444</td>
</tr>
<tr>
<td>9</td>
<td>Asia</td>
<td>Wagon</td>
<td>28.181818182</td>
</tr>
<tr>
<td>10</td>
<td>Asia</td>
<td>Hybrid</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>Asia</td>
<td>Sports</td>
<td>28.647058824</td>
</tr>
<tr>
<td>12</td>
<td>USA</td>
<td>SUV</td>
<td>20.04</td>
</tr>
<tr>
<td>13</td>
<td>USA</td>
<td>Sports</td>
<td>24.222222222</td>
</tr>
<tr>
<td>14</td>
<td>Europe</td>
<td>Wagon</td>
<td>28.683333333</td>
</tr>
<tr>
<td>15</td>
<td>USA</td>
<td>Wagon</td>
<td>29.714295714</td>
</tr>
</tbody>
</table>

Here is the resulting bar chart:
The group values and the category axis tick values are automatically sorted in ascending order by default when an in-memory table is used.

For more information about SAS Cloud Analytic Services programming in SAS, see *An Introduction to SAS Viya Programming*.

Using SAS Studio

SAS Studio is a web interface to SAS. Using SAS Studio, you can write programs as well as access your SAS resources such as data, libraries, and programs. You can also use the predefined tasks in SAS Studio to create basic graphs and generate the SAS code for those graphs.

By default, output is generated in the HTML5, PDF, and RTF formats. After running your code, you can download and open the generated output for these formats.

You can change the default output to specify only the output that you want. You can also change the default style for your output to any of the ODS styles that are available. You make these changes in the Preferences window in SAS Studio.

If you want greater control over your graphic output, you can customize the output environment in SAS Studio.

For a summary that explains both the default output environments and the custom output environments, see “SAS Studio and ODS” in *SAS Output Delivery System: User’s Guide*.

For information about using SAS Studio, see *SAS Studio: User’s Guide* for your version of SAS Studio. You can find the documentation for all versions of SAS Studio on the [SAS Studio documentation page](https://support.sas.com/documentation/sasstudio) on support.sas.com.
About ODS Destinations and Styles

About ODS

Base SAS Output Delivery System (ODS) manages all output created by the procedures and enables you to control the output destination and format. ODS also enables you to control the style and other output features.

About ODS Destinations

ODS destinations determine where your graph output is sent and how the output is formatted. For example, in the SAS windowing environment, the HTML destination creates an HTML file that points to the graph image file. The LISTING destination sends output to an image file. The output image can be displayed by opening the image file from the Results window.

For creation of ODS graphs, a valid ODS destination must be open. You can open destinations by specifying an ODS destination statement. The HTML destination is open by default. In SAS Studio, the ODS HTML5, ODS RTF, and ODS PDF destinations are open by default. If you keep the default destination open and open another, the resultant output is sent to all open destinations. With the exceptions of the HTML and LISTING destinations, you must also close the destination before output is generated.

The ODS destination statement is used at the beginning and end of the program to open and close destinations.

For example, the following statements open and close an ODS LISTING destination.

```plaintext
ods listing;    /* opens the destination */
    /* procedure statements and other program elements here */
ods listing close;    /* closes the destination */
```

Depending on the options available for the destination, you can specify options such as the file name or the path to an output directory. For more information, see “Specifying ODS Destinations” on page 1718. For ways to customize the output in SAS Studio, see SAS Studio: User’s Guide.

About ODS Styles

ODS styles determine the overall appearance of your output. By default, ODS applies a style to all output. A style is a template, or set of instructions, that determines the colors, fonts, line styles, fill colors, and other presentation aspects of
your output. Each destination is associated with a default style. For example, the
default style for the HTML destination is HTMLBlue.

The ODS Graphics procedures automatically obtain their default appearance
attributes from the current ODS style. However, you can use appearance options in
your plot statements to override the default style attributes.

To change the style that is applied to your output, specify the STYLE= option on
your ODS destination statement.

For example, suppose you want to change the overall look of your graph for the
HTML destination to the Analysis style. Do this by specifying STYLE=ANALYSIS in
the ODS HTML destination statement as follows:

```sas
ods html style=analysis;
```

Note: In SAS Studio, you can specify the style for the default ODS destinations in
the Preferences window.

For more information, see Chapter 15, “Controlling the Appearance of Your Graphs,”
on page 1673.

SAS ships predefined styles. Some of these predefined styles are described in
“Recommended Styles” on page 1676. To see all available styles, see “Viewing a
Style Template” on page 1679.
A Typical Program

Your programs must include at least one procedure (PROC step), which in turn contains a number of statements related to the procedure. The programs can also include ODS statements, ODS GRAPHICS statements, and Base SAS statements. In addition, the programs can specify an annotation data set or an attribute map data set.

The sample program below identifies the basic elements of a typical program.

Example Code 4.1 Sample Program

/* Global SAS Statements */
ods html style=statistical; /* 1 */
ods graphics on / width=4.5in; /* 2 */
Here is the output for the sample program.

The following sections describe each element of the program in more detail and explain how the elements relate to one another.
About the PROC Step

Note: The descriptions in this and subsequent topics refer to the example that is shown in "A Typical Program" on page 81.

A group of SAS procedure statements is called a PROC step. The PROC step consists of the following:

- a beginning procedure (PROC) statement with options
- typically, statements specifying plot types, variables, and options
- an ending RUN statement

These statements can identify and analyze the data in SAS data sets. They can generate the graphics output and control the appearance of the output. Statements can define variables and perform other operations on your data. You can also specify global statements and options within the PROC step.

Procedure Statements and Options

The procedure statement identifies which procedure you are invoking, such as the SGPLOT procedure, the SGPANEL procedure, and so on.

The statement also specifies which input data set is to be used. A data set is not required for all of the procedures. For example, the SGRENDER procedure defaults to the most recently created SAS data set if none is provided.

The statement can include options that are related to the procedure. For example, the DESCRIPTION= option can be used with several procedures to provide a description for the output image.

Plot Statements and Options

Plot statements are used within the procedure to identify the type of plot that you want the procedure to produce. The SGPLOT and SGPANEL procedures require at least one plot statement.

Multiple plot statements can be used, as shown in the example. A SERIES statement is used to create a series plot that shows power generation from coal.
A second SERIES statement creates a series plot that shows power generation from natural gas.

Options are available for specifying colors, marker symbols, and other attributes of plot features. In the example, both series plots specify that data labels are displayed. The second SERIES statement uses the Y2AXIS option to plot natural gas power output along the Y axis on the right side of the plot.

The SGPLOT procedure also enables you to add a text inset to a plot using the INSET statement (not shown in the example). The INSET statement adds a text box within the axes of the plot. Options are available for specifying the visual attributes of the text box and the text.

(Optional) Legend Statement and Options

By default, legends are created automatically for some plots, depending on their content. The graph shown in the example has an automatically generated legend.

You can manually add a legend to the graph for the SGPLOT, SGPANEL, and SGSCATTER procedures. When you manually add a legend, options are available for specifying the legend title, its position in the graph, and other attributes.

(Optional) Axis Statements and Options

The SGPLOT and SGPANEL procedures contain statements that enable you to change the type and appearance for the axes of the graph. By default, the type of each axis is determined by the types of plots that use the axis and the data that is applied to the axis. You can change the type of axis that is used for a plot. For example, to display independent data values rather than a range of numeric values on the axis, specify the TYPE=DISCRETE option. (Not all plot types support discrete axes.)

The SGPLOT procedure supports the use of secondary axes, as shown in the example. Secondary axes are denoted as X2 and Y2 axes. The secondary axes support the same options as the primary axes.

When you use an axis statement, options are available for showing or hiding axis features, such as ticks and labels, and for specifying other attributes. The graph shown in “A Typical Program” on page 81 has three axis statements. The first statement changes the X axis to be discrete. The other two statements change the labels for the Y and Y2 axes.

Other Required Statements

The SGPANEL and SGSCATTER procedures are not shown in the example. These procedures include some important statements that are required within the procedure block.

- The SGPANEL procedure requires a PANELBY statement. This statement specifies one or more classification variables for the panel, the layout type, and
other options for the panel. For more information, see “PANELBY Statement” on page 166.

The SGSCATTER procedure requires one of these three statements:

- PLOT creates a paneled graph of scatter plots where each graph cell has its own independent set of axes.
- COMPARE creates a shared axis panel, also called an MxN matrix.
- MATRIX creates a scatter plot matrix.

For more information, see “Statements for Creating Panels” on page 1567.

About SAS Statements

The ODS Graphics procedures support a number of SAS statements. Some of these, such as the TITLE statement, are global statements that can be used anywhere in your program. Global statements apply to all the output generated subsequently in the program, unless they are overridden by a procedure option or another global statement.

As shown in “A Typical Program” on page 81, the TITLE statement is used toward the beginning and end of the program. The first statement specifies the title. The second statement cancels the current title.

The example program also uses a WHERE statement to subset the data that is used in the graph. In the example, the WHERE statement selects observations based on their date (2002 or greater) and the type of customer (residential).

For more information, see “SAS Statements That Are Used with ODS Graphics Procedures” on page 89.

About ODS Destination Statements

The ODS Graphics procedures use ODS destination statements to control where the output goes and how it looks. Although ODS destination statements are not required in every program, they are necessary if you want to generate graphs for destinations other than the default HTML destination.

You can use the STYLE= option in the ODS destination statement to change the style that is applied to your output. As shown in “A Typical Program” on page 81, the ODS destination statement is used at the beginning and end of the program to modify the default style. The beginning statement specifies a different style. The end statement sets the HTML style back to its default of HTMLBlue.
Note: In SAS Studio, you can specify the style for the default ODS destinations in the Preferences window.

The ODS destination statement can also be used to open a different destination. Depending on the options available for the destination, you can specify other features such as the name of the output file or the directory where images are stored.

An ODS destination must be open to create output from the procedures. If you want to use a destination other than the default, you should always open the destination before calling the procedure. Opening a non-default destination results in output being sent both to HTML by default as well as to the additional specified destination. Conserve system resources by using the ODS destination statement at the end of the SAS program to close a destination that was opened in that program.

For ways to customize the output in SAS Studio, see SAS Studio: User’s Guide.

See Also

About the ODS GRAPHICS Statement

Options

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. The ODS GRAPHICS statement is a global statement that can be used anywhere in your program. The settings that you specify remain in effect for all graphics until you change or reset these settings with another ODS GRAPHICS statement.

As shown in “A Typical Program” on page 81, the ODS GRAPHICS statement is used at the beginning and end of the program to modify the size of the graph. The beginning statement specifies the size. The end statement set all options back to their defaults.

See Also

“ODS GRAPHICS Statement” on page 96
About Using an Annotation Data Set

The SG annotation feature enables you to add shapes, arrows, text, images, and other annotations to graph output.

Two main steps are required to add annotation elements to a graph:

1. Create an annotation data set, which contains the commands for creating the annotation elements.

2. Modify the procedure to use the annotation data set. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures.

For more information, see Chapter 20, "Annotating ODS Graphics," on page 1767.

About Using an Attribute Map Data Set

The attribute map feature enables you to control the visual attributes that are applied to specific data values in your graphs. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country by name.

Attribute maps enable you to assign the same graphical properties to specific values or ranges of values regardless of data order or the data range.

The ODS Graphics procedures support two types of attribute maps:

- discrete attribute map
 maps discrete grouped data values to graphical properties.

- range attribute map
 maps ranges of continuous numeric values to graphical properties.

For more information, see Chapter 17, "Using Attribute Maps to Control Visual Attributes," on page 1733.
Overview of SAS Statements That Are Used with ODS Graphics Procedures

The SAS ODS Graphics procedures support these statements in addition to statements that are unique to each procedure:

BY
- processes your data by using one or more classification variables, and produces a separate graph for each unique combination of values.

FORMAT
- associates SAS formats or user-defined formats with variables.

FOOTNOTE
- adds footnotes to your graphs.

LABEL
- associates descriptive labels with variables.

ODS GRAPHICS
- enables you to manage the settings for your graphics output.
TITLE
 adds titles to your graphs.

WHERE
 selects observations from SAS data sets that meet a particular condition.

The ODS GRAPHICS, TITLE, and FOOTNOTE statements are global statements. That is, they can be specified anywhere in your program and they remain in effect until you explicitly cancel or change them. The BY, FORMAT, and LABEL statements are associated with a specific procedure step.

Note: Some of the statements that can be used with traditional SAS procedures are not used with the ODS Graphics procedures.

Dictionary

BY Statement

Creates a separate graph for each BY group.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Syntax

BY <DESCENDING> variable-1 <... <DESCENDING> variable-n> <NOTSORTED> ;

Required Argument

variable
 specifies the variable that the procedure uses to form BY groups. You can specify more than one variable. By default, observations in the data set must either be sorted in ascending order by all the variables that you specify, or be indexed appropriately.

Optional Arguments

DESCENDING
 specifies that the data set is sorted in descending order by the specified variable. This option affects only the variable that immediately follows it—you must specify the DESCENDING option before each variable that is sorted in descending order. For example, the following code specifies a BY group that uses two variables that are both sorted in descending order:
by descending variable1 descending variable2;

NOTSORTED

specifies that the observations in the data set that have the same BY values are grouped together, but are not necessarily sorted in alphabetical or numeric order. For example, the observations might be sorted in chronological order using a date format such as DDMMYY.

The NOTSORTED option applies to all of the variables in the BY statement. You can specify the NOTSORTED option anywhere within the BY statement.

The requirement for ordering or indexing observations according to the values of BY variables is suspended when you use the NOTSORTED option. In fact, the procedure does not use an index if you specify the NOTSORTED option. For the NOTSORTED option, the procedure defines a BY group as a set of contiguous observations that have the same values for all BY variables. If observations that have the same value for the BY variables are not contiguous, then the procedure treats each new value that it encounters as the first observation in a new BY group. The procedure then creates a graph for that value.

Restriction
The NOTSORTED option is not supported by the SGPANEL procedure.

Details

Preparing Data for BY-Group Processing

Unless you specify the NOTSORTED or DESCENDING options, observations in the input data set must be in ascending numeric or alphabetic order. To prepare the data set, sort it with the SORT procedure using the same BY statement that you plan to use in the target procedure. Alternatively, you can create an appropriate index on the BY variables. For more information about indexes, see SAS V9 *LIBNAME Engine: Reference*.

If the procedure encounters an observation that is out of order, an error message is generated.

If you need to group data in some other order, such as chronological order, you can still use BY-group processing. To do so, process the data so that observations are arranged in contiguous groups that have the same BY-variable values and specify the NOTSORTED option in the BY statement.

Controlling BY Lines

By default, the BY statement prints a BY line above each graph that contains the variable name followed by an equal sign and the variable value. For example, if you specify BY SITE in the procedure, the default heading when the value of SITE is London would be SITE=London.

To suppress the BY line, use the NOBYLINE option in an OPTION statement.

To display only the BY value, use the NOBYLINE option and then use the #BYVAL1 substitution in a TITLE statement.
Using the BY Statement with the SGPLOT Procedure

You can use the UNIFORM= option in the PROC SGPLOT statement to produce the same group markers, the same axis scaling, or both for all graphs in a BY group. By default, the group markers and axis scales might vary from graph to graph.

Using the BY Statement with the TITLE and FOOTNOTE Statements

The TITLE and FOOTNOTE statements can automatically include the BY variable name, BY variable values, or BY lines in the text that they produce. To insert BY variable information into the text strings used by these statements, use the #BYVAR, #BYVAL, and #BYLINE substitution options. For more information, see the description for the text-string argument in “TITLE, FOOTNOTE Statements” on page 127.

FOOTNOTE Statement

Writes up to 10 lines of text at the bottom of the graph.

Valid in: anywhere in your program
Used by: SGPLOT, SGPANEL, and SGSCATTER procedures
See: “TITLE, FOOTNOTE Statements” on page 127

Syntax

FOOTNOTE<1...10> <text-options> "<text-string–1>" ... <text-options> "<text-string–n>" ;

FORMAT Statement

 Associates SAS formats or user-defined formats with variables.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures
Details

Associating Formats with Variables

The FORMAT statement can be used in an SGPLOT, SGSCATTER, SGPANEL, or SGRENDER procedure step to associate SAS formats and user-defined formats with variables. Also, several procedure statement options can be used to associate a format with a variable or computed value. Examples include the TICKVALUEFORMAT= option for formatting axis tick values, and the TIPFORMAT= option for formatting data tips. For information about SAS formats, see SAS Formats and Informats: Reference. For information about user-defined formats, see “FORMAT Procedure” in Base SAS Procedures Guide.

Not all SAS formats and user-defined formats are supported with the SGPLOT, SGSCATTER, SGPANEL, and SGRENDER procedures. See “User-Defined Formats That Are Not Supported” in SAS Graph Template Language: Reference. When an unsupported format is encountered, a note similar to the following is written to the SAS log:

```
TICKVALUEFORMAT=bestx. is invalid. The format is invalid or unsupported.
The default will be used.
```

Using Locale-Sensitive Decimal Separators with Numeric Formats

System option NLDESCEPARATOR= is not supported by ODS Graphics. When system option NLDECSEPARATOR is in effect, syntax errors or null debug errors might result when using a procedure enabled by ODS Graphics. For locale-sensitive decimal separators in your graph’s numeric values, specify system option NONLDESCEPARATOR, and then use appropriate NL formats to format your numeric variables. See “Dictionary of Formats for NLS” in SAS National Language Support (NLS): Reference Guide.

SAS Formats That Are Not Supported

Unsupported Numeric Formats

The following numeric formats are not supported in ODS Graphics:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESTD</td>
<td>BESTX</td>
<td>D</td>
<td>FLOAT</td>
<td>FRACT</td>
</tr>
<tr>
<td>FREE</td>
<td>IB</td>
<td>IBR</td>
<td>IEEE</td>
<td>IEEER</td>
</tr>
<tr>
<td>ODDSR</td>
<td>PCPIB</td>
<td>PD</td>
<td>PIB</td>
<td>PIBR</td>
</tr>
<tr>
<td>PK</td>
<td>RB</td>
<td>SSN</td>
<td>WORDF</td>
<td>WORDS</td>
</tr>
<tr>
<td>Z</td>
<td>ZD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unsupported Date and Time Formats Related to ISO 8601

The following date and time formats are not supported in ODS Graphics:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N8601B</td>
<td>$N8601BA</td>
<td>$N8601E</td>
<td>$N8601EA</td>
<td>$N8601EH</td>
</tr>
<tr>
<td>$N8601EX</td>
<td>$N8601H</td>
<td>$N8601X</td>
<td>B8601DA</td>
<td>B8601DN</td>
</tr>
<tr>
<td>B8601DT</td>
<td>B8601EZ</td>
<td>B8601LZ</td>
<td>B8601TM</td>
<td>B8601TZ</td>
</tr>
<tr>
<td>E8601DA</td>
<td>E8601DN</td>
<td>E8601DT</td>
<td>E8601DZ</td>
<td>E8601LZ</td>
</tr>
<tr>
<td>E8601TM</td>
<td>E8601TZ</td>
<td>IS8601DA</td>
<td>IS8601DN</td>
<td>IS8601DT</td>
</tr>
<tr>
<td>IS8601DZ</td>
<td>IS8601LZ</td>
<td>IS8601TM</td>
<td>IS8601TZ</td>
<td></td>
</tr>
</tbody>
</table>

Other Unsupported Date and Time Formats

The following date and time formats are not supported in ODS Graphics:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDATE</td>
<td>HEBDATE</td>
<td>JDATEMDW</td>
<td>JDATEMNW</td>
<td>JDATEWK</td>
</tr>
<tr>
<td>JDATEYDW</td>
<td>JDATEYM</td>
<td>JDATEYMD</td>
<td>JDATEYMW</td>
<td>JDATEYTW</td>
</tr>
<tr>
<td>JDATEYTW</td>
<td>JNENGOW</td>
<td>JNENGOT</td>
<td>JNENGOTW</td>
<td>JNENGOW</td>
</tr>
<tr>
<td>JTIMEH</td>
<td>JTIMEH</td>
<td>JTIMEHM</td>
<td>JTIMEHMS</td>
<td>JTIMEHW</td>
</tr>
<tr>
<td>JTIMESW</td>
<td>MDYAMPM</td>
<td>MINGOU</td>
<td>NENGO</td>
<td>NLDATYEQ</td>
</tr>
<tr>
<td>NLDATEYR</td>
<td>NLDATEYW</td>
<td>NLDATMYQ</td>
<td>NLDATMYR</td>
<td>NLDATMYW</td>
</tr>
<tr>
<td>NLSTRMON</td>
<td>NLSTRQTR</td>
<td>NLSTRWK</td>
<td>PDJULG</td>
<td>PDJULI</td>
</tr>
<tr>
<td>TWMDY</td>
<td>XXYMMDD</td>
<td>YYQZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unsupported Currency Formats

The following currency formats are not supported in ODS Graphics:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURFRATS</td>
<td>EURFRBEF</td>
<td>EURFRCHF</td>
<td>EURFRCZK</td>
<td>EURFRDEM</td>
</tr>
<tr>
<td>EURFRDKK</td>
<td>EURFRESP</td>
<td>EURFRHUF</td>
<td>EURFRFRF</td>
<td>EURFRGBP</td>
</tr>
<tr>
<td>EURFRGRD</td>
<td>EURFRIEP</td>
<td>EURFRITL</td>
<td>EURFRLUF</td>
<td></td>
</tr>
<tr>
<td>EURFRNLG</td>
<td>EURFRNOK</td>
<td>EURFRPLZ</td>
<td>EURFRPTE</td>
<td>EURFRROL</td>
</tr>
<tr>
<td>EURFRRUR</td>
<td>EURFRSEK</td>
<td>EURFRSIT</td>
<td>EURFRTRL</td>
<td>EURFRYUD</td>
</tr>
</tbody>
</table>
User-Defined Formats That Are Not Supported

Picture Formats with Date, Time, or Datetime Directives

ODS Graphics does not support user-defined picture formats that specify date, time, or datetime directives such as `%a`, `%W`, `%H`, and so on. Using a picture format with directives produces unexpected results in ODS Graphics. To work around this limitation, apply the picture format to a new column in your data, and then plot the new preformatted column instead. Here is an example that creates column NewDate by formatting the Date column as MM/YYYY.

```sas
/* Create picture format MonYear for MM/YYYY date */
proc format;
  picture monyear (min=7)
    low-high='%0m/%Y' (datatype=date);
run;

/* Add preformatted date column NewDate to the data */
data stocks;
  set sashelp.stocks
    where=(year(date) eq 2001 and stock eq "IBM");
  newdate = put(date, monyear.);
  label newdate="Date: MM/YYYY";
run;
```

The NewDate column can be used in ODS Graphics plot statements instead of the Date column.

For information about the PICTURE statement in the FORMAT procedure, see Base SAS Procedures Guide.

Unicode Values with a User-Defined ODS Escape Character

ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (`(*ESC*)`) escape sequence as shown in the following example.

`"(*ESC*){unicode beta}"`

ODS Graphics does not support the use of a user-defined ODS escape character to escape Unicode values in user-defined formats.
For an example of how to use Unicode values in user-defined formats with ODS Graphics, see “Formatting the Tick Values on a Discrete Axis” in SAS Graph Template Language: User’s Guide.

LABEL Statement

Associates descriptive labels with variables.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Details

All features of the LABEL statement are supported. For more information, see “LABEL Statement” in SAS DATA Step Statements: Reference.

ODS GRAPHICS Statement

Enables or disables ODS Graphics processing and sets graphics environment options. This statement affects ODS template-based (ODS Graphics) graphics only. The ODS GRAPHICS statement does not affect device-based graphics (SAS/GRAPH).

Valid in: Anywhere

Category: ODS: Output Control

Default: ON. Beginning in SAS 9.4, ODS Graphics is enabled by default on all platforms except z/OS. When running SAS in batch mode, the default is OFF.

Interaction: SAS/GRAPH device-based global statements such as GOPTIONS, SYMBOL, PATTERN, AXIS, and LEGEND do not affect template-based graphics. The ODS GRAPHICS statement does not affect device-based graphics.

Syntax

```
ODS GRAPHICS <OFF | ON> <options> ;
```

Summary of Optional Arguments

```
ANTIALIAS | NOANTIALIAS | ANTIALIAS= ON | OFF
          specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph.

ANTIALIASMAX= n
          specifies the maximum number of graphics elements before anti-aliasing is disabled.
```
ATTRPRIORITY=COLOR | NONE
specifies a priority for cycling of the group attributes.

BORDER | NOBORDER | BORDER=ON | OFF
specifies whether to draw a border around each graph.

BYLINE=NOBYLINE | TITLE | FOOTNOTE
specifies how the BY line is displayed in graphs.

DATASKINMAX=n
specifies the maximum number of graphical elements allowed per plot when a data skin is applied.

DISCRETEMAX=n
specifies the maximum number of discrete values to be shown in any graph.

DRILLTARGET="_blank" | "_self" | "_parent" | "_top" | "frame-name"
specifies the window that displays the drill-down output.

GROUPMAX=n
specifies the maximum number of group values to be shown in any graph.

HEIGHT=dimension
specifies the height of a graph.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF
specifies whether data tips are generated.

IMAGENAME="filename"
specifies the base image filename.

LABELMAX=n
specifies the maximum number of labeled areas before data label collision avoidance is disabled.

LABELPLACEMENT=GREEDY | SA
specifies the label-placement algorithm to use for positioning labels in the graphs.

LEGENDAREAMAX=n
specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.

LINEPATTERNOBSMAX=n
specifies the maximum the number of vertices for a patterned line.

LOESSOBSMAX=n
specifies an upper limit for the number of observations that can be used with a loess plot.

NBINSMAX=n
specifies the maximum number of bins that are processed for histograms.

NXYBINSMAX=n
specifies the maximum number of bins that are processed for heat maps.

OBSMAX=n
specifies the maximum number of observations that are processed.

OUTPUTFMT= file–type | STATIC
specifies the output format used to generate image or vector graphic files.

PANELCELLMAX=n
specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables.

PUSH

POP

pushes and pops ODS GRAPHICS settings in a stack.

RESET | RESET= option
Reset one or more ODS GRAPHICS options to its default.

SCALE | NOSCALE | SCALE=ON | OFF

specifies whether the content of a graph is scaled proportionally.

SCALEMARKERS | NOSCALEMARKERS | SCALEMARKERS=ON | OFF

specifies whether the plot markers are to be scaled with the graph size.

SHOW

writes the current ODS Graphics settings to the SAS log.

STACKDEPTHMAX=n

specifies the maximum stack depth for PUSH and POP requests.

SUBPIXEL | NOSUBPIXEL | SUBPIXEL=ON | OFF

specifies whether subpixel rendering should be used for rendering ODS Graphics.

TIPMAX=n

specifies the maximum number of distinct data tip areas allowed before data tips are disabled.

TOTALCELLMAX=n

specifies the maximum number of total cells in a graph where the number of cells is determined dynamically by classification variables.

WIDTH=dimension

specifies the width of any graph.

Without Arguments

If ODS Graphics is currently disabled, then specifying the ODS GRAPHICS statement without options enables it. If ODS Graphics is currently enabled, then specifying the ODS GRAPHICS statement leaves it enabled.

Required Arguments

ON

enables ODS Graphics processing. This is the default if no argument is used.

OFF

disables ODS Graphics processing.

Optional Arguments

ANTIALIAS | NOANTIALIAS | ANTIALIAS=ON | OFF

specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph. Anti-aliasing smooths the appearance of lines and some markers. Text displayed in the graph is always anti-aliased. For graphical displays that plot large numbers of points it is recommended that ANTIALIAS=OFF be specified for performance considerations.

Note: Beginning in SAS 9.4, ODS Graphics is enabled by default on all platforms except z/OS.
ANTIALIAS
smooths jagged edges of all components in the graph.

NOANTIALIAS
does not smooth jagged edges of components other than text in the graph.

ANTIALIAS=ON | OFF
specifies whether anti-aliasing is applied to the rendering of the line and markers in the graph.

ON
smooths jagged edges of all components in the graph.

Alias YES

OFF
does not smooth jagged edges of components other than text in the graph.

Alias NO

Default ANTIALIAS or ANTIALIAS=ON | YES

Restrictions If the number of markers or lines in the plot exceeds the number specified by the ANTIALIASMAX= option, then the ANTIALIAS option is disabled. This is true even if you specify the option ANTIALIAS=ON or ANTIALIAS.

This option is ignored by the SGPIE and SGMAP procedures.

ANTIALIASMAX= n
specifies the maximum number of graphics elements before anti-aliasing is disabled. For example, if there are more than 400 scatter point markers to be anti-aliased and ANTIALIASMAX=400, then no markers are anti-aliased. The default value is 4000.

Note: Prior to SAS 9.4M3, the ANTIALIASMAX= option specifies the maximum number of observations in the graph data to be anti-aliased before anti-aliasing is disabled. The default is 4000. When the graph data contains more than 4000 observations, anti-aliasing is disabled for the entire graph. Starting with SAS 9.4M3, the ANTIALIASMAX= option specifies the maximum number of graphics elements to be anti-aliased in each plot on a per-plot basis. The default remains at 4000. If any plot in a graph contains more than 4000 elements, anti-aliasing is disabled for that plot. Anti-aliasing is enabled for the rest of the graph in that case.

\[n \]
specifies a positive integer.

Default 4000

Restriction This option is ignored by the SGPIE and SGMAP procedures.

ATTRPRIORITY=COLOR | NONE
specifies a priority for cycling of the group attributes.
COLOR
assigns priority to the color attribute rotation by cycling through the list of colors while holding the marker symbol and line pattern constant. When all of the colors are exhausted, the marker symbol and line style attributes increment to the next element, and then the colors in the list are repeated. This pattern repeats as needed.

NONE
does not use an attribute priority in the rotation pattern, even if one is set in the active style’s AttrPriority attribute. The rotation pattern cycles progressively through the attribute lists.

Default The AttrPriority attribute of the graph style element, or NONE if the current style does not define the AttrPriority style attribute.

Interaction The default lists of data colors, contrast colors, marker symbols, and line patterns are set in the active style’s GraphData1–GraphDataN elements.

Tip Use the ATTRPRIORITY=NONE option if you want groups to be distinguished by color, marker, and line changes for all styles that use color.

BORDER | NOBORDER | BORDER=ON | OFF
specifies whether to draw a border around each graph.

BORDER
draws a border around the graph.

NOBORDER
does not draw a border around the graph.

BORDER=ON | OFF
specifies whether to draw the graph with a border on the outermost layout.

ON
draws a border around the graph.

Alias YES

OFF
does not draw a border around the graph.

Alias NO

Default BORDER or BORDER=ON | YES

BYLINE=NOBYLINE | TITLE | FOOTNOTE
specifies how the BY line is displayed in graphs. The option specifies how the BY line is displayed when an analysis is run with a BY statement. By default, no BY line is displayed.

The following code is an example of how the placement of the BY line is controlled in most graph templates:

```sas
if (_BYTITLE_)
   entrytitle _BYLINE_ / textattrs=GraphValueText;
else
   if (_BYFOOTNOTE_)
      entryfootnote halign=left _BYLINE_;
endif;
```
You can modify the graph template if you want to change how the BY line is displayed. Because most graphs have titles and few graphs have footnotes, the BY line looks better when it is displayed as a footnote. For complete documentation about the Graph Template Language, see SAS Graph Template Language: User’s Guide.

When the BYLINE= option is specified, and there are BY groups, ODS creates a BY line and sets the appropriate special dynamic variables. The following table lists the special dynamic variables for BY lines. For complete documentation about special dynamic variables, see “Special Dynamic Variables” in SAS Graph Template Language: User’s Guide.

Table 5.1 Special Dynamic Variables for BY Lines

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYFOOTNOTE=</td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to FOOTNOTE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
<tr>
<td>BYTITLE=</td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to TITLE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
<tr>
<td>BYLINE=</td>
<td>This variable contains the text string that can be displayed as a title or footnote.</td>
</tr>
</tbody>
</table>

The variables in the table are set automatically only for analytical procedures that support ODS Graphics. For all other procedures, the variables are not set automatically (NULL). To determine whether the procedure that you are using supports ODS Graphics, refer to the procedure documentation.

NOBYLINE specifies that no BY line is displayed. NOBYLINE is the default.

FOOTNOTE specifies that the BY line is displayed as a left-justified graph footnote. This is the recommended setting.

TITLE specifies that the BY line is displayed as a centered graph title. Specifying TITLE is not recommended because graphs are not designed to have additional title lines.

Default: NOBYLINE

Restriction: This option does not work with the ODS Graphics procedures such as SGPLOT and SGPANEL. To remove BY lines in those procedures, use the NOBYLINE SAS system option. Example: options nobyline;

DATASKINMAX=n specifies the maximum number of graphical elements allowed per plot when a data skin is applied.

Note: This feature applies to SAS 9.4M1 and later releases.
n specifies a positive integer.

Default 200

DISCRETEMAX=n
specifies the maximum number of discrete values to be shown in any graph. Bar charts and box plots are examples of affected plot types. Scatter plots and other plot types can be affected if the data to be plotted is discrete or the axis is discrete.

n specifies a positive integer.

Default 1000

Tips

Some plot layers might be unaffected by the DISCRETEMAX= option, and those layers are rendered. If all layers are affected, a blank graph is rendered.

If the value specified by the DISCRETEMAX= option is exceeded by any plot layer in the graph, that layer is not drawn and a warning message is issued. In that case, use the DISCRETEMAX= option to increase the maximum number of discrete values that are allowed. Starting with **SAS 9.4M5**, the log message includes a suggested value for DISCRETEMAX=.

DRILLTARGET=_blank | _self | _parent | _top | frame-name
specifies the window that displays the drill-down output.

Note: This option is supported only for HTML.

"_blank"

- opens a new browser window to display the drilldown output.

Default _blank is the default.

Requirements You must enclose _blank in quotation marks.

You must specify _blank in lowercase.

"_self"

- opens the drill-down output in the same window.

Requirements You must enclose _self in quotation marks.

You must specify _self in lowercase.

"_parent"

- opens the drill-down output in the parent frame.

Requirements You must enclose _parent in quotation marks.

You must specify _parent in lowercase.

"_top"

- opens the drill-down output in the full body of the window.
Requirements You must enclose _top in quotation marks.
You must specify _top in lowercase.

“frame-name”
opens the drill down output in the named frame in the current window. If the
name does not exist, the output is opened in a new window.

Requirement You must enclose frame-name in quotation marks.

GROUPMAX=n
specifies the maximum number of group values to be shown in any graph. Any
graph that supports the GROUP= option is affected.

n
specifies a positive integer.

Default 1000

Note This option is ignored by the SGMAP procedure.

Tip If the value specified by the GROUPMAX= option is exceeded by any
plot layer in the graph, that layer is rendered. The system ignores the
GROUP= option and issues a warning message. In that case, use the
GROUPMAX= option to increase the maximum number of group values
that are allowed. Starting with SAS 9.4M5, the log message includes a
suggested value for GROUPMAX=.

HEIGHT=dimension
specifies the height of a graph.

dimension
is a nonnegative number followed by one of these units of measure:

Table 5.2 Units of Measure for Dimension

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pct or %</td>
<td>Percentage</td>
</tr>
<tr>
<td>pt</td>
<td>Point size (72 points = 1 inch)</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>

Defaults The value of the SAS registry entry "ODS > ODS GRAPHICS >
Design Height" or the value of the DesignHeight= option in a
STATGRAPH template. Typically, the value is 480px.

For the PRINTERR destination, units of 1/150 of an inch are used by
default.
Tips If only the HEIGHT= option is specified, then the default aspect ratio of the graph is maintained.

When you change the size of a graph, by default graph elements such as markers, lines, text, and titles are scaled proportionally. This scaling takes effect even when you specify dimensions for the graph elements. To disable the scaling, specify the NOSCALE option.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF
controls data tips and drill down generation. Data tips are pieces of explanatory text that appear when you hold the mouse pointer over the data portions of a graph contained in an HTML page.

IMAGEMAP specifies to generate data tips.

NOIMAGEMAP specifies not to generate data tips.

IMAGEMAP= ON | OFF controls data tips generation.

ON specifies to generate data tips.

Alias YES

OFF specifies not to generate data tips.

Alias NO

Default NOIMAGEMAP or IMAGEMAP=OFF | NO

Restrictions This option applies only when one of the ODS HTML* destinations is used.

Prior to SAS 9.4M5, an image map is not generated using SVG with ODS Graphics. The image map data that is used to produce tooltips and links is written directly in the SVG and is not part of the HTML. Using HTML5 with the inline SVG mode (the default value), the tooltips and links are written in the SVG portion of the document. (If you are using SAS 9.4M5, see the following Note.)

Interaction When IMAGEMAP | IMAGEMAP=ON is specified and the ODS HTML destination is used, the IMAGE_DPI option in the ODS HTML destination is ignored, if specified, and the default image resolution of 96 DPI is used.

Note Starting with SAS 9.4M5, image maps are supported with SVG output using HTML5. However, image maps are supported only when the HTML5 SVG mode is INLINE (the default value).

IMAGENAME=“filename”
specifies the base image filename. If more than one image is generated, each is assigned a filename that consists of a base name followed by a number in order to create unique names. This numbering can be reset with the RESET=INDEX option. Path information (if needed) can be set with the GPATH= option on the ODS destination statement. The default path is the current output directory. A file
extension for filename is automatically generated based on the OUTPUTFMT= option.

Note: Starting with **SAS 9.4M5**, if a BY statement is in effect, you can uniquely name image files based on BY groups. To do this, insert #BY text into the image name. For more information, see “Substituting BY Values in the Image Name” on page 119.

LABELMAX=\(n\)

specifies the maximum number of labeled areas before data label collision avoidance is disabled. For example, if there are more than 50 points to be labeled and LABELMAX=50, then collision avoidance is turned off and the labels are all displayed at the top right of the data points.

\(n\)

specifies a positive integer.

Default

200

Restriction

Data label collision avoidance is turned off under the following conditions:

- The number of observations with nonmissing labels exceeds the value specified by LABELMAX=.
- The number of observations exceeds five times the value specified by LABELMAX=.

A message is then sent to the SAS log.

Tip

To turn off collision avoidance, specify LABELMAX=0.

LABELPLACEMENT= GREEDY | SA

specifies the label-placement algorithm to use for positioning labels in the graphs. The following labels are affected:

- data labels for needle plots, scatter plots, series plots, step plots, and vector plots
- vertex labels for line charts
- curve labels when the curve label is positioned at the start or end of the curve

GREEDY

specifies the Greedy method for managing label collision. The Greedy method tries different placement combinations in order to find an optimal approximation that avoids collisions. Label placement using this method is often less optimal than label placement using the Simulated Annealing (SA)
method. However, depending on the number of data points and the potential for label collisions, the Greedy process can be significantly faster.

SA

specifies the Simulated Annealing method for managing label collision. The SA method attempts to determine the global minimization-of-cost function, which is based on a simulated annealing algorithm. The resulting label placement is usually better than placement using the Greedy method. However, depending on the number of data points and the potential for label collisions, the SA method can be significantly slower.

Restriction

For BANDPLOT and LINECHART, the SA method has no effect on the curve labels when the CURVELABELPOSITION= option specifies START or END.

Default

GREEDY

LEGENDAREAMAX=n

specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.

Note: Starting with SAS 9.4M3, LEGENDAREAMAX= replaces MAXLEGENDAREA=. However, MAXLEGENDAREA= is supported as an alias. It is recommended that you use LEGENDAREAMAX=.

n

specifies a positive integer.

Alias

MAXLEGENDAREA=

Default

20

Range

0–100

Tip

To turn off the legend, specify LEGENDAREAMAX=0. No warning is issued when the legend is turned off in this way.

LINEPATTERNOBSMAX=n

specifies the maximum the number of vertices for a patterned line. If the number of vertices exceeds the specified limit, the plot is not drawn.

n

specifies a positive integer.

Note: This feature applies to SAS 9.4M5 and later releases.

Default

10000

Restriction

This option is ignored by the SGMAP and SGPIE procedures.

Note

If the number of vertices exceeds the specified limit, the plot is not drawn and a note is written to the SAS log. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the log message, or change the line pattern to SOLID.
LOESSOBSMAX=\(n\)
specifies an upper limit for the number of observations that can be used with a loess plot.

Note: Starting with SAS 9.4M3, LOESSOBSMAX= replaces LOESSMAXOBS=. However, LOESSMAXOBS= is supported as an alias. It is recommended that you use LOESSOBSMAX=.

If the number of observations of the loess plot exceeds the specified limit, the loess plot is not drawn.

For example, the following specifies that the most observations a loess plot can have is 1000.

\[
\text{LOESSOBSMAX}=1000
\]

Alias \(\text{LOESSMAXOBS}\=\)

Default 5000

NBINSMAX=\(n\)
specifies the maximum number of bins that are processed for histograms. This option affects both computed and parameterized histograms, when available.

Note: This feature applies to SAS 9.4M4 and later releases.

\(n\) specifies a positive integer.

Default 10000

Requirement The NBINSMAX= value must be greater than or equal to the default number of bins in the histogram. If the NBINXMAX= value is less than the default number of bins, an error occurs and the histogram is not drawn. In that case, an error message is written to the SAS log, which provides a minimum NBINSMAX= value that you can use.

Interaction If you specify the number of bins in the histogram plot statement NBINS= option, that option is honored if the NBINS= value specified is less than or equal to the NBINXMAX= value. If the NBINS= value specified exceeds the NBINSMAX= value, an error occurs, and the histogram is not drawn.

NXYBINSMAX=\(n\)
specifies the maximum number of bins that are processed for heat maps. This option affects both computed and parameterized heat maps. The option applies to the product of the X and Y bins.

Note: This feature applies to SAS 9.4M4 and later releases.

\(n\) specifies a positive integer.

Default 100000
If you specify the number of bins in the heat map statement, that option is honored regardless of the NXYBINSMAX= option.

OBSMAX=n

specifies the maximum number of observations that are processed. If the number of observations in the data set exceeds the value specified for OBSMAX=, the procedure step terminates with a log message.

\(n \)

specifies a positive integer.

Alias MAXOBS=

Default 2 million observations

Interaction There are other ways to control the number of observations:

CASDATALIMIT= system option, DATALIMIT= option in the CAS LIBNAME statement, and DATALIMIT= data set option. If the CAS data transfer limit is set lower than OBSMAX=, then OBSMAX= has no effect.

OUTPUTFMT= file-type | STATIC

specifies the output format used to generate image or vector graphic files. If the image or vector graphic format is not valid for the active output destination, the format is automatically changed to the default format for that destination.

\(file-type \)

is the image or vector graphic format to be generated. See “Supported File Types for Output Destinations” on page 123.

STATIC

uses the best quality static image format for the active output destination. This is the default output format.

TIP The STATIC keyword can be used to reset the output format to its default state.

Default STATIC

See “Specifying the Image Format” on page 120

PANELCELLMAX=n

specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables. If the number of cells in the panel exceeds the specified limit, the panel is not drawn.

\(n \)

specifies a positive integer.

Default 1000

Note Graphs with DataPanel or DataLattice templates layouts are affected. In the ODS Graphics procedures, this option affects graphs that are created with the SGPANEL procedure. If the value specified by the PANELCELLMAX= option is exceeded by any of these layouts, an empty graph is rendered and a warning message is issued.
Tip
You can use the TOTALCELLMAX= option to control the total maximum number of cells in the graph.

PUSH | POP
pushes and pops ODS GRAPHICS settings in a stack. This feature enables you to temporarily save your custom settings in a stack and later restore those settings.

Note: This feature applies to SAS 9.4M3 and later releases.

PUSH
pushes the current ODS GRAPHICS settings to a stack.

POP
restores the most recently pushed settings from the stack. For each PUSH action, you can specify a POP request. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed.

The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied.

Interaction
You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. You can also use STACKDEPTHMAX= to empty the stack. For more information, see “Managing the Stack Depth” on page 127.

Note
Order of specification is important when using the PUSH and POP options. For more information, see “About PUSH and POP” on page 126.

Tip
Use the SHOW option to show the current ODS GRAPHICS settings.

See
“Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 126

RESET | RESET= option
Reset one or more ODS GRAPHICS options to its default.

RESET
resets all options to their defaults.

RESET=
resets one of the following to its default:

ALL
resets all reset-options to their defaults.

ANTIALIAS
resets the ANTIALIAS= option to its default.

See ANTIALIAS= on page 99

ANTIALIASMAX
resets the ANTIALIASMAX= option to its default.

See ANTIALIASMAX= on page 99
ATTRPRIORITY
resets the ATTRPRIORITY= option to its default.

See ATTRPRIORITY= on page 99

BORDER
resets the BORDER= option to its default.

See BORDER= on page 100

BYLINE
resets the BYLINE= option to its default.

See BYLINE= on page 100

DATASKINMAX
resets the DATASKINMAX= option to its default.

See DATASKINMAX= on page 101

DISCRETEMAX
resets the DISCRETEMAX= option to its default.

See DISCRETEMAX= on page 102

DRILLTARGET
resets the DRILLTARGET= option to its default.

See DRILLTARGET= on page 102

GROUPMAX
resets the GROUPMAX= option to its default.

See GROUPMAX= on page 103

HEIGHT
resets the HEIGHT= option to its default.

See HEIGHT= on page 103

IMAGEMAP
resets the IMAGEMAP= option to its default.

Note Not all output destinations support this feature.

See IMAGEMAP= on page 104

IMAGENAME
resets the IMAGENAME= option to its default.

Note: This feature applies to SAS 9.4M3 and later releases.

See IMAGENAME= on page 104

INDEX <(positive-integer)>
resets the index counter that is appended to static image files.
When specifying this option, you can also specify the value for the index counter. The number that you specify must be enclosed in parentheses. positive-integer determines the suffix for the next subsequent image, and increments with each new image. This feature applies to SAS 9.4M3 and later releases.

See “Resetting the Image Name” on page 118

LABELMAX
resets the LABELMAX= option to its default.

See LABELMAX= on page 105

LABELPLACEMENT
specifies the label-placement algorithm to use for positioning labels in the graphs.

See LABELPLACEMENT= on page 105

LEGENDAREAMAX
resets the LEGENDAREAMAX= option to its default.

See LEGENDAREAMAX= on page 106

LOESSOBSMAX
resets the LOESSOBSMAX= option to its default.

See LOESSOBSMAX= on page 107

NBINSMAX
resets the NBINSMAX= option to its default.

See NBINSMAX= on page 107

NXYBINSMAX
resets the NXYBINSMAX= option to its default.

See NXYBINSMAX= on page 107

OUTPUTFMT
resets the OUTPUTFMT= option to its default.

Note: This feature applies to SAS 9.4M3 and later releases.

See OUTPUTFMT= on page 108

PANELCELLMAX
resets the PANELCELLMAX= option to its default.

See PANELCELLMAX= on page 108

SCALE
resets the SCALE= option to its default.

See SCALE= on page 112
SCALEMARKERS resets the SCALEMARKERS= option to its default.

See SCALEMARKERS= on page 113

STACKDEPTHMAX resets the STACKDEPTHMAX= option to its default.

Note: This feature applies to SAS 9.4M3 and later releases.

See STACKDEPTHMAX= on page 114

SUBPIXEL resets the SUBPIXEL option to its default.

Note: This feature applies to SAS 9.4M3 and later releases.

See SUBPIXEL on page 115

TIPMAX resets the TIPMAX= option to its default.

See TIPMAX = on page 116

WIDTH resets the WIDTH= option to its default.

See WIDTH= on page 117

SCALE | NOSCALE | SCALE=ON | OFF specifies whether the content of a graph is scaled proportionally.

SCALE scales the components of a graph proportionally.

NOSCALE does not scale the components of a graph proportionally.

SCALE=ON | OFF specifies whether the content of a graph is scaled proportionally.

ON scales the components of a graph proportionally.

Alias YES

OFF does not scale the components of a graph proportionally.

Aliases NOSCALE

Default SCALE or SCALE=ON | YES
SCALEMARKERS | NOSCALEMARKERS | SCALEMARKERS=ON | OFF
specifies whether the plot markers are to be scaled with the graph size. The
scaling factor is based on the height of the graph cells and the height of the
graph.

SCALEMARKERS
scales the markers with the graph size.

NOSCALE
does not scale the markers with the graph size.

SCALEMARKERS=ON | OFF
specifies whether the plot markers are to be scaled with the graph size.

ON
scales the markers with the graph size.

Alias YES

OFF
does not scale the markers with the graph size.

Aliases NOSCALE

Default SCALEMARKERS or SCALEMARKERS=ON | YES

Restriction Scaling is done only if the graph contains multiple cells or single
nested cells.

SHOW
writes the current ODS Graphics settings to the SAS log. This option enables
you to verify which settings are in effect. The option is especially useful when
you use the PUSH and POP options to restore settings. For more information,
see “Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 126.

Note: This feature applies to SAS 9.4M3 and later releases.

If no options have been specified, then SHOW lists those options for which ODS
currently knows the default values.

The following statement resets all settings and shows the default values.

ods graphics / reset=all show;

Here are the default values displayed in the SAS log:

ODS Graphics Settings

Output format: STATIC
By line: NOBYLINE
Antialias: ON
Maximum Loess observations: 5000
Maximum stack depth: 1024
Stack depth: 0
MaxObs: 2000000
Maximum Histogram Bins: 10000
Maximum Heatmap Bins: 100000
Maximum Obs for Patterned Lines: 10000
Maximum Total Cells per BY-group: 2000

If you have specified the settings for one or more options, then SHOW includes those settings along with the defaults.

Order of specification is important when using the SHOW option. For example, the following statement shows the current settings and then sets the NOBORDER option.

```sas
ods graphics / show noborder;
```

However, the following statement sets the NOBORDER option and then shows the settings. The NOBORDER setting is shown in the log along with the other settings that are in effect.

```sas
ods graphics / noborder show;
```

The following statement resets all settings. It then sets the image width and shows the default settings along with the specified width.

```sas
ods graphics / reset=all width=5in show;
```

Here are the default values plus the image width, as displayed in the SAS log:

```
ODS Graphics Settings
---------------------
Output format:                      STATIC
By line:                            NOBYLINE
Antialias:                          ON
Maximum Loess observations:         5000
Image width:                        5in
Maximum stack depth:                1024
Stack depth:                        0
MaxObs:                             2000000
Maximum Histogram Bins:             10000
Maximum Heatmap Bins:               100000
Maximum Total Cells per BY-group:   2000
```

Tip

If you have specified the settings for some options but want to see the default values without losing your specified settings, issue the following two statements. The first statement pushes your specified settings, resets all settings, and then lists options for which ODS currently knows the default values. The second statement restores your previous settings.

```sas
ods graphics / push reset=all show;
ods graphics / pop;
```

STACKDEPTHMAX=n

specifies the maximum stack depth for PUSH and POP requests. The stack is used to temporarily store ODS GRAPHICS settings when you issue PUSH requests. PUSH saves the current settings to the stack and increments the stack depth. POP restores the most recently saved settings from the stack and decrements the stack depth.

Note: This feature applies to SAS 9.4M3 and later releases.

```
n
```

specifies a positive integer.

If n is less than the current stack depth, then the stack is popped until its depth equals n. Popping the stack does not affect other option settings.
Defaults 1024 is the default maximum depth
 0 is the default depth

Tips To empty the stack and then reset it to the default maximum depth, issue the following statement:
 ods graphics / stackdepthmax=0 reset=stackdepthmax;

You can use any of the following commands to reset the stack to its default maximum depth:
 reset=stackdepthmax
 reset=all
 reset
 stackdepthmax=1024

See "Managing the Stack Depth" on page 127

SUBPIXEL | NOSUBPIXEL | SUBPIXEL=ON | OFF
specifies whether subpixel rendering should be used for rendering ODS Graphics. Subpixel rendering produces smoother curves and more precise bar spacing.

Note: This feature applies to SAS 9.4M3 and later releases.

SUBPIXEL
 always uses subpixel rendering, when applicable, for rendering lines and bars.

NOSUBPIXEL
 never uses subpixel rendering.

SUBPIXEL=ON | OFF
 specifies whether subpixel rendering should be used.

ON
 always uses subpixel rendering, when applicable, for rendering lines and bars.
 Alias YES

OFF
 never uses subpixel rendering.
 Alias NO

Default Subpixel rendering is always enabled for vector-graphics output. It is enabled by default for image output, unless the graph contains a scatter plot or a scatter-plot matrix. In those cases, subpixel rendering is disabled by default.

Restriction This option is ignored by the SGPIE and SGMAP procedures.

Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.
Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1690

TIPMAX=\(n \)

specifies the maximum number of distinct data tip areas allowed before data tips are disabled. For example, if there are more than 400 points in a scatterplot, and TIPMAX=400, then no data tips appear. The default maximum value is 500.

Note: Prior to SAS 9.4M3, the TIPMAX= option specifies the maximum number of observations in the graph data to be allowed before data tips are disabled. The default is 500. When the graph data contains more than 500 observations, data tips are disabled for the entire graph. Starting with SAS 9.4M3, the TIPMAX= option specifies the maximum number of data-tip areas allowed before data tips are disabled. This threshold is applied separately for each plot. The default remains at 500. If any plot in a graph contains more than 500 data-tip areas, data tips are disabled for that plot. Data tips are enabled for the remaining plots in the graph.

\(n \)

specifies a positive integer.

Default 500

TOTALCELLMAX=\(n \)

specifies the maximum number of total cells in a graph where the number of cells is determined dynamically by classification variables.

Note: This feature applies to SAS 9.4M5 and later releases.

If the number of cells exceeds the specified limit, the graph is not drawn. This option is useful when multiple classification variables or large amounts of data result in a large number of cells.

\(n \)

specifies a positive integer.

Default 2000

Notes If the number of cells exceeds the limit specified for TOTALCELLMAX=, the graph is not drawn and an error message is written to the SAS log. The error message includes a suggested value for TOTALCELLMAX=.

You can use the TOTALCELLMAX= option to increase the maximum number of cells. Note, however, that the processing time to render the graph increases with an increase in the maximum number of cells.

Graphs with DataPanel or DataLattice templates layouts are affected. In the ODS Graphics procedures, this option affects graphs that are created with the SGPANEL procedure.

Tip You can use the PANELCELLMAX= option to control the maximum number of cells in a graph panel.
WIDTH=dimension

Specifies the width of any graph.

dimension

Is a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Units of Measure for Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>pct or %</td>
</tr>
<tr>
<td>pt</td>
</tr>
<tr>
<td>px</td>
</tr>
</tbody>
</table>

Defaults

The value of the SAS registry entry "ODS > ODS GRAPHICS > Design Width" or the value of the DesignWidth= option in a STATGRAPH template. Typically, this value is 640px.

For the PRINTER destination, units of 1/150 of an inch

Tips

If only the WIDTH= option is specified, then the default aspect of the graph is maintained.

When you change the size of a graph, by default graph elements such as markers, lines, text, and titles are scaled proportionally. This scaling takes effect even when you specify dimensions for the graph elements. To disable the scaling, specify the NOSCALE option.

Details

Using the ODS GRAPHICS Statement

You can enable ODS Graphics by using one of the following equivalent statements:

ods graphics on;
ods graphics;

When you specify one of these statements before your procedure invocation, Base, SAS/STAT, SAS/ETS, and SAS/QC procedures support ODS Graphics, either by default, or when you specify procedure options for requesting particular graphs.

To disable ODS Graphics, specify the following statement:

ods graphics off;
Using the ODS GRAPHICS Statement for Batch Jobs

To generate ODS Graphics output in UNIX batch jobs, you must set the DISPLAY system option before creating the output. To set the display, enter the following command:

```bash
export DISPLAY=<ip_address>:0
```

The `ip_address` is the TCP/IP address, or the name of a UNIX terminal. Usually, the IP address of the UNIX system where SAS is running would be used. If you do not set the DISPLAY variable, then you get an error message in the SAS log.

Specifying and Resetting the Image Name

Specifying the Image Name

For ODS Graphics output, by default, the ODS object name is used as the “root” name for the image output file. The following example creates a GIF image named REGPLOT:

```sas
ods graphics / imagename="regplot" outputfmt=gif;
```

The assigned name REGPLOT is treated as a "root" name and the first output created is named REGPLOT. Subsequent graphs are named REGPLOT1, REGPLOT2, and so on, with an increasing index counter. This numbering can be reset with the RESET=INDEX option.

Resetting the Image Name

The RESET=INDEX option enables you to reset the file name numbering sequence. This feature applies to SAS 9.4M3 and later releases.

For a usage example, suppose that you are developing a paper or a presentation and it takes several submissions to get the desired output. You can use the RESET or RESET=INDEX option to force each output to replace itself:

```sas
ods graphics / reset=index ... ;
```

This specification causes all subsequent images to be created with the default or current image name.

When specifying this option, you can also specify the value for the index counter. The value that you specify determines the suffix for the next subsequent image. For example:

```sas
ods graphics / reset=index(100) imagename="MyName";
```

The next graph that you produce is named MYNAME100.

This feature is useful for creating animated graphics. For example, for a sequence of 100 images, you might begin with the following statement:
In the example, your program produces 100 images named MYNAME1, MYNAME2, ..., MYNAME100. If you later add more images to the animation, you might submit the following:

```ods graphics / reset=index(101) imagename="MyName";```

The next generated image is named MYNAME101.

### Substituting BY Values in the Image Name

**Note:** This feature applies to SAS 9.4M5 and later releases.

If a BY statement is in effect for the data, then you can uniquely name image files based on BY groups. You do this by inserting any of the #BY* substitution items into the image file name. You can specify BY variable values or BY variable names for IMAGENAME=. You can combine the #BY* substitution item with other text. To do this, insert the #BY* item in the specified text string at the position where you want the substitution text to appear.

As explained in the IMAGENAME= description, the file extension is automatically generated based on the OUTPUTFMT= option.

Here are descriptions of the #BY* substitution items:

#### #BYVALn | #BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the file name string. Specify the variable with one of these:

- `n` specifies a variable by its position in the BY statement. You must provide the position even if your BY statement contains only one variable. Otherwise, no substitution occurs.

- `BY-variable-name` specifies a variable from the BY statement by its name. `BY-variable-name` is not case sensitive.

**Examples**

The following example specifies the first variable in the BY statement. The value of that variable is used for the image file name.

```imagename="#byval1"```

The following example specifies the second variable in the BY statement preceded by the text `sales_`.

```imagename="sales_#{byval2}"```

The following example specifies the YEAR variable in the BY statement. The value of that variable is used for the image file name:

```imagename="#byval(year)"```

The following example specifies the YEAR variable in the BY statement followed with the text `_sales`:

```imagename="#byval(year)_sales"```

#### #BYVARn | #BYVAR(BY-variable-name)

substitutes the name of the BY variable or the label associated with the variable (whatever the BY line would normally display) for #BYVAR in the file name string. Specify the variable with one of these:
specifies a variable by its position in the BY statement. You must provide the position even if your BY statement contains only one variable. Otherwise, no substitution occurs.

**BY-variable-name**

specifies a variable from the BY statement by its name. **BY-variable-name** is not case sensitive.

**Examples**
The following example specifies the first variable in the BY statement. The name of that variable is used for the image file name.

```
imagename="#byvar1"
```

The following example specifies the second variable in the BY statement preceded by the text `sales_`:

```
imagename="sales_#byvar2"
```

The following example specifies the YEAR variable in the BY statement. The name of that variable is used for the image file name:

```
imagename="#byvar(year)"
```

The following example specifies the YEAR variable in the BY statement followed with the text `_sales`:

```
imagename="#byvar(year)_sales"
```

**Note:** When using this feature, consider any file name length restrictions that might apply to your platform host. The file name length can vary greatly depending on the input data.

### Specifying the Image Format

Each ODS destination uses a default format for its output. You can use the `OUTPUTFMT=` option in the ODS GRAPHICS statement to change the output format.

**Note:** Unless you have a special requirement for changing the image format, we recommend that you not change it. The default PNG or vector graphic format is far superior to other formats, such as GIF, in support for transparency and a large number of colors. Also, PNG and vector graphics images require much less disk storage space than JPEG or TIFF formats.

If you want to generate vector graphics images, you can use the following `OUTPUTFMT=` values for each destination:

**Table 5.4** Generating Vector Graphics Output with ODS

<table>
<thead>
<tr>
<th>ODS Destination</th>
<th><code>OUTPUTFMT=value</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS EPUB</td>
<td><code>OUTPUTFMT=SVG</code></td>
</tr>
<tr>
<td>ODS destination for Excel</td>
<td><code>OUTPUTFMT=EMF</code></td>
</tr>
<tr>
<td>ODS Destination</td>
<td>OUTPUTFMT=value</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ODS HTML</td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>Vector graphics images are generated by default</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>OUTPUTFMT=PDF</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>OUTPUTFMT=PS</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS HTML5</td>
<td>OUTPUTFMT=PCL</td>
</tr>
<tr>
<td>ODS PDF</td>
<td>Vector graphics images are generated by default</td>
</tr>
<tr>
<td>ODS PCL</td>
<td>OUTPUTFMT=PCL (for PCL output)</td>
</tr>
<tr>
<td>ODS PS</td>
<td>OUTPUTFMT=PS (for PostScript output)</td>
</tr>
<tr>
<td>ODS destination for PowerPoint</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS printer</td>
<td>OUTPUTFMT=PCL (for PCL output)</td>
</tr>
<tr>
<td>ODS printer</td>
<td>OUTPUTFMT=PDF (for PDF output)</td>
</tr>
<tr>
<td>ODS printer</td>
<td>OUTPUTFMT=PS</td>
</tr>
<tr>
<td>ODS printer</td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS RTF</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS measured RTF</td>
<td>OUTPUTFMT=EMF</td>
</tr>
</tbody>
</table>

**Note:** For information about SVG and SAS Universal Printing, see “Creating SVG Documents Using Universal Printing” in SAS 9.4 Universal Printing.

When a vector graphics image cannot be generated for the format that you specify, a PNG image is generated instead and is embedded in the specified output file. The output file format and extension are not changed in that case. In the following cases, a vector graphics image cannot be generated:

- surface plots
- bivariate histograms
- graphs that use smooth gradient contours
- graphs that include continuous legends
- graphs that use data skins
- graphs that use transparency (EMF and PS ODS destinations only)
- graphs that contain one or more rotated images
graphs that have a broken axis
graphs that contain outline marker characters

Starting with SAS 9.4M2, additional cases for which vector graphics output cannot be generated for graphs are as follows:

- graphs that use gradient fill for bars in a bar chart, histogram, or waterfall chart
- graphs that use the back-light effect on text
- graphs that include a text plot that displays text with an outlined bounding box or text with a filled bounding-box background
- graphs that include images (PostScript output only)

Starting with SAS 9.4M3, vector graphics output can be generated in the EMF, PDF, and SVG output formats for the following cases:

- graphs that use data skins

**Note:** For the EMF, PDF, and SVG formats, vector graphics output is not supported for graphs that use transparency and data skins. An image is generated in that case.

- graphs that include one or more rotated images
- graphs that use gradient fills (except PDF)
- graphs that use a continuous legend

**Note:** For the PDF output format, vector graphics output is not supported for graphs that use a continuous legend and data transparency. An image is generated in that case.

Starting with SAS 9.4M5, vector graphics output can or cannot be generated in the output formats as indicated in the following table:

<table>
<thead>
<tr>
<th>Case</th>
<th>EMF</th>
<th>PCL</th>
<th>PDF</th>
<th>PS</th>
<th>SVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface plots</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Gradient fill contour plots</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3-D bivariate histograms</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Continuous legends without data or fill transparency</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Continuous legends with data transparency</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Data skins</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Data skins with transparency</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Data transparency, without images</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Starting with SAS 9.4M7, vector graphics are supported for transparent images in EMF, PDF, and SVG output. The image itself must be transparent. If you make an image transparent by specifying transparency in your program, a vector graphic is not created.

**Note:** The SGMAP procedure, which is new in SAS 9.4M5, does not support vector-based output.

### Supported File Types for Output Destinations

The following table lists all of the supported file types for some ODS output destinations.

<table>
<thead>
<tr>
<th>Output Destination</th>
<th>Supported File Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPUB, EPUB2</td>
<td>PNG (default), GIF, JPG, SVG</td>
</tr>
<tr>
<td>EPUB3</td>
<td>SVG (default), PNG, GIF, JPG</td>
</tr>
<tr>
<td></td>
<td>Note: EPUB3 was added in SAS 9.4M1.</td>
</tr>
<tr>
<td></td>
<td>Note: Starting with SAS 9.4M3, EPUB3 is an alias for EPUB,</td>
</tr>
<tr>
<td></td>
<td>and the EPUB3 supported file types supersede the EPUB</td>
</tr>
<tr>
<td></td>
<td>supported file types.</td>
</tr>
<tr>
<td>ODS destination for Excel</td>
<td>PNG (default), JPEG, JPG, EMF</td>
</tr>
<tr>
<td>HTML</td>
<td>PNG (default), GIF, JPEG, JPG, SVG</td>
</tr>
<tr>
<td>HTML5</td>
<td>SVG (default), PNG, GIF, JPEG, JPG</td>
</tr>
</tbody>
</table>
### Description of Supported File Types

The following table provides descriptions of the supported file types for ODS output destinations.

**Table 5.7  Description of Supported File Types**

<table>
<thead>
<tr>
<th>File Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP (Microsoft Windows Device Independent Bitmap)</td>
<td>Supports color-mapped and true color images that are stored as uncompressed or run-length encoded data. BMP was developed by Microsoft Corporation.</td>
</tr>
<tr>
<td>CGM (Computer Graphics Metafile)</td>
<td>A free and open international standard file format for 2-D vector graphics, raster graphics, and text. This format is defined by ISO/IEC 8632.</td>
</tr>
<tr>
<td>DIB (Microsoft Windows Device Independent Bitmap)</td>
<td>See the description of BMP.</td>
</tr>
<tr>
<td>EMF Plus (Enhanced Metafile Format Plus Extensions)</td>
<td>Supports Enhanced Metafile Plus Extensions that provides additional functionality, such as support of RGBA colors.</td>
</tr>
<tr>
<td>EMF Dual (Enhanced Metafile Format and Enhanced Metafile Format Plus Extensions)</td>
<td>Produces both EMF and EMF Plus formats simultaneously in the same output.</td>
</tr>
<tr>
<td>EPS</td>
<td>Encapsulated PostScript</td>
</tr>
<tr>
<td>File Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>EPSI (Microsoft NT Enhanced Metafile)</td>
<td>An extended version of the standard PostScript (PS) format. Files that use this format can be printed on PostScript printers and can also be imported into other applications. Notice that EPSI files can be read, but PS files cannot be read.</td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>Supports only color-mapped images. GIF is owned by CompuServe, Inc.</td>
</tr>
<tr>
<td>JFIF (JPEG File Interchange Format)</td>
<td>Supports JPEG image compression. JFIF software is developed by the Independent JPEG Group.</td>
</tr>
<tr>
<td>JPEG or JPG (Joint Photographic Experts Group)</td>
<td>A file format that is used for storing noninteractive images.</td>
</tr>
<tr>
<td>PBM (Portable Bitmap Utilities)</td>
<td>Supports gray-scale, color, RGB, and bitmap files. The Portable Bitmap Utilities are a set of free utility programs that were developed primarily by Jef Poskanzer.</td>
</tr>
<tr>
<td>PCL</td>
<td>Printer Control Language</td>
</tr>
<tr>
<td>PNG (Portable Network Graphic)</td>
<td>Supports true color, gray-scale, and 8-bit images.</td>
</tr>
<tr>
<td>PS (PostScript Image File Format)</td>
<td>The Image classes use only PostScript image operators. A level II PS printer is required for color images. PostScript was developed by Adobe Systems, Inc.</td>
</tr>
<tr>
<td>PSL (PostScript)</td>
<td>PostScript</td>
</tr>
<tr>
<td>STATIC</td>
<td>Chooses the best image format for the current ODS destination.</td>
</tr>
<tr>
<td>SVG (Scalable Vector Graphics)</td>
<td>Is an XML language for describing two-dimensional vector graphics.</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>Internally supports a number of compression types and image types, including bitmapped, color-mapped, gray-scaled, and true color. TIFF was developed by Aldus Corporation and Microsoft Corporation and is used by a wide variety of applications (available if licensed).</td>
</tr>
</tbody>
</table>
Temporarily Saving and Restoring ODS GRAPHICS Settings

About PUSH and POP

**Note:** This feature applies to SAS 9.4M3 and later releases.

Although you can use the RESET option to restore the default ODS GRAPHICS settings, there might be times when you want to save your current custom settings and later restore them. ODS enables you to temporarily store your custom settings in a stack created for this purpose, perform some other task with different settings, and then restore the previous settings.

The PUSH option saves the current ODS GRAPHICS settings to the stack and increments the stack depth. The POP option restores the most recently stored settings from the stack and decrements the stack depth.

This feature is useful when you write macros. Within a macro you can PUSH at the start of the macro and POP at the end. This enables your macro to have custom ODS GRAPHICS behaviors without affecting the calling environment.

You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied. For more information, see “Managing the Stack Depth” on page 127. For each PUSH option, you can specify a POP option. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed to the stack.

Order of specification is important when using the PUSH option. For example, the following statement pushes the NOBORDER option to the stack along with any other custom settings that are in effect.

```sas
ods graphics / noborder push;
```

A subsequent POP option restores the pushed settings including NOBORDER.

However, the following statement pushes the current custom settings and then sets the NOBORDER option.

```sas
ods graphics / push noborder;
```

Here, the subsequent POP option restores whatever border setting was in effect when the PUSH option was specified.
Settings That Can Be Pushed

The PUSH and POP options apply to all ODS GRAPHICS options except the following: PUSH, POP, RESET=INDEX, and SHOW.

How Code Errors Affect the PUSH Operation

If the ODS GRAPHICS statement contains a syntax error, then the PUSH option is ignored.

For example, the PUSH option is ignored in the following statement:

```
ods graphics / antialias=bogus push;
```

A syntax error (BOGUS) in ANTIALIAS causes the parser to ignore the remaining options. However, a simple semantics error does not prevent the remaining options from being handled. In the following statement, the PUSH option is honored.

```
ods graphics / antialiasmax=-1 push;
```

In this statement, ANTIALIASMAX= –1 is invalid. The option expects a zero or a positive integer. In this case, a warning is issued to the log, but the PUSH occurs.

---

**Note:** Syntax errors in your code can have other unexpected results that are not described here.

---

Managing the Stack Depth

By default, the stack supports up to 1024 pushes. You can change the default by using the STACKDEPTHMAX= option.

If the specified STACKDEPTHMAX= value is less than the current stack depth, then the stack is popped until its depth equals the specified value. Popping the stack does not affect other option settings.

If you want to empty the stack, issue the following statement:

```
ods graphics / stackdepthmax=0 reset=stackdepthmax;
```

This statement first empties the stack of all PUSH requests and then restores the stack size to 1024.

---

**TITLE, FOOTNOTE Statements**

The TITLE and FOOTNOTE statements control the content, appearance, and placement of title and footnote text.

Valid in: anywhere in your program
Syntax

```plaintext
TITLE<n> <text-options> <"text">;
FOOTNOTE<n> <text-options> <"text">;
```

Without Arguments

Using TITLE without arguments cancels all existing titles. Using FOOTNOTE without arguments cancels all existing footnotes.

Optional Arguments

- `n`: specifies the relative line that contains the title or footnote line.
  - **Range**: 1–10
  - **Tips**: The title line with the highest number appears on the bottom line. If you omit `n`, SAS assumes a value of 1. Therefore, you can specify TITLE or TITLE1 for the first title line.

    You can create titles that contain blank lines between the lines of text. For example, if you specify text with a TITLE statement and a TITLE3 statement, there is a blank line between the two lines of text.

    The previous tips apply also to FOOTNOTE statements.

- `"text"`: is a text string that can contain up to 512 characters. You must enclose text strings in either single or double quotation marks. The text appears exactly as you enter it in the statement, including uppercase and lowercase characters and spaces. Titles and footnotes automatically wrap to additional lines if necessary.

    To use single quotation marks or apostrophes within the title, you can either:
    - use a pair of single quotation marks together:
      ```plaintext
 footnote 'All''s well that ends well';
      ```
    - enclose the text in double quotation marks:
      ```plaintext
 footnote "All's well that ends well";
      ```

    You can specify multiple text strings in FOOTNOTE and TITLE statements. If you want each string to be separated by a blank, add a blank to the beginning of the second and subsequent text strings rather than at the end of the preceding string, as in this example:

    ```plaintext
 footnote color=red "Sales:" color=blue " 2018";
    ```

    With fonts that support Unicode, you can specify special characters by specifying a hexadecimal constant. A trailing `x` identifies a string as a hexadecimal constant. You must designate the hexadecimal constant as a Unicode constant:

    ```plaintext
 footnote color=red "Sales:" color=blue " 2018";
    ```
specification and escape it: \((\text{*ESC*})\{\text{Unicode 'hexadecimal-value'}x\}\). For example:

\[
\text{title "Regression with Confidence Limits } ((\text{*ESC*})\{\text{unicode '03B1'}x\}= .05)\;\)
\]

This statement produces the title, "Regression with Confidence Limits (\(\alpha = .05\))" because '03B1'x is the hexadecimal value for the lowercase Greek letter alpha in all Unicode fonts.

**TIP** You can instead specify lowercase Greek letters by name, and uppercase Greek letters by name_u: \((\text{*ESC*})\{\text{Unicode alpha}\}=.05\) and \(\text{(*ESC*)}\{\text{Unicode alpha_u}\}=.05\).

In addition, if you are using a BY statement, then you can include special options. For more information, see "Substituting BY Line Values in a Text String" on page 133.

**Note** For SVG output, the value of the TITLE statement is used for the SVGTITLE option if the latter is not specified. If more than one TITLE statement is specified, the titles are concatenated, separated by a semicolon. The maximum number of characters for the SVGTITLE option is 256 characters.

**text-options** specifies formatting options for the text:

**BOLD**

specifies that the font weight is bold for the text string.

Defaults For titles, the default font weight is specified by the FONTWEIGHT attribute of the GraphTitleText style element in the current style.

For footnotes, the default font weight is specified by the FONTWEIGHT attribute of the GraphFootnoteText style element in the current style.

**BCOLOR= color**

specifies the background color for a box that you create with the BOX= option. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

This option has no effect if you do not also specify the BOX= option. By default, the background color is the same color as the background of the graph.

** Alias** BC=

**BOX= 1 | 2 | 3 | 4**

draws a box around one line of text. Specify a value between 1 and 4, where 1 specifies the thinnest line and 4 specifies the thickest line. Only the last BOX= option is used. The color of the box outline is determined by the GraphBorderLines element of the current style.

** Alias** BO

**BSPACE= numeric-value<units>**

specifies the amount of space between the text and the border of a box that you create with the BOX= option.
You can also specify the unit of measure. See "Measurement Units for TITLE and FOOTNOTE Statement Options" on page 134 for a list of the units that are supported.

If you do not specify a unit, then the size of the space is approximately 12n points. For example, if you specify BSPACE=2, then the space is approximately 24 points.

Alias BS=
Default 0

COLOR= specifies the color for the text. The COLOR= option affects all of the text strings that follow it in your TITLE or FOOTNOTE statement. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

You can use multiple colors by specifying multiple COLOR= options. For example, the following code produces a title where the first word is red and the second word is blue:

title color=red "Red" color=blue " Blue";

Alias C=
Default For titles, the default text color is specified by the COLOR attribute of the GraphTitleText style element in the current style. For footnotes, the default font color is specified by the COLOR attribute of the GraphFootnoteText style element in the current style.

FONT= "system-font"
specifies a system font for the text string.

Alias F=
Default For titles, the default font is specified by the FONTFAMILY attribute of the GraphTitleText style element in the current style. For footnotes, the default font is specified by the FONTFAMILY attribute of the GraphFootnoteText style element in the current style.

Note SAS/GRAPH software fonts such as SWISS cannot be used with statistical graphics procedures.

HEIGHT= numeric-value <units>
specifies the size of the text. You can also specify the unit of measurement. The following table lists the measurement units that are supported:

You can also specify the unit of measure. See "Measurement Units for TITLE and FOOTNOTE Statement Options" on page 134 for a list of the units that are supported.

If you do not specify a unit, then the size of the text is approximately 12n points. For example, if you specify HEIGHT=2, then the text size is approximately 24 points.
Alias     H=

Defaults For the first title (title or title1), the default font size is specified by
the FONTSIZE attribute of the GraphTitleText style element in the
current style. For subsequent titles (titleN), the size is the
FONTSIZE attribute of the GraphLabelFont style attribute.

For footnotes, the default font size is specified by the FONTSIZE
attribute of the GraphFootnoteText style element in the current
style.

ITALIC
specifies that the font style is italic for the text string.

Defaults For titles, the default font style is specified by the FONTSTYLE
attribute of the GraphTitleText style element in the current style.

For footnotes, the default font style is specified by the
FONTSTYLE attribute of the GraphFootnoteText style element in
the current style.

JUSTIFY= LEFT | CENTER | RIGHT
specifies the alignment of the text string. You can specify one of the following
values:

LEFT
L
aligns the text to the left.

CENTER
C
aligns the text in the center.

Note: By default, titles and footnotes are sometimes centered over the
data area of the graph. However, when you explicitly specify center
justification, titles and footnotes are always centered over the graph area.

RIGHT
R
aligns the text to the right.

The JUSTIFY= option affects all of the text strings that follow it in your TITLE
or FOOTNOTE statement. You can specify multiple alignments by using
more than one JUSTIFY= option. For example, the following code creates a
footnote where the first string is aligned to the left and the second string is
aligned to the right:

footnote justify=left "Example 2" justify=right "Graph 3";

Alias     J=

Default CENTER

LSPACE= numeric-value <units>
specifies the amount of space above the title text and below the footnote text.
You can also specify the unit of measure. See "Measurement Units for TITLE
and FOOTNOTE Statement Options" on page 134 for a list of the units that
are supported.
If you do not specify a unit, then the size of the space is approximately 12n points. For example, if you specify LSPACE=2, then the space is approximately 24 points.

Alias LS

Default 0

Interaction The LSPACE= option has no effect if you also specify the BOX= option.

Details

Summary of Text Options

text-options can be one or more of the following:

- appearance options:
  - BOLD
  - COLOR= color
  - FONT= “system-font”
  - HEIGHT= numeric-value <units>
  - ITALIC

- placement and spacing options:
  - JUSTIFY= LEFT | CENTER | RIGHT
  - LSPACE= numeric-value <units>

- boxing and drawing options:
  - BCOLOR= color
  - BOX= numeric-value
  - BSPACE= numeric-value <units>

The following options are not supported by statistical graphics procedures:

- ANGLE=
- BLANK=
- DRAW=
- LANGLE=
- LINK=
- MOVE=
- ROTATE=
- UNDERLIN=
- WRAP
Using TITLE and FOOTNOTE Statements

You can define TITLE and FOOTNOTE statements anywhere in your SAS program. They are global and remain in effect until you cancel them or until you end your SAS session. All currently defined FOOTNOTE and TITLE statements are displayed automatically.

You can define up to ten TITLE statements and ten FOOTNOTE statements in your SAS session. A TITLE or FOOTNOTE statement without a number is equivalent to a TITLE1 or FOOTNOTE1 statement. It is not necessary to use sequential statement numbers—skipping a number in the sequence leaves a blank line.

You can use an unlimited number of text strings and options. Ensure that each option is placed before the text strings that you want it to modify.

The most recently specified TITLE or FOOTNOTE statement of any number completely replaces any other TITLE or FOOTNOTE statement of that number. In addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For example, if you define TITLE1, TITLE2, and TITLE3, resubmitting the TITLE2 statement cancels TITLE3.

To cancel all current TITLE or FOOTNOTE statements, use the TITLE1; or FOOTNOTE1; statement.

Differences When Using TITLE and FOOTNOTE Statements with the SGRENDER Procedure

Titles and footnotes behave differently for the SGRENDER procedure than for the other ODS Graphics procedures.

Normally, the title and footnote are displayed within the graph’s border. However, when you render a Graph Template Language (GTL) graph using PROC SGRENDER, the title and footnote are displayed in the ODS document, outside of the graph’s border. To add titles and footnotes to the graph, use the GTL ENTRYTITLE and ENTRYFOOTNOTE statements.

Substituting BY Line Values in a Text String

These options are available if a BY statement is in effect:

- **BYLINE**
  substitutes the entire BY line without leading or trailing blanks for #BYLINE in the text string. The BY line uses the format `variable-name=value`.

- **BYVALn | BYVAL(BY-variable-name)**
  substitutes the current value of the specified BY variable for #BYVAL in the text string. Specify the variable with one of these:

  - `n` specifies a variable by its position in the BY statement. For example, #BYVAL2 specifies the second variable in the BY statement.
  - `BY-variable-name` specifies a variable from the BY statement by its name. For example, #BYVAL(YEAR) specifies the BY variable, YEAR. `variable-name` is not case sensitive.
#BYVARn | #BYVAR(BY-variable-name)
substitutes the name of the BY-variable or the label associated with the variable
(whatever the BY line would normally display) for #BYVAR in the text string.
Specify the variable with one of these:

n
specifies a variable by its position in the BY statement. For example,
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example,
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not case sensitive.

Note: A BY variable name displayed in a title or footnote is always in uppercase. If
a label is used, then it appears as specified in the LABEL statement.

To use the #BYVAR and #BYVAL substitutions, insert the item in the text string at
the position where you want the substitution text to appear. Both #BYVAR and
#BYVAL specifications must be followed by a delimiting character. The character
can be either a space or other non-alphanumeric character, such as a quotation
mark. If no delimiting character is provided, then the specification is ignored and its
text remains intact and is displayed with the rest of the string. To allow a #BYVAR or
#BYVAL substitution to be followed immediately by other text, with no delimiter, use
a trailing dot (as with macro variables). The trailing dot is not displayed in the
resolved text. If you want a period to be displayed as the last character in the
resolved text, use two dots after the #BYVAR or #BYVAL substitution.

The substitution for #BYVAR or #BYVAL does not occur in the following cases:

- if you use a #BYVAR or #BYVAL specification for a variable that is not named in
  the BY statement. For example, you might use #BYVAR2 when there is only one
  BY-variable or #BYVAL(ABC) when ABC is non-existent or is not a BY-variable.

- if there is no BY statement at all

For both cases, no error or warning message is issued. The option specification is
displayed with the rest of the string. The graph continues to display a BY line at the
top of the page unless you suppress it by using the NOBYLINE option in an
OPTION statement.

Measurement Units for TITLE and FOOTNOTE
Statement Options

Some of the options in the TITLE and FOOTNOTE statements give you the option
to specify the unit of measurement. The following table lists the units that are supported:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
</tbody>
</table>
WHERE Statement

Selects observations from SAS data sets that meet a particular condition.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Details

All features of the WHERE statement are supported. For more information, see “WHERE Statement” in SAS DATA Step Statements: Reference.

Note: When the WHERE statement is used with the SGDESIGN procedure, you must specify the data set. This is required even though a data set has already been defined for the ODS Graphics Designer (SGD) file that is rendered by the procedure.
About the Examples in This Book

The example programs that are shown in this document often provide all of the code that you need to generate the graphs that are shown in the figures. We encourage you to copy and paste the example code into your SAS session and generate the graphs for yourself. The examples are written to be runnable in the SAS windowing environment and in SAS Studio. Unless otherwise noted, the examples use the default ODS destination. If you generate the example graphs using an ODS HTML destination, they are typically rendered as 640 pixel by 480 pixel images using the HTMLBlue style. Some of the examples show you how to change the graph size and style. The graphs shown for those examples are rendered in the specified size and style.

Because of size limitations, the graphs in this document are typically not shown in their default size of 640 pixels by 480 pixels. They are scaled down to meet the size requirements of our documentation production system. When graphs are reduced in size, the smaller graphs might have scaled down font sizes. Also, their numeric axes might display the tick values differently. Thus, the graphs that you generate from the example programs will not always look identical to the graphs that are shown in the figures. However, both graphs accurately represent the data.

When you produce your own graphical output, you can change the graph size and attributes, if needed. You can use the ODS destination options and the ODS GRAPHICS statement options to control many aspects of your graph output. For more information, see Chapter 16, “Managing Your Graphics with ODS,” on page 1717.
About the SASHELP and the SAS Sample Library

Many examples process sample data contained in a SAS data set that is stored in the SASHELP library. Each example specifies the data set name. To see a brief description of any SAS data set in the SASHELP library, as well as output displaying the first five observations in each data set, see SASHELP Data Sets.

To access the SASHELP library in SAS, select View ➔ Explorer. In the Explorer window, select Libraries ➔ Sashelp.

Note: In SAS Studio, you can access the SASHELP library in the Libraries section of the navigation pane.

Many of the examples in this guide also reside in the SAS Sample Library. These examples include the name of the sample library member in their syntax description. How you access the code in the sample library depends on how it is installed at your site.

■ In most operating environments, you can access the sample code through the SAS Help facility. Select Help ➔ SAS Help and Documentation. On the Contents tab, select Learning to Use SAS ➔ Sample SAS Programs ➔ Base SAS Samples.

■ In other operating environments, the SAS Sample Library might have been installed in your file system. If the SAS Sample Library has been installed at your site, ask your on-site SAS support personnel where the library is located.

Note: The SAS Sample Library is not available in SAS Studio. If you are using SAS Studio, you can download the ODS Graphics procedures samples in the SAS Sample Library in zipped form from the SAS ODS Graphics Suite Learn and Support page.

Examples and Resources on the Web

The SAS website contains a large number of examples that can help you visualize and code your graphs. The examples cover a range of SAS technologies including the ODS Graphics procedures.

■ Graphically Speaking is a blog focused on using ODS Graphics for data visualization in SAS. The blog covers topics related to the ODS Graphics procedures, the SAS Graph Template Language, and the SAS ODS Graphics Designer.
The SAS Training Post is a blog that provides tutorials, tips, and practical information about SAS. Dr. Robert Allison contributed a great deal of SAS/GRAPH and ODS Graphics data visualization examples to this blog during his tenure at SAS. His blog is no longer active, but it provides an extensive set of very useful examples.

https://blogs.sas.com/content/sastraining/author/robertallison/

The SAS Knowledge Base contains an abundance of searchable samples and SAS Notes. You can browse by topic, search for a particular note or a particular technology such as the name of a procedure, and conduct other searches.


Note: The SAS Knowledge Base content is currently available only in English.

The Graphics Samples Output Gallery in the SAS Knowledge Base is a collection of graphs organized by SAS procedure. The graphs link to the source code. The gallery is maintained by SAS Technical Support.


The Focus Area Graphics site provides a simple interface to business and analytical graphs. The site is maintained by the SAS Data Visualization team.

https://support.sas.com/rnd/datavisualization/index.htm

You can share your questions, suggestions, and experiences related to graphics on the Graphics Programming community site.


In addition, SAS offers instructor-led training and self-paced e-learning courses to help you get started with platform graphics software. The SAS Training site provides information about the courses that are available.

sas.com/training.
Chapter 7
SGDESIGN Procedure ......................................................... 143

Chapter 8
SGPANEL Procedure ........................................................... 153

Chapter 9
SGPIE Procedure: Preproduction ............................................ 787

Chapter 10
SGPLOT Procedure ............................................................. 817

Chapter 11
SGRENDER Procedure ......................................................... 1549

Chapter 12
SGSCATTER Procedure ........................................................ 1565

Chapter 13
Common Concepts .............................................................. 1627

Chapter 14
Commonly Used Attribute Options ......................................... 1649
Overview: SGDESIGN Procedure

What Does the SGDESIGN Procedure Do?

The SGDESIGN procedure produces a graph from one or more input SAS data sets and a user-defined ODS Graphics Designer (SGD) file. The SGD file is created with the SAS ODS Graphics Designer application in SAS 9.4M7 and earlier releases.

Note:
- Starting with SAS 9.4M8, the ODS Graphics Designer is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- In SAS 9.4M8 and later releases, you can use the SGDESIGN procedure to render graphs from SGD files that you created in earlier releases.
The ODS Graphics Designer is not included in SAS Viya.

Here is example output:

*Figure 7.1 Example PROC SGDESIGN Output*

In the example, the data columns and title text are provided dynamically with the DYNAMIC statement.

By default, the SGDESIGN procedure uses the data set or data sets that are currently defined in the SGD file. If the SGD file has been defined with dynamic variables, then you can substitute a different value for a variable by using the DYNAMIC statement. For more information, see "Dynamic Variable Concepts" on page 145.

Note: The procedure applies the style of the active destination rather than the style that is currently defined in the SGD file.

For complete instructions on creating SGD files, see *SAS ODS Graphics Designer: User’s Guide.*
Concepts: SGDESIGN Procedure

General Concepts

Here are the general concepts for the SGDESIGN procedure:

- The SGDESIGN procedure requires an SGD file that was created with the ODS Graphics Designer application in SAS 9.4M7 and earlier releases.
- By default, the SGDESIGN procedure uses the data set or sets that are currently referenced by the SGD file. You have the option to specify an alternate data set.
- You can produce a graph from a different data set as long as the new data set has variables of the same name and type. For an example, see “Example 2: Creating a Graph That Uses a Different Data Set” on page 151.

Note: If the SGD file was created using shared variables, then you can create a graph from a different data set regardless of the name of the variables. For more information, see “Dynamic Variable Concepts” on page 145.

- You can render the graph to any ODS destination by using standard ODS syntax. When the graph is rendered, the procedure applies the style of the active destination rather than the style that was used in the SGD file.
- As with the other ODS Graphics procedures, the ODS GRAPHICS statement is always ON. However, you can use the ODS GRAPHICS statement options to control many aspects of your graphics. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.
- The SGDESIGN procedure supports SAS statements such as FORMAT, LABEL, BY, and WHERE. These statements can be applied only if the DATA= option is used with the procedure.

For an example that uses the WHERE statement, see “Example 1: Creating a Graph and Subsetting the Data” on page 150.

Dynamic Variable Concepts

A dynamic variable is a variable that is defined in a template with the DYNAMIC statement and that can be initialized at template run time. If the SGD file has been defined with dynamic variables, then you can set or initialize these variables by using the DYNAMIC statement with the SGDESIGN procedure.

For more information about dynamic variables, see SAS Graph Template Language: Reference.
Dynamic variables can be created in ODS Graphics Designer in two ways:

- **shared variables**
  
  In ODS Graphics Designer, graphs can be defined to use shared variables. A shared variable is a feature of ODS Graphics Designer that enables users to reuse graphs and specify different variables from the same or from a different data set. The shared variable is a type of dynamic variable that can be assigned the name of a data column.

  In ODS Graphics Designer, shared variables are named V1, V2, V3, and so on. Each shared variable corresponds to a column in the data set.

  If the SGD file has been defined with a shared variable, you can substitute a different column for the shared variable when you run the SGDESIGN procedure. When you use the SGDESIGN procedure, the column that you substitute must be the same type as the column specified in the SGD file.

  For example, suppose that your SGD file is a shared-variable graph in which V1 is assigned MPG_City, which is a numeric data type. When you run the SGDESIGN procedure, you can substitute MPG_Highway because it is also a numeric data type. In the procedure, you would specify `DYNAMIC V1="MPG_Highway"`.

  The column that you substitute can reside in the same or in a different data set. (To use a different data set, you specify the data set by using the **DATA=** option.)

- **dynamic content in text elements**
  
  In ODS Graphics Designer, you can insert dynamic content into textual elements such as titles and footnotes. This dynamic content is specified by using the expression `dyn(DNAME)` where **DNAME** is a name that you want to associate with the text that is generated. You then substitute a character string or numeric constant when you run the graph using the SGDESIGN procedure.

  For example, suppose the SGD file has the following title: *Weight in dyn(DWEIGHT)*. When you run the graph with the SGDESIGN procedure, you can specify `DYNAMIC DWEIGHT="Pounds"`. The entire string `dyn(DWEIGHT)` is replaced with the specified value. In the resulting graph, the title becomes *Weight in Pounds*.

---

**Note:**

- In ODS Graphics Designer, you can see the dynamic variables that have been defined for a graph when you view the graph’s template code (from the **View** menu).

- For every graph that you create in ODS Graphics Designer, the designer defines dynamic variables automatically for every role assignment in the graph. In the template code, the names of these automatic variables begin with an underscore (for example, **dynamic _HEIGHT**).

---

**CAUTION**

Substituting columns for these automatic dynamic variables can be complex and prone to error, and is not a supported usage of the **SGDESIGN procedure**. When using the SGDESIGN procedure, it is strongly recommended that you limit your use of dynamic variables to the shared variables and dynamic content that are described in this topic.
In summary, you can use dynamic variables to generate the same graph with different data variables, a different data set, and different text elements.

For more information about shared variables and dynamic content that are defined in the ODS Graphics Designer, see “Using Shared Variables in Graphs” in SAS ODS Graphics Designer: User’s Guide.

Syntax: SGDESIGN Procedure

Restriction: This procedure is not available in SAS Viya.

Supported Statements: BY, FORMAT, LABEL, ODS GRAPHICS, WHERE

PROC SGDESIGN SGD="SGD-file-specification" <option(s)>;
  DYNAMIC dynamic-var–1="assigned-value–1" <...dynamic-var–n="assigned-value–n">;

PROC SGDESIGN Statement

Renders a graph (SGD file) that was created by using ODS Graphics Designer in SAS 9.4M7 and earlier releases. The statement also enables you to specify a data set and other options.

Restrictions: Starting with SAS 9.4M8, the ODS Graphics Designer is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases. The ODS Graphics Designer is not included in SAS Viya.

On z/OS systems, the SGDESIGN procedure does not render SGD files that were generated with the previous release of the ODS Graphics Designer. You must open the SGD file in the 9.3 version of the ODS Graphics Designer (on a Windows or UNIX system). Then save the file in the 9.3 format.

On z/OS systems, SGD files must be transferred to the HFS file system of UNIX System Services in order to be rendered by the SGDESIGN procedure.

Requirement: An input SGD file specification is required. If the SGD file was created to use a temporary data set, such as a data set in the SAS Work library, then that data set must exist in the current SAS session in order for the graph to be rendered. The data set might need to be re-created in the current SAS session.

Syntax

PROC SGDESIGN SGD="SGD-file-specification" <options> ;
Summary of Optional Arguments

CONTENT
writes important information about the SGD file to the SAS log.

DATA="input-data-set"
specifies the SAS data set that contains the variables to process.

DESCRIPTION="text-string"
specifies a description for the output image.

LIBNAME=library-name
specifies an alternate library for all data sets that are associated with the SGD file.

Required Argument

SGD="SGD-file-specification"
specifies the SGD file to use for the graph. Include the complete path and filename enclosed in single or double quotation marks.

If you are working in SAS Studio, the path that you specify must be accessible to your SAS Studio server. For information about accessing files in SAS Studio, see SAS Studio: User’s Guide for your release of SAS Studio. See also “Using SAS Studio” on page 78.

For complete instructions on creating SGD files, see SAS ODS Graphics Designer: User’s Guide.

Optional Arguments

CONTENT
writes important information about the SGD file to the SAS log. The information includes data set names, library names, variable names (including those for dynamic variables), and the ODS style.

Note  When the CONTENT option is used, no graphics output is produced.

DATA="input-data-set"
specifies the SAS data set that contains the variables to process. By default, the SGDESIGN procedure uses the data set or data sets that are currently defined in the SGD file. You have the option to specify an alternate data set. Only one data set can be specified here. If the SGD file uses columns from multiple data sets, then the specified data set should contain all the columns that are required to render the graph.

Specify the full name of the SAS data set in the format libref.data-set. If you do not specify the library, then the procedure looks for the data set in the SAS Work library.

DESCRIPTION="text-string"
specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
the table of contents that is created by the CONTENTS option in an ODS statement

**Alias** DES

**Default** The default description is “The SGDesign Procedure”.

**LIBNAME=library-name**
specifies an alternate library for all data sets that are associated with the SGD file. If no library is specified, then the procedure uses the library that is currently defined in the SGD file.

The data sets in the SGD file can come from multiple libraries. However, when you use the LIBNAME= option, you override all of those library names with the specified library.

---

**DYNAMIC Statement**

Assigns values to dynamic variables that have been defined in the SGD file. You can either specify variables in multiple DYNAMIC statements or specify all of your variables in a single DYNAMIC statement.

**See:** "Example 3: Using the DYNAMIC Statement to Specify a Column and a Character String" on page 151

**Syntax**

```
DYNAMIC dynamic-var–1="assigned-value–1" <…dynamic-var–n="assigned-value–n">;
```

**Required Argument**

`dynamic-var=assigned-value`

specifies the values for one or more dynamic variables. For more information about dynamic variables, see “Dynamic Variable Concepts” on page 145.

- `dynamic-var` specifies the name of a dynamic variable.

  The variable must be declared in a DYNAMIC statement within the SGD file's template. (In ODS Graphics Designer, you can see the dynamic variables that have been declared for a graph when you view the graph's template code from the View menu.)

- `assigned-value` specifies the value for the dynamic variable. If the value is a character string or a column name, then it must be enclosed in single or double quotation marks. For example: V1="year" and MYTITLE="Distribution of Patient Weight".

  If the value is a numeric value, then you should supply a number. In this case, no quotation marks are required. For example: BINS=5.
If the value refers to a column name, then the new column must be the same type as the column that it replaces. For example, if V1 is a numeric type column, then the column name that you specify must also be numeric.

When the value is a column name, the case of the string value does not matter. For example, V1="Weight" is effectively the same as V1="WEIGHT". When the value resolves to text that appears in the graph (for example, titles and axis labels) the value entered is case-sensitive.

**Details**

When you use dynamic variables, be aware that some variables must be initialized, whereas for others, initialization is optional. For example, suppose that the graph file Histogram.sgd is defined with dynamic content in the title. In order to execute this SGD file with the correct title, the dynamic variable used in the title must be initialized. (In the example, the dynamic variable is named TITLE.)

```
proc sgdesign sgd ="Histogram.sgd";
 dynamic TITLE ="This is a Histogram";
run;
```

However, if the SGD file was created with a shared variable, then that shared variable has already been assigned a column value in the SGD file. You do not need to specify a value for the variable unless you want to change the column. For more information about shared variables, see "Dynamic Variable Concepts" on page 145.

If you have multiple dynamic variables, you can either specify variables in multiple DYNAMIC statements or specify all of your variables in a single DYNAMIC statement. For example, the following statement specifies two variables.

```
dynamic V1="cholesterol" EXAMPLESV="Cholesterol";
```

As an alternative, you can specify the dynamic variables in multiple DYNAMIC statements.

```
dynamic V1="cholesterol";
dynamic EXAMPLESV="Cholesterol";
```

**Examples: SGDESIGN Procedure**

**Example 1: Creating a Graph and Subsetting the Data**

**Features:** WHERE statement
This example uses a WHERE statement to subset the data. The example assumes the existence of a graph named CarsLattice.sgd that was created based on the SASHELP.CARS data set.

Although a data set has already been defined for the SGD file, you must specify the data set in the procedure when you use the WHERE statement.

```sas
proc sgdesign sgd="CarsLattice.sgd";
 data=sashelp.cars;
 where Origin="Asia";
run;
```

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\CarsLattice.sgd."

---

**Example 2: Creating a Graph That Uses a Different Data Set**

**Features:**
- subset data

You can produce a graph from a different data set as long as the new data set has variables of the same name and type. (If the SGD file was created using shared variables, then you can create a graph from a different data set regardless of the name of the variables. For more information, see "Dynamic Variable Concepts" on page 145.)

The following example creates a new data set from an existing data set. This example assumes the existence of a graph named CarsLattice.sgd that was created based on the SASHELP.CARS data set.

```sas
data sedans;
 set sashelp.cars;
 where type="Sedan";
run;
```

```sas
proc sgdesign sgd="CarsLattice.sgd";
 data=sedans;
run;
```

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\CarsLattice.sgd."

---

**Example 3: Using the DYNAMIC Statement to Specify a Column and a Character String**

**Features:**
- DYNAMIC statement

This example substitutes a column and also initializes the dynamic text for a title. The example assumes the following: 

```sas
data sedans;
 set sashelp.cars;
 where type="Sedan";
run;
```

```sas
proc sgdesign sgd="CarsLattice.sgd";
 data=sedans;
run;
```

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\CarsLattice.sgd."
the existence of a shared-variable graph named svExample.sgd that uses the SASHELP.CLASSFIT data set. To create this SGD file, follow the steps provided in "Example: Create a Shared-Variable Graph and Add a Dynamic Title" in SAS ODS Graphics Designer: User’s Guide.

- in the SGD file, the shared variable V1 is set to WEIGHT.
- in ODS Graphics Designer, the title of the graph is Distribution of dyn(EXAMPLESV).

The following example creates a graph using the default data. You generate this graph only for comparison purposes.

```sas
proc sgdesign sgd="svExample.sgd";
 dynamic EXAMPLESV="Class Weight";
run;
```

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\svExample.sgd."

2 Though this example uses the default value for the shared variable V1 (WEIGHT), there is no default value for the dyn(EXAMPLESV) function that is used in the title. To execute this SGD file with a correct title, the dynamic expression used in the title must be initialized, as shown in the code. In the output, the title becomes Distribution of Class Weight. The “Distribution of” portion of the title was defined in the SGD file. The “Class Weight” portion is generated dynamically.

You can create the graph using a different data set and substitute a different column for V1. You can also change the dynamic variable that is used in the title. In the output, the title is Distribution of Cholesterol.

```sas
proc sgdesign sgd="svExample.sgd";
 data=sashelp.heart;
 dynamic V1="cholesterol" EXAMPLESV="Cholesterol";
run;
```

1 Specify the path and name that you used when you saved the SGD file.

2 The CHOLESTEROL column is the same type as the WEIGHT column that was defined in the SGD file. The columns can be different as long as they are the same type (numeric in this case).
Chapter 8
SGPANEL Procedure

Overview: SGPANEL Procedure
What Does the SGPANEL Procedure Do? .......................... 153

Concepts: SGPANEL Procedure ........................................ 156
Panel Creation ......................................................... 156
Concepts in Common with the SGPLOT Procedure .......... 158

Syntax: SGPANEL Procedure ........................................ 158
PROC SGPANEL Statement ............................................. 160
PANELBY Statement ...................................................... 166
STYLEATTRS Statement ................................................. 176
BAND Statement .......................................................... 182
BLOCK Statement .......................................................... 192
BUBBLE Statement .......................................................... 200
DENSITY Statement .......................................................... 213
DOT Statement .............................................................. 220
DROPLINE Statement ...................................................... 238
ELLIPSE Statement ........................................................... 243
ELLIPSEPARM Statement ................................................... 249
FRINGE Statement ........................................................... 255
GRADLEGEND Statement .................................................. 259
HBAR Statement ............................................................. 264
HBARBASIC Statement ...................................................... 288
HBARPARM Statement ...................................................... 308
HBOX Statement ............................................................. 328
HEATMAP Statement ....................................................... 347
HEATMAPPARM Statement ............................................... 355
HIGHLOW Statement ....................................................... 363
HISTOGRAM Statement ..................................................... 379
HLINE Statement ............................................................ 389
INSET Statement ............................................................ 407
KEYLEGEND Statement ..................................................... 410
LEGENDITEM Statement .................................................... 418
LINEPARM Statement ....................................................... 424
LOESS Statement ............................................................ 429
NEEDLE Statement ........................................................... 442
PBSPLINE Statement ......................................................... 453
POLYGON Statement .......................................................... 468
REFLINE Statement .......................................................... 485
REG Statement ............................................................... 491
Overview: SGPANEL Procedure

What Does the SGPANEL Procedure Do?

The SGPANEL procedure creates a panel of graph cells for the values of one or more classification variables. For example, if a data set contains three variables (A, B and C) and you want to compare the scatter plots of B*C for each value of A, then you can use the SGPANEL procedure to create this panel. The SGPANEL procedure creates a layout for you automatically and splits the panel into multiple graphs if necessary.

The SGPANEL procedure can create a wide variety of plot types, and overlay multiple plots together in each graph cell in the panel. It can also produce several types of layout.

Here are some examples of panels that the SGPANEL procedure can create.
Table 8.1 Examples of Panels That Can Be Generated by the SGPANEL Procedure

The following code creates a panel of loess curves:
```sas
title1 "Cholesterol Levels for Age > 60";
proc sgpanel data=sashelp.heart(where=(AgeAtStart > 60)) ;
panelby sex / novarname;
loess x=weight y=cholesterol / clm;
run;
title1;
```

The following code creates a panel of vertical bar charts:
```sas
title1 "Product Sales";
proc sgpanel data=sashelp.prdsale;
panelby quarter;
rowaxis label="Sales";
vbar product / response=predict stat=mean transparency=0.3;
vbar product / response=actual stat=mean barwidth=0.5 transparency=0.3;
run;
title1;
```

The following code creates a panel of box plots in a lattice layout:
```sas
title1 "Distribution of Cholesterol Levels";
proc sgpanel data=sashelp.heart;
panelby weight_status sex / layout=lattice novarname;
hbox cholesterol;
run;
title1;
```

The following code creates a panel of cells with a histogram and a normal density curve:
```sas
title1 "Weight Distribution in the Heart Study";
proc sgpanel data=sashelp.heart noautolegend;
panelby sex / novarname;
histogram weight;
density weight;
run;
title1;
```
Concepts: SGPANEL Procedure

Panel Creation

The SGPANEL procedure has a required PANELBY statement that is used to define the classifier variables for the panel. This statement must be specified before any plot, axis, or legend statement or else an error occurs. You can use options in the PANELBY statement to control the attributes of the panel. For example, you can use the COLUMNS= option to specify the number of columns in the panel.

SGPANEL can use four different layouts, which are specified by the LAYOUT= option in the PANELBY statement. The layout determines how your classifier variables are used to create the panel, and also affects the number of classifier variables that you can specify.

The default layout is PANEL. With this layout, you can specify any number of classifier variables. The graph cells in the panel are arranged automatically, and the classifier values are displayed above each graph cell in the panel. When you specify multiple classifier variables, the order of the classifier variables determines how the graph cells are sorted.

Another layout is called LATTICE. This layout requires exactly two classifier variables. The values of the first variable are assigned as columns, and the values of the second variable are assigned as rows. The classifier values are displayed above the columns and to the right side of the rows.
Two additional layouts are available, which are called COLUMNLATTICE and ROWLATTICE. These layouts require exactly one classifier variable. The values of the classifier variable are assigned as cells in a single row or column.

If you have a large number of classifier variables, then the best method for creating a panel is to choose one or two classifiers for the PANELBY statement. Then specify the remaining variables in a BY statement. This method maximizes the space for the plots and generates results that are easier to interpret.
Concepts in Common with the SGPLOT Procedure

The following topics are located in the Chapter 13, “Common Concepts,” on page 1627 section. These topics describe concepts that are similar between the SGPANEL and SGPLOT procedures.

Table 8.2  Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1628)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1634)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1635)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1642)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1643)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1645)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.</td>
</tr>
</tbody>
</table>

Syntax: SGPANEL Procedure

Requirement: The PANELBY statement and at least one plot statement are required.

Supported Statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE

Note: Examples can be found in “Examples” on page 776 and in the plot statement descriptions.

PROC SGPANEL <options>;
   PANELBY variable(s) <options>;
   STYLEATTRS <options>
   BAND X=variable Y=variable
       UPPER= numeric-value | numeric-variable
Syntax: SGPANEL Procedure

LOWER= numeric-value | numeric-variable <options>;
BLOCK X=category-variable BLOCK=block-variable <options>;
BUCKET X=variable Y=variable SIZE=numeric-variable <options>;
DENSITY response-variable <options>;
DOT category-variable <options>;
DROPLINE X=variable | x-axis-value
   Y=variable | y-axis-value <options>;
ELLIPSE X=numeric-variable Y=numeric-variable <options>;
ELLIPSEPARM SEMIMAJOR= numeric-value | numeric-variable
   SEMIMINOR= numeric-value | numeric-variable <options>
FRINGE numeric-variable <options>;
GRADLEGEND <"name" > <options>;
HBAR category-variable <options>;
HBARBASIC category-variable <options>;
HBARPARM CATEGORY= category-variable RESPONSE= numeric-variable <options>;
HBOX analysis-variable <options>;
HEATMAP X=variable Y=variable <options>;
HEATMAPPARM X=variable Y=variable
   COLORGROUP=numeric-variable | COLORRESPONSE=numeric-variable <options>;
HIGHLOW X=variable | Y=variable
   HIGH=numeric-variable LOW=numeric-variable<option(s)>;
HISTOGRAM response-variable <options>;
HLINE category-variable <options>;
INSET variable <"variable-n" > <options>
KEYLEGEND <"name-1" ... "name-n" > <options>;
LEGENDITEM TYPE=type NAME="text-string" <options>;
LINEPARM X=numeric-value | numeric-variable
   Y=numeric-variable | numeric-variable
   SLOPE=numeric-value | numeric-variable <option(s)>;
LOESS X=numeric-variable Y=numeric-variable <options>;
NEEDLE X=variable Y=numeric-variable <options>;
PBSPLINE X=numeric-variable Y=numeric-variable <options>;
POLYGON X=x-variable Y=y-variable ID=id-variable <options>;
REFLINE value(s) <options>;
REG X=numeric-variable Y=numeric-variable <options>;
SCATTER X=variable Y=variable <options>;
SERIES X=variable Y=variable <options>;
POLYLINE X=variable Y=variable <options>;
STEP X=variable Y=variable <options>;
SYMBOLCHAR NAME=identifier
   CHAR="hex-string" | keyword <options>;
SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" <options>;
TEXT X=variable Y=variable TEXT=variable <options>;
VBAR category-variable <options>;
VBARBASIC category-variable <options>;

PROC SGPANEL Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, and control automatic legends and automatic attributes.

Requirement: An input data set is required.

Syntax

PROC SGPANEL <options> ;

Summary of Optional Arguments

ASPECT=positive-number
  specifies the aspect ratio of the plot's wall area.

CYCLEATTRS
NOCYCLEATTRS
  specifies whether plots are drawn with unique attributes in the graph.

DATA=input-data-set
  specifies the SAS data set that contains the variables to process.

DATATTRMAP=discrete-attribute-map-data-set
  specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure.

DESCRIPTION="text-string"
  specifies a description for the output image.

NOAUTOLEGEND
  disables automatic legends from being generated.

NOSUBPIXEL
SUBPIXEL
  specifies whether subpixel rendering should be used for rendering line plots and bar charts.

OPAQUE
NOOPAQUE
  specifies whether the graph background is opaque or transparent.
PAD= *dimension*<units> | (pad-options)  
  specifies the amount of extra space to add to the left, right, top, and bottom of the graph.

PCTLEVEL=BY | CELL | GRAPH | GROUP  
  specifies the scope of graph data that is calculated in percentages.

PCTNDEC=numeric-value  
  specifies the number of decimal spaces to be used to calculate the percent values.

RATTRMAP=range-attribute-map-data-set  
  specifies the range attribute map data set that you want to use with the procedure.

SGANNO=annotation-data-set  
  specifies the SG annotation data set that you want to use.

Optional Arguments

**ASPECT=positive-number**  
  specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall height divided by wall width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default: The wall area is sized to the maximum area that can fill the available space.

**CYCLEATTRS | NOCYCLEATTRS**  
  specifies whether plots are drawn with unique attributes in the graph. By default, the SGPANEL procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

**DATA=**input-data-set  
  specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

**DATTRMAP=**discrete-attribute-map-data-set  
  specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Restriction: The procedures do not support attribute maps that reside in CAS in-memory tables. Only standard SAS data sets are supported for attribute map data.

Requirement: The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.
DESCRIPTION="text-string"

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPANEL Procedure”.

Alias DES

Note The name of the output image is specified by the IMAGENAME= option in the ODS GraphICS statement.

Tip You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

NOAUTOLEGEND

disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a KEYLEGEND statement.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering line plots and bar charts. Subpixel rendering produces smoother curves and more precise bar spacing.

NOSUBPIXEL
never uses subpixel rendering.

SUBPIXEL
always uses subpixel rendering, when applicable, for rendering lines and bars.

Defaults When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Starting with SAS 9.4M3, subpixel rendering is always enabled for vector-graphics output.

Restriction In SAS 9.4M2 and in earlier releases, this option affects line-based plots and bar charts. The affected line-based plots are BAND, DENSITY, SERIES, LOESS, REG, and PBSPLINE. The affected bar charts are HBAR, HBARPARM, VBAR, and VBARPARM. Starting with SAS 9.4M3, subpixel rendering is available for all plots and charts.

Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.
Interaction  Starting with SAS 9.4M3, if the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip  For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See  “Subpixel Rendering” on page 1690

“ODS GRAPHICS Statement” on page 96 for information about the ANTIALIAS= and ANTIALIASMAX= options.

**OPAQUE | NOOPAQUE**

specifies whether the graph background is opaque or transparent.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**Default**: OPAQUE

**Restriction**: The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

Interaction  When NOOPAQUE is specified, the background color is not used.

**PAD=**  

*dimension*<units> | *(pad-options)*

specifies the amount of extra space to add to the left, right, top, and bottom of the graph. The extra space can help make the spacing more aesthetic, or provide blank space for custom annotations.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, “Annotating ODS Graphics,” on page 1767.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

*pad-options* can be one or more of the following:

  **LEFT=**  

  *dimension*<units>

  specifies the amount of extra space to add to the left edge.

  **RIGHT=**  

  *dimension*<units>

  specifies the amount of extra space to add to the right edge.

  **TOP=**  

  *dimension*<units>

  specifies the amount of extra space to add to the top edge.

  **BOTTOM=**  

  *dimension*<units>

  specifies the amount of extra space to add to the bottom edge.
PCTLEVEL=BY | CELL | GRAPH | GROUP
specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the STAT=PERCENT option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

BY
the percentages within each BY-group round up to 100%

Interaction For this value to take effect, a BY-group must be specified in the procedure.

CELL
the percentages within each panel cell round up to 100%.

GRAPH
the percentages across the entire graph round up to 100%

GROUP
the percentages across groups within a category round up to 100%.

Interaction For this value to take effect, the GROUP= option must be specified in the plot statement.

In the following examples, the first example specifies a value of GRAPH (the default), and the second example specifies a value of GROUP.

```plaintext
ods graphics on / reset=all;
ods graphics on / width=4.5in;

PCTLEVEL=GRAPH
proc sgpanel data=sashelp.cars pctlevel=graph;
panelby origin;
where origin in("Asia" "Europe");
vbar type / response=horsepower stat=percent
group=cylinders;
run;

PCTLEVEL=GROUP
proc sgpanel data=sashelp.cars pctlevel=group;
panelby origin;
where origin in("Asia" "Europe");
vbar type / response=horsepower stat=percent
group=cylinders;
run;
```

In the graph that specifies PCTLEVEL=GRAPH, the bars collectively add up to 100%. Each bar represents a fraction of the total.
In the graph that specifies PCTLEVEL=GROUP, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.

**Default**

GRAPH

**Interaction**

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

**Tip**

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

**PCTNDEC=** *numeric-value*

specifies the number of decimal spaces to be used to calculate the percent values.

**Default**

The default number of decimals is based on the magnitude of the largest percentage value.

- 10% to 100% = 1
- .1% to < 1% = 3
- 1% to < 10% = 2
- < .1% = 4

**Interaction**

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

**Tip**

You can use the PCTLEVEL= option in the PROC SGPANEL statement to control the scope of the percent calculations.

**RATTRMAP=** *range-attribute-map-data-set*

specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Restriction**

The procedures do not support attribute maps that reside in CAS in-memory tables. Only SAS data sets are supported for attribute map data.

**Requirement**

The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

**See**

Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

**SGANNO=** *annotation-data-set*

specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, “Annotating ODS Graphics,” on page 1767.

**Note:** The procedures do not support annotation data that resides in a CAS in-memory table. Only standard SAS data sets are supported for annotation data.
PANELBY Statement

Specifies one or more classification variables for the panel, the layout type, and other options for the panel.

Restrictions: The number of cells in a panel cannot exceed the maximum specified by the ODS GRAPHICS statement option PANELCELLMAX=. The default is 1,000. If the limit is exceeded, the panel is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, you can increase PANELCELLMAX= to the value suggested in the note.

Starting with SAS 9.4M5, the number of cells in the graph cannot exceed the maximum specified by the ODS GRAPHICS statement option TOTALCELLMAX=. The default is 2,000. If the limit is exceeded, the graph is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, you can increase TOTALCELLMAX= to the value suggested in the note.

Syntax

PANELBY variable(s) <options>;

Summary of Optional Arguments

- **BORDER**
  - NOBORDER
  - specifies whether borders are displayed around each cell in the panel.

- **COLHEADERPOS=** TOP | BOTTOM | BOTH
  - specifies the location of the column headings in the panel.

- **COLUMNS=n**
  - specifies the number of columns in the panel.

- **HEADERATTRS=** style-element <(options)> | (options)
  - specifies the appearance of the column headings.

- **HEADERBACKCOLOR=** color
  - specifies a background color for the cell headers.

- **LAYOUT=** LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE
  - specifies the type of layout that is used for the panel.

- **MISSING**
  - processes missing values as a valid classification value and creates cells for it.

- **NOHEADER**
  - hides the cell headings.

- **NOHEADERBORDER**
  - removes the border from the cell headings.

- **NOVARNAME**
  - removes the variable names from the cell headings of a panel layout, or from the row and column headings of a lattice layout.
NOWALL
  turns off the display of the graph wall.

ONEPANEL
  places the entire panel in a single output image.

PROPORTIONAL
  changes the size of the cells in proportion to the content of the discrete axis.

ROWHEADERPOS=LEFT | RIGHT | BOTH
  specifies the location of the row headings in the panel.

ROWS=n
  specifies the number of rows in the panel.

SKIPEMPTYCELLS
  specifies whether the external axes skip the empty cells in a partially filled grid.

SORT=sort-option | (sort-option-1 ... sort-option-n)
  specifies the sort order of the panel cells.

SPACING=n
  specifies the number of pixels between the rows and columns in the panel.

SPARSE
  enables the SGPANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set.

START=TOPLEFT | BOTTOMLEFT
  specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner.

UNISCALE=COLUMN | ROW | ALL
  scales the shared axes in the panel to be identical.

Required Argument

variable(s)
  specifies one or more classification variables for the panel.

Optional Arguments

BORDER | NOBORDER
  specifies whether borders are displayed around each cell in the panel. BORDER adds the borders. NOBORDER removes the borders. Depending on the current ODS style, the borders might be present by default.

COLHEADERPOS=TOP | BOTTOM | BOTH
  specifies the location of the column headings in the panel. Specify one of the following values:

  TOP
    places column headings at the top of each column.

  BOTTOM
    places column headings at the bottom of each column.

  BOTH
    places column headings at the top and bottom of each column.

Default          TOP
Interaction  This option has no effect if the panel uses the PANEL layout.

**COLUMNS=n**

specifies the number of columns in the panel. By default, the number of columns is determined automatically based on the number of classifier values and the layout type. The SGPANEL procedure automatically splits the panel into multiple panel images (pages) as needed when your panel contains a large number of cells.

Specifying COLUMNS= enables you to control panel size. When the number of classification levels exceeds the number of cells in the panel, additional panels (images) are created. The last panel might be partially populated.

If you specify COLUMNS= without specifying a value for ROWS= (by default, ROWS=1), then one of the following occurs:

- The cells fill each row from left to right up to the requested number of columns before going to the next row. Each panel can have a maximum of three rows. For example, if you specify two columns, and the classifier has six values, the result is a 2-column by 3-row panel. If you specify two columns, and the classifier has eight values, the result is two panels, and each panel has two rows and two columns.

- If the number of classification variables is not divisible by the columns value, then the procedure simply creates multiple single-row panels. Each panel has the specified number of columns. In this scenario, the last panel is only partially populated.

However, if you also specify ROWS= with a value greater than one, then the procedure uses your specified values to determine the number of panels. Specifying both ROWS= and COLUMNS= enables you to define the precise layout, including how many cells are in a panel.

**HEADERATTRS=style-element<(options)> | (options)**

specifies the appearance of the column headings. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Default**  GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Examples**

```
HEADERATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
HEADERATTRS=GraphLabelText
```

**HEADERBACKCOLOR=color**

specifies a background color for the cell headers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**LAYOUT=LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE**

specifies the type of layout that is used for the panel. Select one of the following values:
LATTICE
when you specify two classification variables, arranges the cells so that the
values of the first variable are columns and the values of the second variable
are rows. You can use LATTICE only when you specify exactly two
classification variables.

PANEL
arranges the cells in rows and columns. The headings for each cell are
placed at the top of the cell.

COLUMNLATTICE
arranges the cells in a single row. You can use the COLUMNLATTICE layout
only with a single classification variable.

ROWLATTICE
arranges the cells in a single column. You can use the ROWLATTICE layout
only with a single classification variable.

Default PANEL

MISSING
processes missing values as a valid classification value and creates cells for it.
By default, missing values are not processed as a classification value.

NOHEADER
hides the cell headings. This option is useful when a legend is displayed.

Restriction NOHEADERBORDER does not remove the border around empty
cells. If your panel has empty cells and you want to remove the cell
borders, you can specify SKIPEMPTYCELLS with
NOHEADERBORDER to remove the empty cells and the cell
borders.

Note This feature applies to SAS 9.4M3 and later releases.

NOVARNAME
removes the variable names from the cell headings of a panel layout, or from the
row and column headings of a lattice layout. For example, to change a row
heading from “Region=NorthEast” to “NorthEast,” specify the NOVARNAME
option.
NOWALL

turns off the display of the graph wall. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall color is the same as the graph background, and it is impossible to see the difference. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill.

ONEPANEL

places the entire panel in a single output image. If you do not specify this option, then the panel is automatically split into multiple images as appropriate.

Interactions When you use ONEPANEL with the PANEL layout, only one of the ROWS= and COLUMNS= options can be used. If you specify both options, then the value for COLUMNS= is used.

When you use ONEPANEL with the LATTICE layout, the ROWS= and COLUMNS= options have no effect.

Note This option is recommended only for panels with a small number of cells. If your panel is too large for the output image, then a blank image is created.

PROPORTIONAL

changes the size of the cells in proportion to the content of the discrete axis. The following examples show the use of PROPORTION on the X axis and on the Y axis. The first example adjusts the width of the two cells relative to the number of vertical bars along the X axis of each cell. The second example adjusts the height of the rows relative to the number of horizontal bars along the Y axis for each row.

```
ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
 where age > 14;
 panelby age / uniscale=row proportional;
 vbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

```
ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
 where age > 12;
 panelby age / uniscale=column proportional;
 hbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

Requirements The axis must be discrete.

You must also use the UNISCALE= option in the statement. Otherwise, the discrete axis cannot scale independently.
Interaction  When PROPORTIONAL is used and the graph contains markers, the markers might be sized differently between panels depending on the relative sizes of the panels. To disable the scaling of the markers, you can turn off the SCALEMARKERS option in the ODS GRAPHICS statement, as shown here:

```
ODS GRAPHICS / SCALEMARKERS=OFF;
```

**ROWHEADERPOS=LEFT | RIGHT | BOTH**

specifies the location of the row headings in the panel. Specify one of the following values:

- LEFT
  places row headings at the left side of each row.

- RIGHT
  places row headings at the right side of each row.

- BOTH
  places row headings at the left side and the right side of each row.

Default  RIGHT

Interaction  This option has no effect if the panel uses the PANEL layout.

**ROWS=n**

specifies the number of rows in the panel. By default, the number of rows is determined automatically based on the number of classifier values and the layout type. The SGPANEL procedure automatically splits the panel into multiple panel images (pages) as needed when your panel contains a large number of cells.

If you specify ROWS= without specifying a value for COLUMNS= (by default, COLUMNS=1), then one of the following occurs:

- The cells fill each row from left to right up to the requested number of rows. Each panel can have a maximum of three columns. For example, if you specify two rows, and the classifier has six values, the result is a three-column by two-row panel. If you specify two rows, and the classifier has eight values, the result is two panels. Each panel has two rows and two columns.

- If the number of classification variables is not divisible by the rows value, then the procedure simply creates multiple single-column panels. Each panel has the specified number of rows. The last panel is only partially populated. However, if you also specify COLUMNS= with a value greater than one, then the procedure uses your specified values to determine the number of panels. Specifying both COLUMNS= and ROWS= enables you to define the precise layout, including how many cells are in a panel.

**SKIPEMPTYCELLS**

specifies whether the external axes skip the empty cells in a partially filled grid. If the number of classifier values does not match the number of cells in the rows and columns of the layout, then the grid is partially filled with data cells and padded with empty cells to complete the grid. Specifying the SKIPEMPTYCELLS option removes those empty cells.

In the following examples, the data cells are arranged in a two-column, two-row panel. The first graphic shows the panel padded with an empty cell. The second specifies SKIPEMPTYCELLS, and the panel contains no empty cells.
proc sgsimdata=sashelp.cars;
panel by origin;
scatter x=mpg_city y=msrp;
run;

proc sgsimdata=sashelp.cars;
panel by origin / skipemptycells;
scatter x=mpg_city y=msrp;
run;

The SKIPEMPTYCELLS option works whether the rows and columns are determined automatically or explicitly specified.

TIP If your panel has empty cells and you want to remove the cell borders, you can specify SKIPEMPTYCELLS with NOHEADERBORDER to remove the empty cells and the cell borders.

SORT=sort-option | (sort-option-1 ... sort-option-n)
specifies the sort order of the panel cells.

Note: This option affects only the order of the cells in your panel. It does not affect the order of the cell contents.

If you have multiple classification variables, you can control the sort for each variable using (sort-option-1...sort-option-n).

sort-option can be one of the following values.

(sort-option-1...sort-option-n) can be one or more of the first five values listed. If you attempt to use any other values (such as DATA or any value after DATA), the sort request is ignored and a message is written to the log.
AUTO sorts in ascending order for character data and numeric data. The sorts performed by PROC SORT and PROC SQL are also honored with this option. This option represents the default sorting behavior.

ASCENDING sorts in ascending order using the unformatted values.

DESCENDING sorts in descending order using the unformatted values.

ASCFORMAT sorts in ascending order using the formatted values.

DESCFORMAT sorts in descending order using the formatted values.

DATA uses data order for the sort.

ASCMEAN sorts by the ascending mean of the Y (or response) variable of the primary plot.

DESCMEAN sorts by the descending mean of the Y (or response) variable of the primary plot.

ASCMEDIAN sorts by the ascending median of the Y (or response) variable of the primary plot.

DESCMEDIAN sorts by the descending median of the Y (or response) variable of the primary plot.

ASCFREQ sorts by the ascending frequency of the class values.

DESCFREQ sorts by the descending frequency of the class values.

The sort-option is applied to your panel variables as follows:

- When a single sort-option is specified, the sort is applied to all panel variables.

- When (sort-option-1...sort-option-n) values are specified, sort-option-1 corresponds to the first PANELBY variable that is specified, sort-option-2 corresponds to the second variable, and so on.

  If you do not specify enough sort-option values, the list is padded with AUTO. If you specify too many sort-option values, the rest of the list is ignored. If you want to skip the first variable but sort the second, use AUTO for the first variable.

The following example shows barley yields by year in ascending (formatted) order and by site in descending order.
You cannot use a (sort-option-1...sort-option-n) list with a statistical sort, such as DESCMEAN. However, there is a way to obtain a statistical sort for multiple class variables:

1. Merge the statistic variable with the raw data by the class variables.
2. Use the SORT procedure to sort the data by the statistic variable.
3. In the SGPANEL procedure, specify SORT=DATA in the PANELBY statement.
   Statistical sorts are most effective when you specify COLUMNS=1 or ROWS=1 in the PANELBY statement.

Default: AUTO

Restriction: DATA order is not supported with CAS data.

**SPACING=n**

specifies the number of pixels between the rows and columns in the panel.

Default: 0

**SPARSE**

enables the SGPANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set. By default, empty cells are not created for the panel layout.

Interaction: This option has no effect if you specify LAYOUT=LATTICE.

**START=TOPLEFT | BOTTOMLEFT**

specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner. Specify one of the following values:

**TOPLEFT**

places the cell for the first data crossing in the upper left corner.
Cells are placed from left to right, starting in the top row. Each additional row is placed below the previous row.

The following figure shows the placement of nine cells in a panel where `START= TOPLEFT`:

```
 1 2 3
 4 5 6
 7 8 9
```

`BOTTOMLEFT` places the cell for the first data crossing in the lower left corner. Cells are placed from left to right, starting in the bottom row. Each additional row is placed above the previous row.

The following figure shows the placement of nine cells in a panel where `START=BOTTOMLEFT`:

```
 7 8 9
 4 5 6
 1 2 3
```

Default: `TOPLEFT`

**UNISCALE=COLUMN | ROW | ALL**

scales the shared axes in the panel to be identical. Specify one of the following values:

- **COLUMN** scales all of the column axes in the panel to have identical ranges. The range for each row axis is scaled independently based on the data in each row.

- **ROW** scales all of the row axes in the panel to have identical ranges. The range for each column axis is scaled independently based on the data in each column.

- **ALL** scales all of the column axes to have identical ranges, and also scales all of the row axes to have identical ranges.

Default: `ALL`

Tip: To arrange the cells in a single row or a single column, use the `LAYOUT=` option.
STYLEATTRS Statement

Specifies group attributes for a graph. The statement enables you to change group colors, markers, and so on, within the procedure, without having to change the ODS style template.

Requirement: The procedure must include at least one plot statement.

Interaction: The following options apply only when the GraphData1 ... GraphData n style elements are used: DATACOLORS=, DATACONTRASTCOLORS=, DATAFILLPATTERNS=, DATALINEPATTERNS=, and DATASYMBOLS=. For more information, see “When the Style Options Take Effect” on page 180.

Tip: When specifying data attributes such as colors, symbols, and line patterns for multiple plots, the attributes might not be assigned consistently in some cases. To ensure consistent attribute assignments, specify option NOCYCLEATTRS on page 161 in the SGPANEL procedure statement.

Syntax

STYLEATTRS <options>;

Summary of Optional Arguments

Background and wall options

BACKCOLOR=\texttt{color}

specifies the background color of the graph area.

WALLCOLOR=\texttt{color}

specifies the color of the plot wall area.

Style options

DATACOLORS=\texttt{(color-list)}

specifies the fill colors for the graphics elements.

DATACONTRASTCOLORS=\texttt{(color-list)}

specifies the contrast colors for the graphics elements, such as lines and markers.

DATAFILLPATTERNS=\texttt{(fill-pattern-list)}

specifies the list of graph fill patterns.

DATALINEPATTERNS=\texttt{(line-pattern-list)}

specifies the list of line patterns for the graph data lines.

DATASYMBOLS=\texttt{(marker-symbol-list)}

specifies the list of marker symbols for the graph data.

Optional Arguments

BACKCOLOR=\texttt{color}

specifies the background color of the graph area.
Note: This feature applies to SAS 9.4M3 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The Color attribute of the GraphBackground style element

Examples backcolor=CXFF0000

backcolor=light_blue

**DATACOLORS=(color-list)**

specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The colors that are defined in the GraphData1 ... GraphData_n style elements in the current style are used.

Interaction Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

Note When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphData_n style elements. When the colors in color-list are exhausted, the colors repeat.

Example datacolors=(CXFF0000 green blue)

**DATACONTRASTCOLORS=(color-list)**

specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The contrast colors that are defined in the GraphData1 ... GraphData_n style elements in the current style are used.

Interaction Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note When this option is specified, the colors cycle through color-list rather than the contrast colors that are defined in the GraphData1 ... GraphData_n style elements. When the colors in color-list are exhausted, the colors repeat.

Example datacontrastcolors=(orange cyan CXFF0000)

**DATAFILLPATTERNS=(fill-pattern-list)**

specifies the list of graph fill patterns.
Note: This feature applies to SAS 9.4M5 and later releases.

**fill-pattern-list**

A space-separated list of fill patterns, enclosed in parentheses. You can use a style attribute reference such as GraphData3:fillpattern or a two-character fill-pattern name such as L1, X5, and so on, to specify a fill pattern. The list can contain a mix of style attribute references and pattern names.

To specify a two-character fill-pattern name, specify a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.3 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image" alt="Pattern L1 Example" /></td>
<td>R1</td>
<td><img src="image" alt="Pattern R1 Example" /></td>
<td>X1</td>
<td><img src="image" alt="Pattern X1 Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image" alt="Pattern L2 Example" /></td>
<td>R2</td>
<td><img src="image" alt="Pattern R2 Example" /></td>
<td>X2</td>
<td><img src="image" alt="Pattern X2 Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image" alt="Pattern L3 Example" /></td>
<td>R3</td>
<td><img src="image" alt="Pattern R3 Example" /></td>
<td>X3</td>
<td><img src="image" alt="Pattern X3 Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image" alt="Pattern L4 Example" /></td>
<td>R4</td>
<td><img src="image" alt="Pattern R4 Example" /></td>
<td>X4</td>
<td><img src="image" alt="Pattern X4 Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image" alt="Pattern L5 Example" /></td>
<td>R5</td>
<td><img src="image" alt="Pattern R5 Example" /></td>
<td>X5</td>
<td><img src="image" alt="Pattern X5 Example" /></td>
</tr>
</tbody>
</table>

When this option is specified, the fill patterns rotate through this fill-pattern list rather than through the fill patterns that are defined in the GraphData1 ... GraphDataN style elements. For information about the attribute rotation patterns, see “How the Attributes Are Cycled” on page 180.

**Default**
The fill patterns that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

**Requirement**
The list of fill patterns must be enclosed in parentheses.

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**Example**
`datafillpatterns=(graphdata4:fillpattern L5 X2)`

**DATALINEPATTERNS=(line-pattern-list)**

Specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.
Default: The line patterns that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements in the current style are used.

Interaction: Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

Note: When this option is specified, the line patterns cycle through \textit{line-pattern-list} rather than the line patterns that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements. When the patterns in \textit{line-pattern-list} are exhausted, the patterns repeat.

Example: \texttt{datalinepatterns=(dot solid longdash 26)}

\textbf{DATASYMBOLS=}(\textit{marker-symbol-list})

specifies the list of marker symbols for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See \textit{marker symbols} on page 1656.

Default: The symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements in the current style are used.

Interaction: Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

Note: When this option is specified, the symbols cycle through \textit{marker-symbol-list} rather than the symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements. When the symbols in \textit{marker-symbol-list} are exhausted, the symbols repeat.

Example: \texttt{datasymbols=(circle square triangle star)}

\textbf{WALLCOLOR=}\textit{color}

specifies the color of the plot wall area.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M3} and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “\textit{Color-Naming Schemes}” on page 1660.

The following figure shows a light blue wall color.

\begin{itemize}
\item Default: The Color attribute of the GraphWalls style element
\end{itemize}
Examples

- wallcolor=CXFF0000
- wallcolor=light_blue

Details

When the Style Options Take Effect

The following style options apply only when the GraphData1...GraphData*n* style elements are used: DATACOLORS=, DATACONTRASTCOLORS=, DATAFILLPATTERNS=, DATALINEPATTERNS=, and DATASYMBOLS=.

The corresponding attributes for the style options take effect when any one of the following is true:

- a GROUP= option is specified in at least one plot statement.
- the procedure contains at least two plot statements that cycle the respective attribute.
- a plot specifies a GraphData*n* style reference for the respective attribute.

Example:

```plaintext
proc sgpanel data=sashelp.class;
 panelby sex;
 styleattrs datacolors=(orange);
 vbar age / fillattrs=GraphData1;
run;
```

For more information, see the following blogs:

- Getting Started with SGPLOT: Style Attributes
- Attrs, attrs, everywhere: The interaction between ATTRPRIORITY, CYCLEATTRS, and STYLEATTRS in ODS Graphics

How the Attributes Are Cycled

The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.

```plaintext
datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)
```

In this example, which uses the HTMLBlue style, the procedure uses a color-priority rotation pattern.

With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If
there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
</tr>
<tr>
<td>14 15 16</td>
</tr>
</tbody>
</table>

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

ATTRPRIORITY=COLOR | NONE

Note: The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, such as LISTING, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the procedure:

ods graphics / attrpriority=none;

Now, the following options in the STYLEATTRS statement are applied in alternating order:

`datacontrastcolors=(red green blue)`
`datalinepatterns=(dot solid)`

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
</tr>
<tr>
<td>14 15 16</td>
</tr>
</tbody>
</table>

See Also

“ODS GRAPHICS Statement” on page 96
Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
- The ODS style is HTMLBlue. For the HTMLBlue style, ATTRPRIORITY on page 99 defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.

```plaintext
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
 by age;
run;

/* Generate the graph using the sorted data */
proc sgpanel data=class;
 panelby sex;
 styleattrs
 datacontrastcolors=(red green blue)
 datalinepatterns=(dot solid);
 series x=height y=weight / group=age;
 keylegend;
run;
```

**BAND Statement**

Creates a band that highlights part of a plot.

**Restrictions:**

The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.
Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBJSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBJSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Note: The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types.

Example: “About Band Plots” on page 17

Syntax

```
BAND X=variable | Y=variable
 UPPER=numeric-value | numeric-variable
 LOWER=numeric-value | numeric-variable
 <option(s)>;
```

Summary of Optional Arguments

**Appearance options**

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.
- **FILL**
  **NOFILL**
  specifies whether the area fill is visible.
- **FILLATTRS=style-element <(options)> | (options)**
  specifies the fill color and transparency.
- **FILLPATTERN**
  enables the display of line fill patterns for the plot.
- **FILLPATTERNATTRS=style-element <(options)> | (options)**
  specifies the line-fill color and pattern.
- **LINEATTRS=style-element <(options)> | (options)**
  specifies the appearance of the lines in the plot.
- **NOEXTEND**
  when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot.
- **OUTLINE**
  **NOOUTLINE**
  specifies whether the outlines of the band are visible.
- **TRANSPARENCY=value**
  specifies the degree of transparency for the plot.
- **TYPE=SERIES | STEP**
specifies how the data points for the lower and upper band boundaries are connected.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you specify a curve label.

CURVELABELLOWER="text-string"
adds a label to the lower edge of the band.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

CURVELABELUPPER="text-string"
adds a label to the upper edge of the band.

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot reference options

MODELNAME="plot-name"
specifies the name of a plot from which to derive the interpolation for the band.

NAME="text-string"
specifies a name for the plot.
Required Arguments

\[ X=\text{variable} \mid Y=\text{variable} \]

specifies a variable that is used to plot the band along the X or Y axis.

\[ \text{LOWER}=\text{numeric-value} \mid \text{numeric-variable} \]

specifies the lower value for the band. You can specify either a constant numeric value or a numeric variable.

\[ \text{UPPER}=\text{numeric-value} \mid \text{numeric-variable} \]

specifies the upper value for the band. You can specify either a constant numeric value or a numeric variable.

Optional Arguments

\[ \text{ATTRID}=\text{character-value} \]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

\[ \text{CURVELABELATTRS}=\text{style-element}(<\text{options}>| (\text{options}) \]

specifies the appearance of the labels in the plot when you specify a curve label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default The Color, FontFamily, FontSize, FontStyle, and FontWeight attributes of the GraphValueText style element in the current style.

Interaction This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

Examples \[ \text{CURVELABELATTRS}=(\text{Color}=\text{Green} \ \text{Family}=\text{Arial} \ \text{Size}=8 \ \text{Style}=\text{Italic} \ \text{Weight}=\text{Bold}) \]

Here is an example that specifies a style element:
\[ \text{CURVELABELATTRS}=	ext{GraphTitleText} \]

\[ \text{CURVELABELLOWER}="\text{text-string}" \]

adds a label to the lower edge of the band. Specify the label text.

Restriction This option cannot be used with the GROUP= option. When the GROUP= option is in effect, the label specified in the CURVELABELLOWER= option is not drawn.

\[ \text{CURVELABELPOS}=\text{MIN} \mid \text{MAX} \mid \text{START} \mid \text{END} \]

specifies the location of the curve label. Specify one of the following values:

\[ \text{MIN} \]

places the label at the part of the curve closest to the minimum X-axis value.

\[ \text{MAX} \]

places the label at the part of the curve closest to the maximum X-axis value.
START
places the curve label at the first point on the curve.
END
places the curve label at the last point on the curve.
Default END

INTERACTION
This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.

CURVELABELUPPER="text-string"
adds a label to the upper edge of the band. Specify the label text.

RESTRICTION
This option cannot be used with the GROUP= option. When the GROUP= option is in effect, the label specified in the CURVELABELUPPER= option is not drawn.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts style attribute of the GraphBand style element in the current style.

INTERACTIONS Specifying FILL also hides any visible outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.
This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLPATTERN
 enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:
ods graphics / attrpriority=none;

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATRRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATRRS=**style-element** *(options)* | *(options)*

specifies the line-fill color and pattern.

---

**Note:** This feature applies to *SAS 9.4M5* and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=style-reference | color**

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group color values.

**PATTERN=style-reference | line-pattern**

specifies the type of line pattern to use for the fill.

*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.4  Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="example.png" alt="L1 Example" /></td>
<td>R1</td>
<td><img src="example.png" alt="R1 Example" /></td>
<td>X1</td>
<td><img src="example.png" alt="X1 Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="example.png" alt="L2 Example" /></td>
<td>R2</td>
<td><img src="example.png" alt="R2 Example" /></td>
<td>X2</td>
<td><img src="example.png" alt="X2 Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="example.png" alt="L3 Example" /></td>
<td>R3</td>
<td><img src="example.png" alt="R3 Example" /></td>
<td>X3</td>
<td><img src="example.png" alt="X3 Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="example.png" alt="L4 Example" /></td>
<td>R4</td>
<td><img src="example.png" alt="R4 Example" /></td>
<td>X4</td>
<td><img src="example.png" alt="X4 Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="example.png" alt="L5 Example" /></td>
<td>R5</td>
<td><img src="example.png" alt="R5 Example" /></td>
<td>X5</td>
<td><img src="example.png" alt="X5 Example" /></td>
</tr>
</tbody>
</table>
With grouped data, the `PATTERN=` setting has the effect of holding the fill pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify `ATTRPRIORITY=NONE` in an ODS GRAPHICS statement. See “`ATTRPRIORITY=COLOR | NONE`” on page 99.

For this option to take effect, the `FILLPATTERN` option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**GROUP=** `variable`
specifies a variable that is used to group the data. A separate band is created for each unique value of the grouping variable.

**LEGENDLABEL=** "`text-string`"
specifies a label that identifies the elements from the band plot in the legend. By default, the label "Band" is used for ungrouped data, and the group values are used for grouped data.

Interaction
The `LEGENDLABEL=` option has no effect if you also specify the `GROUP=` option in the same plot statement.

**LINEATTRS=** `style-element <(options)>` | `(options)`
specifies the appearance of the lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData `n` style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle.

For line thickness, GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData `n` style elements in the current style for grouped data. The affected attribute is LineThickness.

Interaction
This option has no effect unless you also specify the OUTLINES option.

**MODELNAME=** "`plot-name`"
specifies the name of a plot from which to derive the interpolation for the band.

Default
If you do not specify this option, then the band is interpolated in the same way as a series plot.

Requirement
`plot-name` must be the name that has been assigned with the associated plot’s `NAME=` option.

See
“Details” on page 192
NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

Interaction This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the band outlines is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Interactions This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Note**
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**TYPE=SERIES | STEP**
specifies how the data points for the lower and upper band boundaries are connected. You can specify one of the following:
SERIES
the data points are connected directly using line segments, as in a series plot.

STEP
the data points are connected using a step function, as in a step plot.

Default  SERIES

Details

The MODELNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```

**Figure 8.4  Fitted Band Plot Example**

---

**BLOCK Statement**

Creates one or more rectangular blocks containing text values. The block widths are determined by a specified block variable.

**Notes:**

Each block represents a block variable value and spans the data that has the same block variable value.

When data labels are used, the axis offsets are extended to accommodate the length of the longest data label. The blocks at each end of the block plot are extended to include the additional axis offset. This behavior is expected.

The BLOCK statement is typically used with another plot statement, which establishes the axis type for the Y axis. However, the BLOCK statement can be used by itself. In that case, the block plot has no Y axis. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.
Syntax

`BLOCK X=category-variable BLOCK=block-variable <option(s)>;`

Summary of Optional Arguments

Appearance options

- `ALTFILLATTRS=style-element<options> | (options)`
  specifies the appearance of alternate fills for the blocks.
- `ATTRID=character-value`
  specifies the value of the ID variable in a discrete attribute map data set.
- `FILL
  NOFILL`
  specifies whether the blocks are filled.
- `FILLATTRS=style-element<options> | (options)`
  specifies the appearance of the fill for the blocks.
- `FILLTYPE=MULTICOLOR | ALTERNATE`
  specifies how the blocks are filled.
- `LINEATTRS=style-element<options> | (options)`
  specifies the appearance of the block outlines.
- `OUTLINE
  NOOUTLINE`
  specifies whether the blocks have outlines.
- `TRANSPARENCY=numeric-value`
  specifies the degree of transparency for the blocks.

Block text options

- `BLOCKLABEL=variable`
  specifies a column to use for alternative text in the blocks.
- `NOVALUES
  VALUES`
  specifies whether the block values are displayed or hidden.
- `SPLITCHAR="character-list"`
  specifies one or more characters used to split block text values into multiple lines.
- `SPLITCHARNODROP`
  specifies that the split characters are included in the displayed value.
- `VALUEATTRS=style-element<options> | (options)`
  specifies the appearance of the block text values.
- `VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE`
  specifies how text values are adjusted to fit within the containing block.
- `VALUEHALIGN=LEFT | CENTER | RIGHT | START`
  specifies the horizontal alignment of the value text within the blocks.
- `VALUEVALID=TOP | CENTER | BOTTOM`
specifies the vertical alignment of the value text within the blocks.

Label options

LABEL ="text-string">
NOLABEL
specifies an external label for a single block plot.
LABELATRFS=style-element<options> | (options)
specifies the color and font attributes of the external block labels.
LABELPOS=BOTTOM | LEFT | RIGHT | TOP
specifies the position for the block label for a single block plot.

Plot options

CLASS=variable
creates a stack of block plots, with one block plot for each unique value of
the specified variable.
EXTENDMISSING
extends the previous block value if the current value is missing.
NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS=
value.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=category-variable
specifies X-axis positions. When the X axis is numeric and the specified variable
is numeric, values are expected to be in sorted, ascending order. If the X axis is
discrete and the specified column is numeric, values are treated as numeric-
discrete.

BLOCK=block-variable
specifies the variable that classifies the observations into distinct subsets.

Optional Arguments

ALTFILLATTRS=style-element<options> | (options)
specifies the appearance of alternate fills for the blocks. This option in
conjunction with the FILLATTRS= option controls fill appearance when
FILLTYPE=ALTERNATE. You can specify the appearance by using a style
element or by specifying specific options. If you specify a style element, you can
also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Requirement FILLTYPE=ALTERNATE must be specified for this option to have
any effect.

Interaction This option has no effect if you specify the NOFILL option.

Note The TRANSPARENCY= attribute affects only the alternate fill
blocks. To set the same transparency for both the fill blocks and
the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

**Tips**

The FILLATTRS= option controls the fill color of non-alternate blocks.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BLOCKLABEL=variable**
specifies a column to use for alternative text in the blocks.

Interaction This option overrides the default text for the blocks.

Tip The font and color attributes for the alternative text are specified by the VALUEATTRS= option.

**CLASS=variable**
creates a stack of block plots, with one block plot for each unique value of the specified variable.

Interaction To label the blocks by the class values, specify the BLOCKLABEL= option using the same class variable.

Note For local data, the visual attributes for each class value are assigned in data order. However, if you are using a CAS in-memory table, the visual attributes for each class value are assigned in ascending order of the class variable character values or of unformatted numeric values.

**EXTENDMISSING**
extends the previous block value if the current value is missing.

**FILL | NOFILL**
specifies whether the blocks are filled.

Default FILL

Interaction The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

**FILLATTRS=style-element<(options)> | (options)**
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.
Requirement  FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction  This option has no effect if you specify the NOFILL option.

Note  The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips  The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

**FILLTYPE=MULTICOLOR | ALTERNATE**

specifies how the blocks are filled.

**MULTICOLOR**

Blocks are filled with the COLOR attribute of the GraphData1 ... GraphData\textbackslash n style elements.

**ALTERNATE**

Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.

Default  MULTICOLOR

Interaction  This option has no effect if NOFILL is also specified.

**LABEL <=text-string\textgreater | NOLABEL**

specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.

Default  The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.

Interactions  By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

**LABELATTRS=style-element<options> | (options)**

specifies the color and font attributes of the external block labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults  GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textbackslash n style elements.
Examples  
LABELATTRS=(Color=Green Family=Arial Size=8  
  Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS=BOTTOM | LEFT | RIGHT | TOP
specifies the position for the block label for a single block plot.

Default  
LEFT

Interaction  
This option has no effect if NOLABEL is also specified.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the block outlines. You can specify the appearance 
by using a style element or by specifying specific options. If you specify a style 
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  
GraphOutlines style element in the current style for ungrouped data. 
GraphDataG1 ... GraphDataGn style elements in the current style for 
grouped data. The affected attributes are ContrastColor, LineStyle, 
and LineThickness.

Interaction  
This option has no effect if the NOOUTLINE option is also specified.

NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other 
statements.

Note  
The text-string is case-sensitive and must define a unique name within the 
procedure.

Tip  
This option is often used with legend statements in order to coordinate the 
use of colors and line patterns between the graph and the legend.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines. The OUTLINE option shows the 
outlines. The NOOUTLINE option hides the outlines.

Default  
OUTLINE

Interaction  
The NOOUTLINE option can be used with the NOFILL option to 
hide both the outline and the fill.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

Default  
VALUES

Tip  
The font and color attributes for the text values are specified by the 
VALUEATTRS= option.
SPLITCHAR="character-list"
specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

Default  The default split character is a space.

Interactions This option has no effect unless VALUEFITPOLICY= specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY= is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default  0.0

VALUEATTRS=style-element<(options)> | (options)
specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default  GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
Examples  VALUEATTRS=(Color=Green Family=Arial Size=8
              Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE
specifies how text values are adjusted to fit within the containing block. Select one of the following values:

NONE
No attempt is made to fit values that collide with the text values in adjacent blocks.

SHRINK
All values are reduced in font size until they all fit.

SPLIT
If a value does not fit within the containing block, it is split at a split character. No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

Default  The default split character is a space.

Tip  Use the SPLITCHAR= option to specify a split character.

SPLITALWAYS
Text values are split at a split character in all blocks.

Default  The default split character is a space.

Tip  Use the SPLITCHAR= option to specify a split character.

TRUNCATE
Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

Default  SPLIT

VALUEALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks. This option changes the text alignment regardless of whether you split values or specify the VALUEFITPOLICY= option.

Select one of the following values:

LEFT
left-aligned within the block

CENTER
center-aligned within the block

RIGHT
right-aligned within the block

START
center-aligned at the starting value of the block
Default  CENTER
Interaction  This option has no effect if you also specify the NOVALUES option.

VALUEALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the value text within the blocks.
Default  TOP
Interaction  This option has no effect if you also specify the NOVALUES option.

Details
The BLOCK statement provides several options for changing the appearance of the blocks and the text values inside the blocks.
The syntax for these display attributes is almost identical between the SGPANEL and SGPLOT procedures, and is described in the following topics in the SGPLOT chapter:
- “Changing the Appearance of Block Text Values” on page 858
- “Changing the Appearance of Block Fills” on page 859

BUBBLE Statement
Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.
See:  “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types
Example:  “About Bubble Plots” on page 19

Syntax
BUBBLE X=variable Y=variable SIZE=numeric-variable </ option(s)>;

Summary of Optional Arguments
Appearance options
  ABSSCALE
  specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.
  ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.
BRADIUSMAX=numeric-value
    specifies the size of the radius of the largest bubble.
BRADIUSMIN=numeric-value
    specifies the size of the radius of the smallest bubble.
COLORMODEL=style-element | (color-list)
    specifies a color ramp that is to be used with the COLORRESPONSE=
    option.
COLORRESPONSE=numeric-column
    specifies the numeric column that is used to map colors to a gradient
    legend.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
    specifies a special effect to be used on the plot.
DRAWORDER=SIZE | DATA
    specifies whether the bubbles are drawn according to bubble size or
    according to data order.
FILL
    NOFILL
    specifies whether the bubbles are filled.
FILLATTRS=style-element <(options)> | (options)
    specifies the fill color and transparency.
FILLPATTERN
    enables the display of line fill patterns for the plot.
FILLPATTERNATTRS=style-element <(options)> | (options)
    specifies the line-fill color and pattern.
LINEATTRS=style-element<(options)> | (options)
    specifies the appearance of the outlines for the bubbles.
OUTLINE
    NOOUTLINE
    specifies whether the outlines of the bubbles are visible.
PROPORTIONAL
    specifies that proportional scaling be applied to the SIZE= column values.
RATTRID=character-value
    specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=value
    specifies the degree of transparency for the plot.

Data tip options
TIP=(variable-list) | NONE
    specifies the data tip information to be displayed when the cursor is
    positioned over the graphics element.
TIPFORMAT=(format-list)
    applies formats to the list of data tip variables that you specify in the TIP=
    option.
TIPLABEL=(label-list)
    applies labels to the list of data tip variables that you specify in the TIP=
    option.

Group options
GROUP=variable
    specifies a variable that is used to group the data.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

**Label options**

**DATALABEL** `<variable>`
displays a label for each data point.

**DATALABELATTRS=style-element<options> | (options)**
specifies the appearance of the labels in the plot when you use the **DATALABEL=** option.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL="text-string"**
specifies the label that identifies the bubble plot in the legend.

**SPLITCHAR="character-list"**
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Plot options**

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME="text-string"**
specifies a name for the plot.

**Required Arguments**

**X=variable**
specifies the variable for the X axis.

**Y=variable**
specifies the variable for the Y axis.

**SIZE=numeric-variable**
specifies the variable that controls the size of the bubbles. The minimum and maximum values automatically provide the range that is used to determine bubble sizes. You can control this range manually by using the BRADIUSMAX and BRADIUSMIN options.

**Tip** Starting with SAS 9.4M3, you can use the ABSSCALE option to interpret the bubble size in the same units as the axes rather than as relative values.

**Optional Arguments**

**ABSSCALE**
specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.
Note: This feature applies to SAS 9.4M3 and later releases.

By default, the bubble sizes are scaled to represent the value range of the SIZE= column.

For example, suppose a graph contains only two bubbles, and their sizes are 2 and 4. These two bubbles appear the same as they would if their sizes were 4000 and 8000, respectively. By contrast, when ABSSCALE is specified, the size values are interpreted in the same units as the axes.

Restriction This option is ignored if the X or Y axis is discrete.

Interaction When this option is used, the BRADIUSMAX= and BRADIUSMIN= options are ignored.

Note The bubbles might be drawn as ellipses if the X and Y axes are scaled differently.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BRADIUSMAX=numeric-value**

specifies the size of the radius of the largest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Restriction The BRADIUSMAX= value must be greater than the BRADIUSMIN= value if one is specified. If BRADIUSMAX is not greater, an error is generated and a message is written to the SAS log.

Note If you specify the maximum size as a percentage, this is interpreted as a percentage of the graph's height.

**BRADIUSMIN=numeric-value**

specifies the size of the radius of the smallest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Restriction The BRADIUSMIN= value must be smaller than the BRADIUSMAX= value if one is specified. If BRADIUSMIN is not smaller, an error is generated and a message is written to the SAS log.

Note If you specify the minimum size as a percentage, this is interpreted as a percentage of the graph's height.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.
style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bubbles. The ThreeColorAltRamp style element for unfilled bubbles.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 259

“Using Gradient Color Legends” on page 1637

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 8.5</th>
<th>DATASKIN Options for Bubbles</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DRAWORDER=SIZE | DATA
specifies whether the bubbles are drawn according to bubble size or according to data order.

Note: This feature applies to SAS 9.4M3 and later releases.

SIZE
draws the bubbles according to bubble size, from the largest to the smallest.

DATA
draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

FILL | NOFILL
specifies whether the bubbles are filled. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATTRS=\texttt{style-element \langle \texttt{options} \rangle} | \texttt{(options)} \\
\text{specifies the fill color and transparency. You can specify the appearance by} \\
\text{using a style element or by specifying specific options. If you specify a style} \\
\text{element, you can also specify options to override specific appearance attributes.} \\
\text{For a description of fill attributes, see "Fill Attributes" on page 1655.} \\
\textbf{Defaults} \\
\text{Color attribute of the GraphDataDefault style element in the current} \\
\text{style for ungrouped data. GraphData1 ... GraphData} \texttt{n} \text{style} \\
\text{elements in the current style for grouped data.} \\
\text{Transparency is the same as the setting for the plot's} \\
\text{\texttt{TRANSPARENCY=} option.} \\
\textbf{Interactions} \\
\text{This option has no effect if you specify the NOFILL option.} \\
\text{This suboption overrides the plot’s \texttt{TRANSPARENCY=} option for} \\
\text{the fill.} \\

\textbf{FILLPATTERN} \\
\text{enables the display of line fill patterns for the plot.} \\
\textbf{Note: This feature applies to SAS 9.4M5 and later releases.} \\
\textbf{Interaction} \\
\text{If you specify a group, color might be used to distinguish the} \\
\text{group values. To ensure that group values are distinguished by} \\
\text{their fill patterns, use the \texttt{ATTRPRIORITY} option in the ODS} \\
\text{GRAPHICS statement. Example:} \\
\texttt{ods graphics / attrpriority=none;} \\
\textbf{Accessibility note} \\
\text{This feature helps support accessibility. Graphs that use this} \\
\text{feature do not rely on color alone to distinguish categories of} \\
\text{data.} \\
\textbf{Tips} \\
\text{Use the FILLPATTERNATTRS= option to specify the} \\
\text{appearance of the fill pattern.} \\
\text{Use the NOFILL option to suppress the plot’s fill color.} \\

\textbf{FILLPATTERNATTRS=\texttt{style-element \langle \texttt{options} \rangle} | \texttt{(options)}} \\
\text{specifies the line-fill color and pattern.} \\
\textbf{Note: This feature applies to SAS 9.4M5 and later releases.} \\
\text{You can specify the appearance by using a style element or by specifying} \\
\text{specific options. If you specify a style element, you can also specify options to} \\
\text{override specific appearance attributes.} \\
\textbf{options} can be one or both of the following: \\
\textbf{COLOR=\texttt{style-reference} | \texttt{color}} \\
\text{specifies a color to use for the fill lines. You can specify colors using a} \\
\text{number of different color-naming schemes. For more information, see "Color-} \\
\text{Naming Schemes" on page 1660.} \\
\text{With grouped data, the \texttt{COLOR=} setting has the effect of holding the fill color} \\
\text{constant across all group values.}
PATTERN=style-reference | line-pattern

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.6 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1.png" alt="Pattern L1 Example" /></td>
<td>R1</td>
<td><img src="image2.png" alt="Pattern R1 Example" /></td>
<td>X1</td>
<td><img src="image3.png" alt="Pattern X1 Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4.png" alt="Pattern L2 Example" /></td>
<td>R2</td>
<td><img src="image5.png" alt="Pattern R2 Example" /></td>
<td>X2</td>
<td><img src="image6.png" alt="Pattern X2 Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image7.png" alt="Pattern L3 Example" /></td>
<td>R3</td>
<td><img src="image8.png" alt="Pattern R3 Example" /></td>
<td>X3</td>
<td><img src="image9.png" alt="Pattern X3 Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image10.png" alt="Pattern L4 Example" /></td>
<td>R4</td>
<td><img src="image11.png" alt="Pattern R4 Example" /></td>
<td>X4</td>
<td><img src="image12.png" alt="Pattern X4 Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image13.png" alt="Pattern L5 Example" /></td>
<td>R5</td>
<td><img src="image14.png" alt="Pattern R5 Example" /></td>
<td>X5</td>
<td><img src="image15.png" alt="Pattern X5 Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP=variable

specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1... GraphData n style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.
Interaction  This option is ignored if the COLORRESPONSE= option is also used.

Note  When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip  When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

LEGENDLABEL="text-string"
specifies the label that identifies the bubble plot in the legend.

Default  By default, the label for the Y variable is used for ungrouped data, and the group values are used for grouped data.

Interaction  The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<options> | (options)
specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\nstyle elements in the current style for grouped data. The effective attributes are: ContrastColor,LineStyle, and LineThickness.

Interaction  This option has no effect if you also specify the NOOUTLINE option.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction  This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default  OUTLINE
Interactions
Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**PROPORTIONAL**
specifies that proportional scaling be applied to the SIZE= column values.

Note: This feature applies to SAS 9.4M5 and later releases.

By default, scaling is linear, which increases the size of the bubbles in linear proportion to the range of the SIZE= column values. For example, if only two bubbles are drawn with sizes of 2 and 4, they appear the same as only two bubbles with sizes of 4000 and 8000. When PROPORTIONAL is specified, each bubble is sized in direct proportion to its corresponding SIZE= column value. For example, if only two bubbles are drawn with sizes of 50 and 100, then the SIZE=50 bubble is drawn to half the size of the SIZE=100 bubble.

Default linear

Interactions If all the values for the SIZE= column are negative, then PROPORTIONAL is ignored and the scaling is linear.

When PROPORTIONAL and BRADIUSMIN= are specified, the BRADIUSMIN= option specifies the minimum bubble size. In that case, when a SIZE= column value results in a bubble of a size that is less than the BRADIUSMIN= value, the bubble size for that value is changed to the BRADIUSMIN= value.

**RATTRID=** character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

**SPLITCHAR=**"character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;
Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.
Example: tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default**: 0.0
- **Range**: 0 (completely opaque) to 1 (completely transparent)
- **Restriction**: The specified transparency is not applied to missing values. Missing values are always opaque.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable**: specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example: \https://www.sas.com/en_us/home.html

- **Default**: By default, no HTML links are created.
- **Interactions**: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

**Tip**: Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

---

**DENSITY Statement**

Creates a density curve that shows the distribution of values in your data.

**Restriction**: Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX= The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

**Interaction**: The DENSITY statement can be combined only with the DENSITY and HISTOGRAM statements in the SGPANEL procedure. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

**Examples**: “About Density Plots” on page 48
Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots on page 779

Syntax

DENSITY response-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element </(options)>(options)
specifies the appearance of the density line.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

SCALE=COUNT | DENSITY | PERCENT | PROPORTION
specifies the scaling that is used for the response axis.

Group options

GROUP=variable
specifies a variable that is used to group the data.

Label options

CURVELABEL="text-string"
adds a label for the density curve.

CURVELABELATTRSS=style-element<(options)>(options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=END | MAX | MIN | START
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend.

SPLITCHAR="character-list"
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.
TYPE =NORMAL < (normal-opts)> | KERNEL < (kernel-opts)>
specifies the type of distribution curve that is used for the density plot.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

response-variable
specifies the variable for the X axis. The variable must be numeric.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

CURVELABEL="text-string"
adds a label for the density curve.

CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated $n$ times for computational purposes, where $n$ is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to SAS 9.4M2 and later releases.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**LEGENDLABEL="text-string"**
specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is “Normal.” If you specify TYPE=KERNEL, then the default label is “Kernel.”

Note User-specified parameters from the TYPE= option are included in the label by default.

**LINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
Default: GraphFit style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**NAME=“text-string”**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note:** The text-string is case-sensitive and must define a unique name within the procedure.

**Tip:** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**SCALE=COUNT | DENSITY | PERCENT | PROPORTION**
specifies the scaling that is used for the response axis. Specify one of the following values:

**COUNT**
the axis displays the frequency count.

**DENSITY**
the axis displays the density estimate values.

**PERCENT**
the axis displays values as a percentage of the total.

**PROPORTION**
the axis displays values in proportion to the total.

**Defaults**
When the DENSITY statement follows a HISTOGRAM statement, the density plot uses the histogram's response-axis scaling. See the HISTOGRAM statement `SCALE=` option.

When the DENSITY statement does not follow a HISTOGRAM statement, the density plot uses DENSITY response-axis scaling.

**Interaction**
This option is ignored when the DENSITY statement follows a HISTOGRAM statement. In that case, the density plot follows the histogram's response-axis scaling instead.

**Note**
The PROPORTION scale can be used only when you combine a density plot and a histogram.

**SPLITCHAR=“character-list”**
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

*“character-list”* is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

**SPLITCHAR=“abc”**

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Values are not split.

This option has no effect unless CURVELABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

This option has no effect unless SPLITCHAR= is also specified.

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

This option has no effect unless you specify the SPLITCHAR= option.

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=value specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

TYPE =NORMAL < (normal-opts)> | KERNEL < (kernel-opts)> specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

NORMAL < (normal-opts)> specifies a normal density estimate, with a mean and a standard deviation.

normal-opts can be one or more of the following values:

MU=numeric-value specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

SIGMA=numeric-value specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a
positive number. By default, the standard deviation value is calculated from the data.

**KERNEL < (kernel-opts)>**

specifies a nonparametric kernel density estimate.

*kernel-opts* can be:

**C=numeric-value**

specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

The value that you specify for the C= suboption affects the value of \( \lambda \) as shown in the following equation:

\[
\lambda = c Q n^{-\frac{1}{5}}
\]

In this equation \( c \) is the standardized bandwidth, \( Q \) is the interquartile range, and \( n \) is the sample size.

**Note** The kernel density function uses the same estimation that is used by the UNIVARIATE procedure. This estimation minimizes the Asymptotic Mean Integrated Square Error (AMISE) for the kernel density function.

**WEIGHT=NORMAL | QUADRATIC | TRIANGULAR**

specifies the weight function. You can specify either normal, quadratic, or triangular weight function.

Default NORMAL

**WEIGHT=numeric-variable**

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

**Note:** This feature applies to SAS 9.4M1 and later releases.

**Requirement** The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

---

**Details**

**Normal Density Function**

When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[
p(x) = \frac{100h}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) \text{ for } -\infty < x < \infty
\]
In the equation, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. You can specify \( \mu \) by using the MU= suboption and \( \sigma \) by using the SIGMA= suboption.

**Kernel Density Function**

When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[
\hat{f}_\lambda(x) = \frac{100h\%}{nh} \sum_{i=1}^{n} K_0\left(\frac{x-x_i}{\lambda}\right)
\]

In the equation, \( K_0(\cdot) \) is the weight function, \( \lambda \) is the bandwidth, \( n \) is the sample size, and \( x_i \) is the \( i \)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \( K_0(\cdot) \).

**Kernel Density Weight Functions**

The formulas for the weight functions are as follows.

**NORMAL**

\[
K_0(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2\right) \text{ for } -\infty < t < \infty
\]

**QUADRATIC**

\[
K_0(t) = \frac{3}{4}(1 - t^2) \text{ for } |t| \leq 1
\]

**TRIANGULAR**

\[
K_0(t) = 1 - |t| \text{ for } |t| \leq 1
\]

**DOT Statement**

Creates a dot plot that summarizes the values of a category variable.

**Restrictions:**

The DOT statement can be combined only with other horizontal categorization plot statements. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

When category plots are overlaid, all of the plots must use the same category variable.

**See:**

“Marker Fills and Outlines” on page 1645

**Example:**

“About Dot Plots” on page 58

**Syntax**

\[
\text{DOT category-variable } <\text{/options}>;
\]
Summary of Optional Arguments

Appearance options

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set.

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**COLORRESPONSE=numeric-column**
specifies the numeric column that is used to map colors to a gradient legend.

**DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all dots from discrete category values.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=value**
specifies the degree of transparency for the plot.

Data tip options

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

**CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing.

**GROUP=variable**
specifies a variable that is used to group the data.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped dots.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

Label options

**DATALABEL <=variable>**
displays a label for each data point.

**DATALABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATLABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL="text-string"**
specifies the label that identifies the dot plot in the legend.

\texttt{SPLITCHAR=\textquotedblchar-list\textquotedbl}

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

\texttt{SPLITCHARNODROP}

specifies that the split characters are included in the displayed value.

\texttt{SPLITJUSTIFY=LEFT | CENTER | RIGHT}

specifies the horizontal alignment of the value text that is being split.

\texttt{STATLABEL}

\texttt{NOSTATLABEL}

specifies whether the response variable statistic is displayed in the axis and legend labels.

**Limit options**

\texttt{LIMITATTRS=style-element <(options)> | (options)}

specifies the appearance of the limit lines in the plot.

\texttt{LIMITCAPSCALE=positive-number}

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

\texttt{LIMITS=UPPER | LOWER | BOTH}

specifies which limit lines to display.

\texttt{LIMITSTAT=CLM | STDDEV | STDERR}

specifies the statistic for the limit lines.

\texttt{NOLIMITCAPS}

suppresses the serif cap on limit lines, if limit lines are displayed.

\texttt{NUMSTD=n}

specifies the number of standard units for the limit lines, when you specify \texttt{LIMITSTAT= STDDEV} or \texttt{LIMITSTAT=STDERR}.

**Marker options**

\texttt{FILLEDOUTLINEDMARKERS}

specifies that markers have a fill and an outline.

\texttt{MARKERATTRS=style-element <(options)> | (options)}

specifies the appearance of the markers in the plot.

\texttt{MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)}

specifies the color of the marker fill.

\texttt{MARKEROOUTLINEATTRS=style-element <(options)> | (options)}

specifies the appearance of the marker outlines.

**Plot options**

\texttt{ALPHA=numeric-value}

specifies the confidence level for the confidence limits.

\texttt{CATEGORYORDER=RESPASC | RESPDESC}

specifies the order in which the categories are arranged.

\texttt{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data.

\texttt{MISSING}

accepts a missing value as a valid category value.

\texttt{RESPONSE=response-variable}

specifies a numeric response variable for the plot.
**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**WEIGHT=numeric-variable**

specifies how observations are weighted.

**Plot reference options**

**NAME="text-string"**

specifies a name for the plot.

**Statistics options**

**COLORSTAT=FREQ | PCT | SUM | MEAN**

specifies the statistic to use for computing the response colors.

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**

specifies the statistic for the horizontal axis.

**Required Argument**

**category-variable**

specifies the variable whose values determine the categories of data represented by the dots.

**Optional Arguments**

**ALPHA=numeric-value**

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default: .05

Interactions: This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**CATEGORYORDER=RESPASC | RESPDESC**

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

**RESPASC**

sorts by the response values in ascending order.

**RESPDESC**

sorts by the response values in descending order.
The plot is sorted in ascending order based on the category values.

Restriction  This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement  This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions  When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes  Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

**CLUSTERWIDTH=numeric-value**

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default  0.8

Interaction  This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

**STARTCOLOR**  specifies the color for the smallest data value of the COLORRESPONSE= column.

**NEUTRALCOLOR**  specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is
not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 259

"Using Gradient Color Legends" on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN specifies the statistic to use for computing the response colors.

Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.
When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count

PCT percentages between 0 and 100

Alias PERCENT can be used in place of PCT.
Defaults
SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL <=variable>**
displays a label for each data point.
  - If you specify a variable, then the values of that variable are used for the data labels.
    - If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.
  - If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

**Interactions**
When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

**DATALABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

 Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

 Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

 Interaction
This option has no effect unless the DATALABEL option is also specified.

 Examples
DATALABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)

 Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

 **DATALABELPOS=position**
specifies the location of the data label with respect to the plot. position can be one of the following values:
Interactions  This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

<table>
<thead>
<tr>
<th>Default</th>
<th>NONE</th>
</tr>
</thead>
</table>

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**

You can use the MARKERATTRS= option to specify a filled marker symbol.

**Note**

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**See**

"Using Data Skins" on page 1685
DISCRETEOFFSET=numeric-value
specifies an amount to offset all dots from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color legend.

**Tip**
ODS Graphics limits the number of groups to 1,000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped dots.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Default OVERLAY

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.
Note  The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip  The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the dot plot in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction  The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=style-element *(options)* | *(options)*

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  GraphError style element in the current style. The affected attributes are ContrastColor,LineStyle, and LineThickness.

**LIMITCAPSCALE=positive-number**

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

---

Note: This feature applies to SAS 9.4M5 and later releases.

Default  1

Interaction  For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip  The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

**LIMITS=UPPER | LOWER | BOTH**

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. Specify one of the following values:

**BOTH**

adds lower and upper limit lines to the plot.
LOWER  
adds lower limit lines to the plot.

UPPER  
adds upper limit lines to the plot.

Interaction  
Limit lines are displayed only when you specify STAT= MEAN.

Tip  
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR  
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM  
confidence limits

STDDEV  
standard deviation

STDERR  
standard error

Default  
If you use the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interaction  
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH. Limits lines are displayed only when you specify STAT=MEAN.

Tip  
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MARKERATTRS=style-element <(options)> | (options)  
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default  
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)  
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default  
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data.
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction

This option has no effect when FREQ= is specified.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLIMITCAPS

suppresses the serif cap on limit lines, if limit lines are displayed.
Note: This feature applies to SAS Viya 3.5 and later releases.

Interaction The appearance of the limit lines is controlled by the LIMITATTRS= option.

**NUMSTD=n**
specifies the number of standard units for the limit lines, when you specify LIMITSTAT= STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

**RESPONSE=response-variable**
specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

**SPLITCHAR="character-list"**
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
NotesWhen multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of
these percentages. Therefore, the percentages add up to 100% at the requested level.

**Alias**  
PCT

**Interactions**  
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the **PCTLEVEL**= option in the PROC SGPANEL statement.

You can use the **PCTNDEC**= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

**Note**  
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**  
the sum of the response variable. This is the default value when you specify the **RESPONSE**= option.

**Interaction**  
For this value to take effect, you must also specify the **RESPONSE**= option.

**Defaults**  
SUM when you also specify the **RESPONSE**= option.  
FREQ when do not specify the **RESPONSE**= option.

**Restriction**  
If you do not also specify the **RESPONSE**= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify **RESPONSE**=, then you can use any of the statistics.

**Interaction**  
When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

**STATLABEL | NOSTATLABEL**  
specifies whether the response variable statistic is displayed in the axis and legend labels. **STATLABEL** forces the statistic to be displayed. **NOSTATLABEL** removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

**Defaults**  
The statistic is displayed for the response variable.  
When a custom label is assigned to the response variable, the statistic is not displayed.

**Interactions**  
This option has no effect unless the **RESPONSE**= option is specified.

This option has no effect if you specify the axis label using the **LABEL**= option in an AXIS statement.
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned
over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS
statement in order to generate data tips. For example, add the
following statement before your procedure:

    ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by
default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats
and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data
tips.

A one-to-one correspondence exists between the format-list and the variable-list
that is specified for the TIP= option. A format must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a format to
a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using
the w.d SAS format. To avoid this error condition, insert an F in
front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.
Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**WEIGHT=**numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

**Requirement**

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Interaction**

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

---

**DROPLINE Statement**

Creates one or more drop lines from data points to one or both axes. The line or lines can be horizontal, vertical, or both.

**Interaction:**

When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

**Note:**

This feature applies to SAS 9.4M1 and later releases.

**See:**

“About Drop Lines” on page 26

“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

**Syntax**

```
DROPLINE X=variable | x-axis-value
Y=variable | y-axis-value <options>;
```

**Summary of Optional Arguments**

**Appearance options**

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  
  specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=**numeric-value
  
  specifies an amount to offset all drop lines from discrete X or Y values.

- **LINEATTRS=**style-element<{options}> | (options)
  
  specifies the appearance of the drop line.

- **TRANSPARENCY=**value
  
  specifies the degree of transparency for the drop line.

**Axis options**
DROPTO= BOTH | X | Y
   specifies the axis to which the line is dropped.

NOCLIP
   extends the plot axes to contain the drop lines.

Label options

LABEL=variable | "text-string"
   creates labels for each drop line.

LABELATTRS= style-element<options> | (options)
   specifies the appearance of the labels.

LEGENDLABEL="text-string"
   specifies a label that identifies the plot in the legend.

Plot reference options

NAME="text-string"
   specifies a name for the plot.

Required Arguments

X= variable | x-axis-value
   specifies the X coordinate of the drop line or drop lines. If you specify an x-axis-value that is a text string, enclose the string in quotation marks.

Requirement
   Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Y= variable | y-axis-value
   specifies the Y coordinate of the drop line or drop lines. If you specify a y-axis-value that is a text string, enclose the string in quotation marks.

Requirement
   Values must agree in type with the Y-axis data type.

Optional Arguments

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
   specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 8.8  DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSsed</td>
</tr>
</tbody>
</table>

Default
   NONE

Restriction
   The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot.
statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

**DISCRETEOFFSET=**numeric-value
specifies an amount to offset all drop lines from discrete X or Y values.

Default 0.0 (no offset)

Range −0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.

Requirement This option is applicable only when the X or Y axis is discrete.

**DROPTO=**BOTH | X | Y
specifies the axis to which the line is dropped.

BOTH
draws droplines to both axes.

X
draws droplines to the X axis.

Y
draws droplines to the Y axis.

Default X

**LABEL=**variable | "text-string"
creates labels for each drop line.

variable a variable for the label value.

Requirement In order to use a variable to label your drop lines, you must specify a variable in X=, Y=, or both in the DROPLINE statement. If you specify scalar values in X= and Y=, the specified label variable is ignored and a message is written to the log.

"text-string" a text string for the label value.

Requirement In order to use a text string to label your drop line, you must specify scalar values in X= and Y=. If you specify a variable in X=, Y=, or both in the DROPLINE statement, the specified text string is ignored and a message is written to the log.

Default No label is displayed.
Note  Space is reserved at the maximum end of the X axis to accommodate the length of the labels regardless of where the labels appear in the plot.

Tip  You can use the OFFSETMAX= axis option to adjust the amount of space that is reserved on the X axis for the labels.

**LABELATTRS=** *style-element* | *(options)>* | *(options)*

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Defaults**  GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

**Interaction**  This option has no effect unless the LABEL option is also specified.

**Examples**  

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

**LEGENDLABEL=** "*text-string"

specifies a label that identifies the plot in the legend. By default, the label “drop” is used.

**Interaction**  This option has no effect unless you also specify the NAME= option.

**LINEATTRS=** *style-element* | *(options)>* | *(options)*

specifies the appearance of the drop line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default**  GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**NAME=** "*text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**  The *text-string* is case-sensitive and must define a unique name within the procedure.

**Tip**  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOCLIP
extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

TRANSPARENCY=\textit{value}
specifies the degree of transparency for the drop line.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Note This option does not affect the drop-line label.

Details
A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

Example
This example shows a DROPLINE statement originating from the point (X=3, Y=5) and dropping to both axes. The data form a parabola, which is divided in the panel depending on whether the curve is going down or up.
/* Create data set with X and Y variables that plot a parabola.*/
data test;
  length Status $4;
  do X=0 to 8 by 0.25;
    Y=(x-3)*(x-3) + 5;
    if X >= 3 then Status='Up';
    else Status='Down';
    output;
  end;
run;

/* Create the plot and drop lines. Specify a label and line attributes for the drop lines.*/
title "Drop lines at Inflection Point";
proc sgpanel data=test;
  panelby Status;
  series x=x y=y;
  dropline x=3 y=5 / dropto=both label='(3,5)' lineattrs=(color=blue pattern=dot);
  rowaxis min=0;
run;
title;

ELLIPSE Statement

Adds a confidence or prediction ellipse to a primary plot.

Restriction: The ELLIPSE statement must be used with another plot statement that uses numeric axes. The ellipse is typically used with a scatter plot. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Interaction: The data for the ellipse is ignored when establishing axis scales. Each axis scale is determined by the other plots in the graph. This might result in the ellipse not being
entirely displayed if its data range is not within the data ranges of the other plots. This behavior differs from the ellipse in the SGPLOT procedure, which includes a CLIP option to specify that the ellipse data is ignored.

Note: This feature applies to SAS 9.4M4 and later releases.

Example: “About Ellipse Plots” on page 41

Syntax

ELLIPSE X=numeric-variable Y=numeric-variable /option(s);

Summary of Optional Arguments

Appearance options

FILL
NOFILL
specifies whether the area fill is visible.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLPATTERN
enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the outlines for the ellipse.

OUTLINE
NOOUTLINE
specifies whether the outlines of the ellipse are visible.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the ellipse.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

TYPE =MEAN | PREDICTED
specifies the type of ellipse.

**Plot reference options**

NAME="*text-string*"

specifies a name for the plot.

**Required Arguments**

**X=numeric-variable**

specifies a numeric variable for the X axis.

**Y=numeric-variable**

specifies a numeric variable for the Y axis.

**Optional Arguments**

**ALPHA=numeric-value**

specifies the confidence level for the ellipse.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

**FILL | NOFILL**

specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpt attribute of the GraphEllipse style element in the current style.

**Interactions**

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element *(options)* | *(options)*

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interactions**

This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLPATTERN**

enables the display of line fill patterns for the plot.
Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```r
ods graphics / attrpriority=none;
```

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot's fill color.

**FILLPATTERNATTRS=** `style-element <(options)> | (options)`

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**options** can be one or both of the following:

**COLOR=** `style-reference | color`

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=** `style-reference | line-pattern`

specifies the type of line pattern to use for the fill.

**line-pattern** is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.9 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1" alt="L1 Pattern" /></td>
<td>R1</td>
<td><img src="image2" alt="R1 Pattern" /></td>
<td>X1</td>
<td><img src="image3" alt="X1 Pattern" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4" alt="L2 Pattern" /></td>
<td>R2</td>
<td><img src="image5" alt="R2 Pattern" /></td>
<td>X2</td>
<td><img src="image6" alt="X2 Pattern" /></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restriction**

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

**Note**

If the value is not an integer, only the integer portion is used.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

**Tips**

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.
The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the ellipses, but the PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all ellipse outlines, letting outline color distinguish group values.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the ellipse in the legend. By default, the label describes the confidence value of the ellipse and the type of ellipse. For example, "95% Prediction Ellipse."

**LINEATTRS=style-element<**(options)**> | (options)**

specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**NAME=**"text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note** The text-string is case-sensitive and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**OUTLINE | NOOUTLINE**

specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

**Default** The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

**Interactions** Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0
Range  0 (completely opaque) to 1 (completely transparent)

**TYPE =** MEAN | PREDICTED

specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume a bivariate normal distribution.

Default  PREDICTED

### ELLIPSEPARM Statement

Adds an ellipse to the primary plot, specified by axis, slope, and origin parameters. The axis parameters are required.

**Restriction:** The ELLIPSEPARM statement must be overlaid with another plot that is derived from data values that provide boundaries for the axis area. It is typically overlaid with a scatter plot. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

**Interaction:** The data for the ellipse is ignored when establishing axis scales. Each axis scale is determined by the other plots in the graph. This might result in the ellipse not being entirely displayed if its data range is not within the data ranges of the other plots. This behavior differs from the ellipse in the SGPLOT procedure, which includes a CLIP option to specify that the ellipse data is ignored.

**Note:** This feature applies to SAS 9.4M4 and later releases.

### Syntax

```
ELLIPSEPARM SEMIMAJOR=numeric-variable | positive-number
SEMIMINOR=numeric-variable | positive-number <option(s)>;
```

### Summary of Optional Arguments

**Appearance options**

- **FILL**
- **NOFILL**
  
  specifies whether to display a filled ellipse.

- **FILLATTRS=style-element <(options)> | (options)**
  
  specifies the fill color and transparency.

- **FILLPATTERN**
  
  enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <(options)> | (options)**
  
  specifies the line-fill color and pattern.

- **LEGENDLABEL="text-string"**
  
  specifies a label that identifies the ellipse in the legend.

- **LINEATTRS=style-element<(options)> | (options)**
  
  Specifications for the line attributes.
specifies the appearance of the outlines for the ellipse.

- OUTLINE
- NOOUTLINE
  specifies whether the outlines of the ellipse are visible.

- TRANSPARENCY=\textit{value}
  specifies the degree of transparency for the plot.

**Group options**

- GROUP=\textit{variable}
  specifies a variable that is used to group the data.

- NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.

**Plot options**

- SLOPE=\textit{numeric-value} | \textit{numeric-variable}
  specifies the slope of the major axis for the ellipse.

- XORIGIN=\textit{numeric-value} | \textit{numeric-variable}
  specifies the X coordinate of the center of the ellipse.

- YORIGIN=\textit{numeric-value} | \textit{numeric-variable}
  specifies the Y coordinate of the center of the ellipse.

**Plot reference options**

- NAME="\textit{text-string}"
  specifies a name for the plot.

**Required Arguments**

- \textbf{SEMIMAJOR=\textit{numeric-variable}positive-numeric-value}
  specifies half the length of the major axis for the ellipse. Values are in the same units as the data. The SEMIMAJOR value can be greater than, smaller than, or equal to the SEMIMINOR value.

  **Restrictions**
  The semimajor value must be positive. If a numeric variable is specified and the variable contains negative values, then no ellipses are drawn.

  If the variable contains a missing value, the ellipse for that observation is not drawn. However, the remaining ellipses that have nonmissing values for this argument and for SEMIMINOR= are drawn.

- \textbf{SEMIMINOR=\textit{numeric-variable}positive-numeric-value}
  specifies half the length of the minor axis for the ellipse. Values are in the same units as the data. The SEMIMINOR value can be greater than, smaller than, or equal to the SEMIMAJOR value.

  **Restrictions**
  The semiminor value must be positive. If a numeric variable is specified and the variable contains negative values, then no ellipses are drawn.

  If the variable contains a missing value, the ellipse for that observation is not drawn. However, the remaining ellipses that
have nonmissing values for this argument and for SEMIMAJOR= are drawn.

Optional Arguments

**FILL | NOFILL**
specifies whether to display a filled ellipse. The FILL option shows the area fill. The NOFILL option hides the area fill.

**Default**
The default is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

**Interactions**
Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=**
 specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n$ style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interaction**
This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.
FILLPATTERNNATTRS=style-element (options) | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 8.10 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.
For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction
The group value can be a character or numeric column. The GROUP= option can be used only when a numeric column or value is specified for the SEMIMAJOR= and SEMIMINOR= arguments, and when used, the SLOPE=, XORIGIN= and YORIGIN= options.

Tips
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the ellipses, but the PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all ellipse outlines, letting outline color distinguish group values.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend.

Default EllipseParm

LINEATTRS=style-element<options> | (options)
specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SLOPE=numeric-value | numeric-variable
specifies the slope of the major axis for the ellipse. The slope can be positive or negative.

Default 0

Note The slope value is in the data space and might not always be maintained in the screen space. Thus, setting SLOPE=1 does not always generate a 45-degree line on the screen.

Tips SLOPE=0 creates a major axis parallel to the X axis.

SLOPE=. (missing value) creates a major axis parallel to the Y axis.

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

XORIGIN=numeric-value | numeric-variable
specifies the X coordinate of the center of the ellipse. Values are in the units of the data.

Default 0

Tip You can use the YORIGIN= option to specify the Y coordinate of the center of the ellipse.

YORIGIN=numeric-value | numeric-variable
specifies the Y coordinate of the center of the ellipse. Values are in the units of the data.

Default 0

Tip You can use the XORIGIN= option to specify the X coordinate of the center of the ellipse.
Details

The ELLIPSEPARM statement plots an ellipse with specified semimajor and semiminor axis lengths, a specified slope for the major axis, and the ellipse center. The ellipse center is the point of intersection of the semimajor and semiminor axes. The ELLIPSEPARM statement does not perform computations on input data to derive the location and shape of the ellipse. Another plot that is derived from data values that provide boundaries for the axis area must be included in the layout. The ellipse is typically overlaid with a scatter plot. See ELLIPSE Statement for information about computed ellipses.

You can generate a single ellipse by specifying a constant for each of the following arguments: SEMIMAJOR=, SEMIMINOR=, SLOPE=, XORIGIN=, YORIGIN=. The SLOPE=, XORIGIN=, and YORIGIN= arguments are set to a constant by default.

You can generate multiple ellipses by specifying a numeric column for any or all of those arguments. If any of the SEMIMAJOR=, SEMIMINOR=, XORIGIN=, or YORIGIN= constants or columns contains a missing value, then no ellipse is drawn. To request a vertical major axis, specify SLOPE=. (missing value) as a constant or column value.

FRINGE Statement

Creates a fringe plot on the X axis of an X-Y plot.

Interaction: Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots). For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Note: This feature applies to SAS 9.4M1 and later releases.

Example: “About Fringe Plots” on page 20

Syntax

FRINGE numeric-variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

HEIGHT=dimension<units>
 specifies the height of the fringe lines.

LINEATTRS=style-element<(<options>)> | (options)
 specifies the appearance of the fringe lines.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.
Data tip options

\[\text{TIP}=(\text{variable-list}) \mid \text{NONE} \]

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\[\text{TIPFORMAT}=(\text{format-list}) \]

applies formats to the list of data tip roles that you specify in the TIP= option.

\[\text{TIPLABEL}=(\text{label-list}) \]

applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

\[\text{GROUP}=\text{variable} \]

specifies a variable that is used to group the data.

\[\text{NOMISSINGGROUP} \]

specifies that missing values of the group variable are not included in the plot.

Label options

\[\text{LEGENDLABEL}="\text{text-string}" \]

specifies a label that identifies the fringe plot in the legend.

Plot reference options

\[\text{NAME}="\text{text-string}" \]

specifies a name for the plot.

Required Argument

\[\text{numeric-variable} \]

specifies the variable that provides the X coordinates of the data values.

Optional Arguments

\[\text{ATTRID} = \text{character-value} \]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

\[\text{GROUP}=\text{variable} \]

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tips

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.

HEIGHT=^{dimension}^{units}

specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default 10px

LEGENDLABEL="<text-string>"

specifies a label that identifies the fringe plot in the legend.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=^{style-element}^{(options)} | ^{(options)}

specifies the appearance of the fringe lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.
NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.
A syntax error might be generated if you specify the format using the \textit{w.d} SAS format. To avoid this error condition, insert an \textit{F} in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See \textit{SAS Formats and Informats: Reference}

Example \texttt{tipformat=(auto F5.2)}

\textbf{TIPLABEL=\{label-list\}}

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the \textit{label-list} and the \textit{role-list} that is specified for the TIP= option. A label must be provided for each role, using the same order as the \textit{role-list}. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example \texttt{tiplabel=(auto "Class Weight")}

\textbf{TRANSPARENCY=\textit{value}}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

\textbf{GRADLEGEND Statement}

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)

Note: This feature applies to \texttt{SAS 9.4M2} and later releases.

See: “Using Gradient Color Legends” on page 1637

\textbf{Syntax}

\texttt{GRADLEGEND <"name"> <options>;}

Summary of Optional Arguments

Appearance options

- BORDER
- NOBORDER
 specifies whether a border is visible around the legend.

- INTEGER
 specifies that integers are used for the gradient legend.

- NOTITLE
 removes the default title. The default title is the name of the response variable.

- OUTERPAD=dimension | (pad-options)
 specifies the amount of extra space that is added outside the legend border.

- POSITION=TOP | BOTTOM | LEFT | RIGHT
 specifies the position of the legend within the graph.

- TITLE="text-string"
 specifies a title for the legend.

- TITLEATTRS=style-element<(options)> | (options)
 specifies the appearance of the title.

Legend options

- "name"
 specifies the name of the plot that you want to include in the legend.

Scale options

- EXTRACTSCALE=DEFAULT | SCIENTIFIC
 extracts a scale factor from the tick values and uses it to reduce the tick value width.

Optional Arguments

- "name"
 specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.

 Default
 If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.

 Restriction
 Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

- BORDER | NOBORDER
 specifies whether a border is visible around the legend.
Default NOBORDER

EXTRACTSCALE<DEFAULT | SCIENTIFIC>

extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

You can also specify whether to use a named scale or a scientific-notation scale.

DEFAULT

extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as \(10^n\)) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 \((10^{-n})\) for values less than 1 trillionth.

SCIENTIFIC

extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as \(10^n\) for values greater than 1, or a multiple of 1/10 expressed as \(10^{-n}\) for values less than 1.

The following examples show a gradient legend before and after EXTRACTSCALE= is specified:

<table>
<thead>
<tr>
<th>Default Scale</th>
<th>EXTRACTSCALE Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[Gradient Legend Example]</td>
<td></td>
</tr>
</tbody>
</table>

Default

DEFAULT

Restriction

The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

INTEGER

specifies that integers are used for the gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

NOTITLE

removes the default title. The default title is the name of the response variable.

Default

The default title is displayed.
OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.

TOP=dimension specifies the amount of extra space added to the top.

BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default No padding

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Example “Example: Gradient Legend That Uses the OUTERPAD= Option” on page 263

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT

Notes By default, if you use more than one GRADLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then those legends are placed at that position.

TITLE=“text-string”
specifies a title for the legend.

Default If you do not specify this option, then the name of the COLORRESPONSE= variable is displayed as the title.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps an age scale to a color gradient. The OUTERPAD= on page 414 option adds padding to the top and bottom of the gradient.

```sas
title "Height and Weight Distribution";
proc sgpanel data=sashelp.heart;
   panelby sex;
   scatter x=height y=weight / colorresponse=ageatdeath name="scatter"
       markerattrs=(symbol=squarefilled size=6px);
   gradlegend "scatter" / outerpad=(top=20px bottom=20px);
run;
title;
```
HBAR Statement

Creates a bar chart that summarizes the values of a category variable.

Restrictions: The HBAR statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628. When category plots are overlaid, all of the plots must use the same category variable.

Tips: The HBAR statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. Bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements. This feature applies to SAS 9.4M3 and later releases.

Examples: “About Bar Charts” on page 51 “Example 3: Creating a Panel of Bar Charts” on page 782

Syntax

```
HBAR category-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `BARWIDTH=numeric-value` specifies the width of the bars as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element <(options)> | (options)` specifies the appearance of the baseline.
- `COLORMODEL=style-element | (color-list)` specifies a color ramp that is to be used with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column` specifies the numeric column that is used to map colors to a gradient legend.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value` specifies an amount to offset all bars from the category midpoints.
- `DISPLAYBASELINE=AUTO | ON | OFF` specifies whether the baseline is displayed.
- `FILL` specifies whether the bars are filled.
- `NOFILL` specifies whether the bars are filled.
- `FILLATTRS=style-element <(options)> | (options)`
specifies the fill color and transparency.

FILLENDCOLOR=`color`

specifies a fill color that is applied to the chart at the baseline.

FILLPATTERN

enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=`style-element <(options)> | (options)`

specifies the line-fill color and pattern.

FILLTYPE=`SOLID | GRADIENT | ALPHAGRADIENT`

specifies the fill type that is applied to the chart.

NOZEROBARS

suppresses zero-length bars.

OUTLINE

NOOUTLINE

specifies whether the bars have outlines.

OUTLINEATTRS=`style-element <(options)> | (options)`

specifies the appearance of the bar outlines.

RATTRID=`character-value`

specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=`value`

specifies the degree of transparency for the plot.

Axis options

BASELINE=`numeric-value`

specifies the response axis intercept for the baseline.

Data tip options

TIP=`(variable-list) | NONE`

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=`(format-list)`

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=`(label-list)`

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=`numeric-value`

specifies the cluster width as a ratio of the maximum width.

GROUP=`variable`

specifies a variable that is used to group the data.

GROUPDISPLAY=`STACK | CLUSTER`

specifies how to display grouped bars.

GROUPORDER=`DATA | REVERSEDATA | ASCENDING | DESCENDING`

specifies the ordering of the groups within a category.

Label options

DATALABEL <=`variable`<

displays a label for each bar.

DATALABELATTRS=`style-element<(options)> | (options)`
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

specifies the fit policy for the bar labels.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend.

SEGLABEL

displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)

specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

STATLABEL

NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element<(options)> | (options)

specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

LIMITS=BOTH | LOWER | UPPER

specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value

specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data.

MISSING

accepts a missing value as a valid category value.

RESPONSE=response-variable

specifies a numeric response variable for the plot.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable

specifies how observations are weighted.
Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting with **SAS 9.4M3**, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8
1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

BASELINE=0

specifies the response axis intercept for the baseline.

<table>
<thead>
<tr>
<th>Quartet</th>
<th>Region = East</th>
<th>Region = West</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default 0

Interactions If GROUPDISPLAY=STACK is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.
Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element's COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

- **RESPASC** sorts by the response values in ascending order.
- **RESPDESC** sorts by the response values in descending order.

Default The plot is sorted in ascending order based on the category values.

Restriction This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.
If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=\textit{numeric-value}
\textit{specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).}

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

\textbf{Default} \hspace{1cm} 0.8

\textbf{Interactions} \hspace{1cm} This option is applicable only when the \textit{GROUP} option is specified, when \textit{GROUPDISPLAY=CLUSTER}, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

\textbf{COLORMODEL=\textit{style-element} | (\textit{color-list})}
\textit{specifies a color ramp that is to be used with the COLORRESPONSE= option.}

\textbf{Note:} \hspace{1cm} This feature applies to \textit{SAS 9.4M3} and later releases.

\textit{style-element} \hspace{1cm} specifies the name of a style element. The style element should contain these style attributes:

\begin{itemize}
 \item \textbf{STARTCOLOR} \hspace{1cm} specifies the color for the smallest data value of the COLORRESPONSE= column.
 \item \textbf{NEUTRALCOLOR} \hspace{1cm} specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 \item \textbf{ENDCOLOR} \hspace{1cm} specifies the color for the highest data value of the COLORRESPONSE= column.
\end{itemize}

\textbf{Example} \hspace{1cm} colormodel=TwoColorRamp

\textit{(color-list)} \hspace{1cm} specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

\textbf{Requirement} \hspace{1cm} The list of colors must be enclosed in parentheses.
Example colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bars. The
ThreeColorAltRamp style element for unfilled bars.

Interaction For this option to take effect, the COLORRESPONSE= option must
also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the
COLORRESPONSE= option, the color attributes are controlled by
the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The
color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 259

"Using Gradient Color Legends" on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

Alias PERCENT can be used in place of PCT.

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>
displays a label for each bar.

- If you specify a variable, then the values of that variable are used for the data
 labels.

 If the values of the label variable are not the same for each category, then the
 rendered label is indeterminate. In that case, either the first or last-occurring
 values are displayed. With CAS data, the minimum values are displayed.
If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions

When **DISCRETEOFFSET=** and **DATALABELPOS=** are both specified, the **DISCRETEOFFSET=** option has no effect on the data labels. Only the plot is offset. If you remove **DATALABELPOS=** from the plot statement, the data labels are offset.

If you also specify **LIMITS** or **LIMITSTAT**, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use **DATALABEL=** or **DATALABEL=variable** with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use **DATALABEL=** by itself without a variable.

This option is supported with the **GROUP=** option only when **GROUPDISPLAY=CLUSTER** is specified. Otherwise, the label is not drawn. Starting with **SAS 9.4M5**, the labels are shown if you also specify the **DATALABELPOS=** option.

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify **DATALABELFITPOLICY=NONE**.

DATALABELATTRS=

style-element(options)

DATALABELATTRS=

specifies the appearance of the labels in the plot when you use the **DATALABEL=** option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default: GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interaction: This option has no effect unless the **DATALABEL=** option is also specified.

Examples: **DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)**

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

specifies the fit policy for the bar labels. Specify one of the following values:

NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify **DATALABELFITPOLICY=NONE**.

INSIDE PREFERRED

places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is moved outside the bar.
If the font height for any label exceeds the bar width, then all labels are positioned outside the bars.

If SEGLABEL is specified, the INSIDE PREFERRED policy is ignored and the labels are positioned outside the bars.

Note This feature applies to **SAS 9.4M5** and later releases.

Default

Show the labels unless they collide.

Interaction

This option has no effect unless **DATALABEL**= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 8.12 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction

The ODS GRAPHICS option **DATASKINMAX=** controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the **DATASKINMAX=** option to increase or decrease the maximum limit.

Interactions

This option has no effect if the applied style uses a fill pattern and **FILL** is disabled for the style. If the style enables both **FILL** and **FILLPATTERN**, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify **NOFILL**, then the data skin is applied to the outlines.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell
to reach the maximum threshold, but the plot in a different cell does not.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF
specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO
displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON
always displays the baseline.

OFF
hides the baseline.

Default ON

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element (options) | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.
Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot's TRANSPARENCY= option.

Interactions

This option has no effect if you specify the NOFILL option.

This suboption overrides the plot's TRANSPARENCY= option for the fill.

FILLENDCOLOR=COLOR

specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions

This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR= *style-reference | color*

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN= *style-reference | line-pattern*

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.
FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to SAS 9.4M2 and later releases.

SOLID
 each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
 Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

 Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

Interactions To change the color of the wall, use the FILLENDCOLOR= option.

 Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip (Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

ALPHAGRADIENT
 a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

 Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.
Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction

If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note

When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.
Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the
name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is "Frequency".

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element<(options)> | (options)
 specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

LIMITCAPSCALE=positive-number
 specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITS=BOTH | LOWER | UPPER
 specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

BOTH
 adds lower and upper limit lines to the plot.

LOWER
 adds lower limit lines to the plot.

UPPER
 adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions Limit lines are displayed only when you specify STAT= MEAN.
If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
 confidence limits

- **STDDEV**
 standard deviation

- **STDERR**
 standard error

Default

If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interactions

If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction

This option has no effect when FREQ= is specified.

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.
Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip This option is useful when the bar chart baseline is suppressed.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID= character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

RESPONSE= response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

```
SUV  21.88  18.7  20.04
Sedan 29.966  27.115  28.544
Sports 26.847  25.13  24.222
```

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

- Use the SEGLABELATTRS= option to modify the appearance of the label text.
- Use the SEGLABELFORMAT= option to modify the format of the segment labels.
- Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS= style-element\(<\)options\)> | \((\)options\)

specifies the text properties of the bar segment label text.
Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

Note: This feature applies to SAS 9.4M2 and later releases.

Default: The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction: This option has no effect unless SEGLABEL is also specified.

Note: When a segment-label format is specified with this option, the segment labels are formatted as specified by format. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand
automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

\textbf{STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM}

specifies the statistic for the horizontal axis. Specify one of the following:

\textbf{FREQ}

the frequencies, which are calculated as follows:

- If you specify the \texttt{RESPONSE=} option, \texttt{FREQ} calculates the frequency of the response variable.
- If you do not specify the \texttt{RESPONSE=} option, \texttt{FREQ} calculates the frequency of the category variable.

\textbf{MEAN}

the mean of the response variable.

Interaction For \texttt{STAT=MEAN} to take effect, you must also specify the \texttt{RESPONSE=} option.

\textbf{MEDIAN}

the median of the response variable.

Interaction For \texttt{STAT=MEDIAN} to take effect, you must also specify the \texttt{RESPONSE=} option.

\textbf{PERCENT}

the percentage, which is calculated as follows:

- If you specify the \texttt{RESPONSE=} option, \texttt{PERCENT} calculates the percentage of the sum of the response variable.
- If you do not specify the \texttt{RESPONSE=} option, \texttt{PERCENT} calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100\% at the requested level.

Alias \texttt{PCT}

Interactions The \texttt{PERCENT} calculation can be performed at different levels in the graph. The level can be specified with the \texttt{PCTLEVEL=} option in the \texttt{PROC SGPANEL} statement.

You can use the \texttt{PCTNDEC=} option in the \texttt{SGPANEL} procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

\textbf{SUM}

the sum of the response variable. This is the default value when you specify the \texttt{RESPONSE=} option.

Interaction For this value to take effect, you must also specify the \texttt{RESPONSE=} option.
Defaults

SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
Example
tip=(age weight)

TIPFORMAT=(*format-list*)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the *w.d* SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(*label-list*)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto “Class Weight”)

TRANSPARENCY=I*value*

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

HBARBASIC Statement

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Notes:
This feature applies to SAS 9.4M3 and later releases.
When using the HBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the HBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip: The HBARBASIC statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

See: Basic plot types on page 1629
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Bar Charts” on page 51

Syntax

HBARBASIC category-variable <options>;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all bars from the category midpoints.

- **DISPLAYBASELINE=AUTO | ON | OFF**
 specifies whether the baseline is displayed.

- **FILL**
 specifies whether the bars are filled.

- **NOFILL**
 specifies whether the bars are filled.

- **FILLATTRS=style-element <(options)> | (options)**
 specifies the fill color and transparency.

- **FILLENDCOLOR=color**
 specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle

specifies the line-fill color and pattern.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

NOZEROBARS

suppresses zero-length bars.

OUTLINE

NOOUTLINE

specifies whether the bars have outlines.

OUTLINEATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle

specifies the appearance of the bar outlines.

RATTRID=\texttt{character-value}

specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=\texttt{value}

specifies the degree of transparency for the plot.

\textbf{Axis options}

BASELINE=\texttt{numeric-value}

specifies the response axis intercept for the baseline.

\textbf{Data tip options}

TIP=\texttt{\langle role-list\rangle} | \texttt{NONE}

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=\texttt{\langle format-list\rangle}

applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLACE=(\texttt{\langle label-list\rangle})

applies labels to the list of data tip roles that you specify in the TIP= option.

\textbf{Group options}

CLUSTERWIDTH=\texttt{numeric-value}

specifies the cluster width as a ratio of the maximum width.

GROUP=\texttt{variable}

specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

\textbf{Label options}

DATALABEL

displays the bar statistic value for each bar.

DATALABELATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle

specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

specifies the fit policy for the bar labels.

DATALABELFORMAT=\texttt{format}
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Plot options

MISSING
accepts a missing value as a valid category value.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
"Overview of Attribute Maps” on page 1733
BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of 0.5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.
To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default
0.8

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.
Example colormodel=TwoColorRamp

\textit{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

\textbf{COLORRESPONSE=}\textit{numeric-column}

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 259

“Using Gradient Color Legends” on page 1637

\textbf{COLORSTAT=}\textit{FREQ | PCT | SUM | MEAN}

specifies the statistic to use for computing the response colors.

When the COLORRESPONSE= option is specified, the following values are valid:

- **SUM** sum values for the color response
- **MEAN** mean values for the color response

When COLORRESPONSE= is not specified, the following values are valid:

- **FREQ** frequency count
- **PCT** percentages between 0 and 100

Alias PERCENT can be used in place of PCT.

Defaults SUM when you also specify the COLORRESPONSE= option.

FREQ when do not specify the COLORRESPONSE= option.
Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL

displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default No label is shown

Interaction By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Tip The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=\(<\text{style-element}\text{<(options)>}>|\text{(options)}>\)\)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

specifies the fit policy for the bar labels. Specify one of the following values:

NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

INSIDE PREFERRED

places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is moved outside the bar.
- If the font height for any label exceeds the bar width, then all labels are positioned outside the bars.
- If SEGLABEL is specified, the INSIDE PREFERRED policy is ignored and the labels are positioned outside the bars.
Note This feature applies to **SAS 9.4M5** and later releases.

Default Show the labels unless they collide.

Interaction This option has no effect unless DATALABEL is also specified.

DATALABELFORMAT= *format*

Specifies the text format used to display the bar label.

Default The column format assigned to the **RESPONSE=** column, or BEST6 if no format is assigned.

Interaction This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

Specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 8.14 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th></th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See "Using Data Skins" on page 1685

DISCRETEOFFSET= *numeric-value*

Specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF

specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

- **AUTO**
 - displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

- **ON**
 - always displays the baseline.

- **OFF**
 - hides the baseline.

Default ON

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot's TRANSPARENCY= option.
Interaction This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=color

specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORTITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

Accessibility note This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=**style-element *(options)* | *(options)*

specifies the line-fill color and pattern.

**Note:** This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=**style-reference | color

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=** *style-reference | line-pattern*

specifies the type of line pattern to use for the fill.

*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.15 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1.png" alt="Example" /></td>
<td>R1</td>
<td><img src="image2.png" alt="Example" /></td>
<td>X1</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4.png" alt="Example" /></td>
<td>R2</td>
<td><img src="image5.png" alt="Example" /></td>
<td>X2</td>
<td><img src="image6.png" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image7.png" alt="Example" /></td>
<td>R3</td>
<td><img src="image8.png" alt="Example" /></td>
<td>X3</td>
<td><img src="image9.png" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image10.png" alt="Example" /></td>
<td>R4</td>
<td><img src="image11.png" alt="Example" /></td>
<td>X4</td>
<td><img src="image12.png" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image13.png" alt="Example" /></td>
<td>R5</td>
<td><img src="image14.png" alt="Example" /></td>
<td>X5</td>
<td><img src="image15.png" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See "ATTRPRIORITY=COLOR | NONE" on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=** *SOLID | GRADIENT | ALPHAGRADIENT*

specifies the fill type that is applied to the chart.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.
Starting with **SAS 9.4M5**, `FILLTYPE=GRADIENT` displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

**Interactions**

To change the color of the wall, use the `FILLENDCOLOR=` option.

Data skin SHEEN cannot be used when `FILLTYPE=GRADIENT` is in effect. You can use one of the other data skins in that case.

**Tip**

(Prior to **SAS 9.4M5**) Use the `TRANSPARENCY=` chart option, or the `TRANSPARENCY=` suboption in `FILLATTRS=`, to set the initial transparency in the gradients.

**ALPHAGRADIENT**

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

**Note:** This feature applies to **SAS 9.4M5** and later releases.

**Interaction**

Data skin SHEEN cannot be used when `FILLTYPE=ALPHAGRADIENT` is in effect. You can use one of the other data skins in that case.

**Tips**

If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the `TRANSPARENCY=` chart option, or the `TRANSPARENCY=` suboption in `FILLATTRS=`, to set the initial transparency in the gradients.

**Default**

SOLID

**Interaction**

This option has no effect if `NOFILL` is also specified.

**GROUP=variable**

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Restriction**

If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same `GROUP` variable. If you do not specify the same `GROUP=` option for all of the category charts, then an error is generated.

**Interaction**

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.
Note: When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips: ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See "Using Fill Patterns and Gradient-Color Fills" on page 1701.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.

**STACK**

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

**CLUSTER**

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default: STACK

Interaction: This option is ignored unless GROUP= is specified.

Tip: The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**

orders the groups within a category in data order of the group variable.

**REVERSEDATA**

orders the groups within a category in the reverse data order of the group variable.

**ASCENDING**

orders the groups within a category in ascending order of the group variable.

**DESCENDING**

orders the groups within a category in descending order of the group variable.

Default: DATA

Interaction: The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Note**

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL="text-string"**

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is "Frequency".

**Interaction**

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**MISSING**

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

**NAME="text-string"**

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.
This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.
Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

**RESPONSE=**<response-variable>
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

**SEGLABEL**
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

**SEGLABELATTRS=**<style-element><(options)> | *(options)*
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

**SEGLABELFITPOLICY=**NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.
NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\text{format}

specifies the text format used to display the bar segment labels.

Default The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction This option has no effect unless SEGLABEL is also specified.

Note When a segment-label format is specified with this option, the segment labels are formatted as specified by \text{format}. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

STAT=\text{FREQ} | \text{PCT} | \text{SUM} | \text{MEAN} | \text{PROPORTION}

specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ
frequency count

PCT | \text{PERCENT}
percentages between 0 and 100

Alias

PROPORTION
proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM
sum values for the response

MEAN
mean values for the response

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Interaction When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.
TIP=(*role-list*) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(*role-list*)
a space-separated list of unique chart roles enclosed in parentheses. The roles for TIP are CATEGORY, GROUP, and RESPONSE. Specify one or more of these roles in *role-list*. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(category response)`

TIPFORMAT=(*format-list*)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the *format-list* and the *role-list* that is specified for the TIP= option. A format must be provided for each role, using the same order as the *role-list*. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See *SAS Formats and Informs: Reference*

Example `tipformat=(auto F5.2)`
**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the *label-list* and the *role-list* that is specified for the TIP= option. A label must be provided for each role, using the same order as the *role-list*. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**  
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**  
This option has no effect unless TIP= is also specified.

**Tip**  
Use the TIPFORMAT option to assign formats to the list of roles.

**Example**  
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**  
0.0

**Range**  
0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**  

**Default**  
By default, no HTML links are created.

**Interactions**  
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.
HBARPARM Statement

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirements: Parameterized bar charts require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. This is the key distinction between HBARPARM and HBAR.

The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628.

Note: The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the HBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip: The HBARPARM statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

Example: “About Bar Charts” on page 51

Syntax

HBARPARM CATEGORY=category-variable** RESPONSE=**numeric-variable <**/ options**>**;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.
DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

DISPLAYBASELINE=AUTO | ON | OFF
 specifies whether the baseline is displayed.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

FILLENDCOLOR=color
 specifies a fill color that is applied to the chart at the baseline.

FILLPATTERN
 enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
 specifies the line-fill color and pattern.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT
 specifies the fill type that is applied to the chart.

LEGENDLABEL="text-string"
 specifies the label that identifies the bar chart in the legend.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE

NOOUTLINE
 specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
 specifies the response axis intercept for the baseline.

Bar options

FILL

NOFILL
 specifies whether the bars are filled.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is
 positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the cluster width as a ratio of the maximum width.
GROUP=variable
 specifies a variable that is used to group the data.
GROUPDISPLAY=STACK | CLUSTER
 specifies how to display grouped bars.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

Label options
DATALABEL <=variable>
 displays a label for each data point.
DATALABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.
DATALABELFITPOLICY=NONE | INSIDEPREFERRED
 specifies the fit policy for the bar labels.
SEGLABEL
 displays a label inside each segment of a stacked bar.
SEGLABELATTRS=style-element<(options)> | (options)
 specifies the text properties of the bar segment label text.
SEGLABELFITPOLICY=NONE | NOCLIP | THIN
 specifies a policy for fitting the bar segment labels within the bar
 segments.
SEGLABELFORMAT=format
 specifies the text format used to display the bar segment labels.

Limit options
LIMITATTRS=style-element<(options)> | (options)
 specifies the appearance of the limit lines in the plot.
LIMITCAPSCALE=positive-number
 specifies a positive number to use as a multiplier for changing the default
 width of the limit-bar cap (serif).
LIMITLOWER=numeric-variable
 specifies values for the lower endpoints on the limit lines.
LIMIT_UPPER=numeric-variable
 specifies values for the upper endpoints on the limit lines.

Plot options
MISSING
 accepts a missing value as a valid category value.
URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are
 selected.

Plot reference options
NAME="text-string"
 specifies a name for the plot.
Required Arguments

CATEGORY=category-variable
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Starting with **SAS 9.4M3**, interval bar charts are supported when the category axis is set to **TYPE=LINEAR**.

RESPONSE=numeric-variable
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value
specifies the response axis intercept for the baseline.
Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default

0

Interaction

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=\texttt{numeric-column}
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 259

“Using Gradient Color Legends” on page 1637

DATALABEL \texttt{<=variable}>
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

 If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions
When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with \texttt{SAS 9.4M5}, the labels are shown if you also specify the DATALABELPOS= option.

If you also specify LIMITLOWER or LIMITUPPER, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=\texttt{variable} with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

Note
By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.
DATALABELATRGS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the
data label option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also
specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default GraphDataText style element attributes Color, FontFamily, FontSize,
 FontStyle, and FontWeight

Interaction This option has no effect unless the DATALABEL option is also
 specified.

Examples DATALABELATRGS=(Color=Green Family="Arial" Size=8
 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATRGS=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED
specifies the fit policy for the bar labels. Specify one of the following values:

NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit
policy is to show the labels unless they collide. As a result, the labels might
not be visible. To show the labels regardless of how they fit, specify
DATALABELFITPOLICY=NONE.

INSIDE PREFERRED
places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is
 moved outside the bar.
- If the font height for any label exceeds the bar width, then all labels are
 positioned outside the bars.
- If SEG LABEL is specified, the INSIDE PREFERRED policy is ignored and
 the labels are positioned outside the bars.

Note This feature applies to SAS 9.4M5 and later releases.

Default Show the labels unless they collide.

Interaction This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled
bars. The effect that a data skin has on a filled area depends on the skin type,
the graph style, and the color of the skinned element. Most of the skins work
best with lighter colors over a medium to large filled area. Specify one of the
following:

Table 8.16 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th></th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see "Using Fill Patterns to Distinguish Categories of Data" on page 1698. For instructions about viewing the contents of style templates, see "About Styles and Style Elements" on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

"Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF
specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:
AUTO
 displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON
 always displays the baseline.

OFF
 hides the baseline.

Default ON

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL
 specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

 If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData[n] style elements in the current style for grouped data.

 Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.

 This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=color
 specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```r
ods graphics / attrpriority=none;
```

Accessibility This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.
Table 8.17 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FILLTYPE= SOLID | GRADIENT | ALPHAGRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to SAS 9.4M2 and later releases.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.
Interactions To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip (Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

ALPHAGRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See "Using Fill Patterns and Gradient-Color Fills" on page 1701.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default: STACK

Interaction: This option is ignored unless GROUP= is specified.

Tip: The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: DATA

Interaction: The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

Tip: This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.
The default group order can vary for different types of plots. If your
graph contains plot overlays, the default group order for the first
plot statement is applied to all the other overlaid plots that use
default values. If you specify the group order for a plot, then your
specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort
the group values within each category for display position
purposes only. For numeric data, the order is based on the
unformatted values. For character data, the order is based on the
formatted values. The data order of the observations and the visual
attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the
DISCRETEORDER= option in the axis statement for the category
axis.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label
of the RESPONSE= variable is used. If there is no response variable label, the
name of the response variable is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LIMITATTRS=style-element<options> | (options)
specifies the appearance of the limit lines in the plot. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page
1651.

Default GraphError style element in the current style. The affected attributes
are ContrastColor, LineStyle, and LineThickness.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width
of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default
cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction For this option to have any effect, either LIMITLOWER= or
LIMITUPPER= must be specified.

Tip The thickness (height) of the serif cap honors the line thickness
specified in the LIMITATTRS= option. The cap pattern is always
solid.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines. Limit lines are
displayed as line segments with a serif at the end.
The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITLOWER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITUPPER=numeric-variable specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITUPPER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MISSING accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string" specifies a name for the plot. You can use the name to refer to this plot in other statements.

The text-string is case-sensitive and must define a unique name within the procedure.

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS suppresses zero-length bars.
Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

Default | NOZEROBARS Specified

<table>
<thead>
<tr>
<th>0</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Interaction

This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes

If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip

This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default

OUTLINE

Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID= character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

SEGLABEL

displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS= style-element<(options)> | (options)

specifies the text properties of the bar segment label text.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
SEGLABELFITPOLICY=

The GraphDataText style element.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to **SAS 9.4M2** and later releases.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

Interaction

This option has no effect unless **SEGLABEL** is also specified.

SEGLABELFORMAT=

specifies the text format used to display the bar segment labels.

Note: This feature applies to **SAS 9.4M2** and later releases.

Default

The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction

This option has no effect unless **SEGLABEL** is also specified.

Note

When a segment-label format is specified with this option, the segment labels are formatted as specified by **format**. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

TIP=(variable-list) | **NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example https://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

HBOX Statement

Creates a horizontal box plot that shows the distribution of your data.

Restriction:
This plot has compatibility restrictions when used with other plots. See Table 13.2 on page 1630.
See: “Visual Description of Box Plot Percentile Boundaries” on page 345
Example: “About Box Plots” on page 46

Syntax

HBOX numeric-analysis-variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
specifies the width of the box.

CAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the whisker caps.

CAPSHAPE=BRACKET | LINE | SERIF NONE
specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element<options> | (options)
specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL
NOFILL
specifies whether the boxes are filled with color.

FILLATTRS=style-element <options> | (options)
specifies the fill color and transparency.

FILLPATTERN
enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <options> | (options)
specifies the line-fill color and pattern.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (Y) variable is specified.

LINEATTRS=style-element <options> | (options)
specifies the appearance of the box outlines.

MEANATTRS=style-element <options> | (options)
specifies the appearance of the marker that represents the mean in the box.
MEDIANATTRS=\texttt{style-element<(options)> | (options)}
\hfill
specifies the appearance of the line that represents the median.

NOCAPS
\hfill
hides the cap lines for the whiskers.

NOCLASS
\hfill
hides the mean marker.

NOMEDIAN
\hfill
hides the median line.

NOOUTLIERS
\hfill
hides the outliers from the plot.

NOTECH
\hfill
specifies that the boxes be notched.

OUTLIERATTRS=\texttt{style-element<(options)> | (options)}
\hfill
specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=\texttt{value}
\hfill
specifies the degree of transparency for the plot.

WHISKERATTRS=\texttt{style-element<(options)> | (options)}
\hfill
specifies the appearance of the whisker and cap lines.

WHISKERPCT=\texttt{number}
\hfill
specifies the whisker length, in percentile units.

\textbf{Data tip options}

\texttt{TIP=(role-list) | NONE}
\hfill
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

\texttt{TIPFORMAT=(format-list)}
\hfill
applies formats to the list of data tip roles that you specify in the TIP= option.

\texttt{TIPLABEL=(label-list)}
\hfill
applies labels to the list of data tip roles that you specify in the TIP= option.

\textbf{Group options}

\texttt{CLUSTERWIDTH=numeric-value}
\hfill
specifies the cluster width as a ratio of the midpoint spacing.

\texttt{GROUP=variable}
\hfill
specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=CLUSTER | OVERLAY}
\hfill
specifies how to display grouped boxes.

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}
\hfill
specifies the ordering of the groups within a category.

\textbf{Label options}

\texttt{DATALABEL <=variable>}
\hfill
adds data labels for the outlier markers.

\texttt{DATALABELATTRS=style-element<(options)> | (options)}
\hfill
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\texttt{LABELFAR}
\hfill
specifies that only the far outliers have data labels.

\texttt{LEGENDLABEL=\"text-string\"}
specifies a label that identifies the box plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
specifies the category variable for the plot.

DISPLAYSTATS <=ALL | (statistics-list)>
specifies statistics to be displayed for each box.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
accepts a missing value as a valid category value.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

SPREAD
relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4
When GROUP is specified, the default box width is 0.6.

CAPSCALE=numeric-value

specifies a positive number to use as a multiplier for changing the default width of the whisker caps. For example, **CAPSCALE=2** doubles the default cap width and **CAPSCALE=0.5** reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction This option has no effect if NOCAPS is specified or if **CAPSHAPE=NONE**.

Tips

The thickness (height) of a SERIF, LINE, or BRACKET cap honors the line thickness specified in the WHISKERATTRS= option. The cap pattern is always solid.

Use the **CAPSHAPE=** option to specify the line shape of the caps.

CAPSHAPE=BRACKET | LINE | SERIF NONE

specifies the shape of the whisker cap lines. Specify one of the following values:

- **BRACKET** displays a straight line with brackets.
- **LINE** displays a straight line.
- **SERIF** displays a short straight line.
- **NONE** does not display a cap.

Default SERIF

CATEGORY=category-variable

specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

The default ordering of the tick values is ascending formatted order of the **category-variable**. To change this ordering, you can use the DISCRETEORDER=DATA option in the category axis statement.

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.
CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to
generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for
the connect line.

CONNECTATTRS=style-element<(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can
specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override
specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page
1651.

Default GraphConnectLine style element in the current style for ungrouped
data. GraphData1 ... GraphData \(n \) style elements in the current style
for grouped data. The affected attributes are ContrastColor,
LineStyle, and LineThickness.

Interactions This option takes effect only if the CONNECT= option is also
specified.

This option is ignored if the GROUP= option is also specified.

Examples CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)
This example specifies a style element:
CONNECTATTRS=GraphData3

DATALABEL <=variable>
adds data labels for the outlier markers. If you specified a variable, then the
values for that variable are used for the data labels. If you did not specify a
variable, then the values of the analysis variable are used.

Note This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also
specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page
1658.

Defaults GraphDataText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight .

Color attribute of the GraphDataText style element in the current style
(ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of
the GraphData1...GraphData \(n \) style elements.

Interaction This option has no effect unless the DATALABEL option is also
specified.
Examples

DATALABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to **SAS 9.4M1** and later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 8.18 DATASKIN Options for Box Plots

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Example of NONE skin]</td>
<td>![Example of CRISP skin]</td>
<td>![Example of GLOSS skin]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Example of MATTE skin]</td>
<td>![Example of PRESSED skin]</td>
<td>![Example of SHEEN skin]</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See

"Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default

0.0 (no offset)
DISPLAYSTATS <=ALL | (statistics-list)>
specifies statistics to be displayed for each box.

Note: This feature applies to SAS 9.4M5 and later releases.

DISPLAYSTATS
When DISPLAYSTATS is specified without any argument, the plot displays N, MEAN, and STD.

DISPLAYSTATS=ALL
This option displays all available statistics. (See the statistics-list.)

Note: When you choose this option, there might not be enough space for the boxes to be drawn. For horizontal box plots, you might have better results if you specify DISPLAYSTATS by itself or specify a limited set of statistics using DISPLAYSTATS=(statistics-list).

DISPLAYSTATS=(statistics-list)
statistics-list is a space-separated list of one or more of the following statistics, enclosed in parentheses:

DATAMAX maximum data value that includes not only the maximum whisker values but also the maximum outlier values. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

DATAMIN minimum data value that includes not only the minimum whisker values but also the minimum outlier values. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

IQR interquartile range (Q3–Q1).

MAX maximum data value below the box upper fence.

MEAN mean data value for the box.

MEDIAN median data value for the box.

MIN minimum data value above the box lower fence.

N number of observations for the box.

Q1 lower quartile (25th percentile) for the box.

Q3 upper quartile (75th percentile) for the box.

RANGE range of the data (MAX–MIN).

STD standard deviation of the data for the box.

SUMWGT sum of the weights for the box.

Example displaystats=(mean median)

Restriction This option is ignored if the GROUP= option is also specified.

Note The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.
EXTREME
 specifies that the whiskers can extend to the maximum and minimum values for
 the analysis variable, and that outliers are not identified. When you do not
 specify the EXTREME option, the whiskers cannot be longer than 1.5 times the
 length of the box.

FILL | NOFILL
 specifies whether the boxes are filled with color. The FILL option shows the fill
 color. The NOFILL option hides the fill color.

Default FILL

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency. You can specify the appearance by
 using a style element or by specifying specific options. If you specify a style
 element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current
 style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style
 elements in the current style for grouped data.

 Transparency is the same as the setting for the plot’s
 TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.

 This suboption overrides the plot’s TRANSPARENCY= option for
 the fill.

FILLPATTERN
 enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the
 group values. To ensure that group values are distinguished by
 their fill patterns, use the ATTRPRIORITY option in the ODS
 GRAPHICS statement. Example:

 ods graphics / attrpriority=none;

Accessibility note This feature helps support accessibility. Graphs that use this
 feature do not rely on color alone to distinguish categories of
 data.

Tips Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

 Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
 specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR= *style-reference | color*

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN= *style-reference | line-pattern*

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.
FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restrictions
- If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
- If the value is not an integer, only the integer portion is used.

Interaction
- If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
- When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

- **CLUSTER**
 - the boxes are drawn adjacent to each other.

- **OVERLAY**
 - all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDat\(n\) style elements in the current style.

Defaults
- CLUSTER for a discrete category axis
- OVERLAY for a linear axis

Interaction
- This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

- **DATA**
 - orders the groups within a category in data order of the group variable.

- **REVERSEDATA**
 - orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

- **ASCENDING**
 - orders the groups within a category in ascending order of the group variable.
DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (Y) variable is specified.

Restriction The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example proc sgpanel data=sashelp.class;
 panelby sex;
 hbox weight / category=height intboxwidth=50;
 rowaxis type=linear;
run;

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MEANATTRS=

```
style-element<options> | (options)
```

specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphBoxMean style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=

```
style-element<options> | (options)
```

specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphBoxMedian style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option is ignored if the NOMEDIAN option is also specified.

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME=

```
text-string
```

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS

hides the cap lines for the whiskers.

Interaction

Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.
NOMEAN
 hides the mean marker.

NOMEDIAN
 hides the median line.

NOOUTLIERS
 hides the outliers from the plot.

NOTCHES
 specifies that the boxes be notched. The endpoints of the notches are at the
 following computed locations:

 \[\text{median} \pm 1.58 \left(\frac{\text{IQR}}{\sqrt{N}} \right) \]

 For a visual description of the parts of a box plot, see "Details" on page 345.

OUTLIERATTRS=style-element<(options)> | (options)
 specifies the appearance of the marker that represents the outliers. You can
 specify the appearance by using a style element or by specifying specific
 options. If you specify a style element, you can also specify options to override
 specific appearance attributes.

 For a description of marker attributes, see "Marker Attributes and Symbols" on
 page 1656.

 Default GraphOutlier style element in the current style for ungrouped data.
 GraphData1 ... GraphData\textit{n} style elements in the current style for
 grouped data. The affected attributes are ContrastColor and
 MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
 specifies a method for computing the percentiles for the plot.

 Default 5 (empirical distribution function with averaging)

 See "Calculating Percentiles" on page 346

SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when there
 is not enough room to display the text normally. The text value is split at every
 occurrence of the specified split character or characters.

 "character-list" is one or more characters with no delimiter between each
 character and enclosed in quotation marks. For example, to specify the split
 characters a, b, and c, use the following option:

 \texttt{SPLITCHAR=\"abc\"}

 When multiple split characters are specified, each character in the list is treated
 as a separate split character unless the specified characters appear
 consecutively in the value. In that case, all of the specified split characters
 together are treated as a single split character.

 If the value does not contain any of the specified split characters, a split does not
 occur.

 Default Values are not split.

 Interactions This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The roles for TIP are CATEGORY, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;
Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(mean median)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.
A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example tiplabel=(auto "Class Weight")

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.
A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default**: 0.0
- **Range**: 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numERIC-VARIABLE
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element<(options)> | (options)
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

- **options** can be one or more of the following:
 - **Default**: GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

WHISKERPCT=number
specifies the whisker length, in percentile units.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified, \(\text{number}\) is used as the low percentile, and \(100-\text{number}\) is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
- 10 specifies the 10\(^{th}\) percentile low and the 90\(^{th}\) percentile high
- 25 specifies the 25\(^{th}\) percentile low and the 75\(^{th}\) percentile high

- **Default**: The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR
- **Range**: 0–25
- **Notes**: When this option is specified, fences and far outliers are not drawn.
When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

Details

Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Note: Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences (± 1.5 IQR). Outliers that are beyond upper and lower far fences (± 3 IQR) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let \(n \) be the number of nonmissing values for a variable, and let \(X_1, X_2, ..., X_n \) represent the ordered values of the variable. \(X_1 \) is the smallest value, \(X_2 \) is the next smallest, and \(X_n \) is the largest value. Let the \(r \)th percentile be \(y \), set:

\[
p = \frac{r}{100}
\]

and let:

\[
np = j + g
\]
when \(\text{PERCENTILE}=1, 2, 3, \) or \(5 \), or let:

\[(n + 1)p = j + g\]

when \(\text{PERCENTILE}=4 \), where \(j \) is the integer part of \(np \), and \(g \) is the fractional part of \(np \). Then the \text{PERCENTILE}= option defines the \(r \)th percentile, \(y \), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at (X_{np})</td>
<td>(y = (1 - g)x_j + gx_j + 1)</td>
<td>(x_0) is taken to be (x_1)</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to (np)</td>
<td>(y = x_j)</td>
<td>Used when (g < \frac{1}{2}) or (g = \frac{1}{2}) and (j) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g = \frac{1}{2}) and (j) is odd or when (g > \frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>(y = x_j)</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g > 0)</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at (X_{(n+1)p})</td>
<td>(y = (1 - g)x_j + gx_j + 1)</td>
<td>(x_{n+1}) is taken to be (x_n)</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>(y = \frac{1}{2}(x_j + x_j + 1))</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g > 0)</td>
</tr>
</tbody>
</table>

HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

Interaction: Starting with SAS 9.4M4, the number of bins is limited to 100,000. If the number of bins exceeds the limit, the heat map is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement \(\text{NXYBINSMAX=} \) option, which defaults to 100,000. See \(\text{NXYBINSMAX=} \) on page 107.

Note: This feature applies to SAS 9.4M3 and later releases.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Heat Maps” on page 21
Syntax

HEATMAP X=variable Y=variable </options>;

Summary of Optional Arguments

Appearance options

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-variable
 specifies a numeric variable that is used to color the regions of the heat map.

COLORSTAT=FREQ | PCT | SUM | MEAN
 specifies the statistic to use for the COLORRESPONSE= variable.

FILLATTRS=(TRANSPARENCY=number)
 specifies the transparency of the area fill in the rectangles.

OUTLINE
 displays an outline around each colored region.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the rectangle outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

SHOWXBINS
 specifies that bins be used as the basis for the X-axis tick marks.

SHOWYBINS
 specifies that bins be used as the basis for the Y-axis tick marks.

XENDLABELS
 specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

YENDLABELS
 specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Binning options

XBINSIZE=positive-number
 specifies the horizontal size of bins in X-axis coordinate system units.

XBINSTART=positive-number
 specifies the data value for the first bin of the X role.

YBINSIZE=positive-number
 specifies the vertical size of bins in Y-axis coordinate system units.

YBINSTART=positive-number
 specifies the data value for the first bin of the Y role.

Data options
DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options
TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Plot options
FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Required Arguments
X=variable
specifies the variable for the X axis.

Requirement
If you specify a numeric variable and the X-axis type is discrete, then you must also specify DISCRETEX in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

Y=variable
specifies the variable for the Y axis.

Requirement
If you specify a numeric variable and the Y-axis type is discrete, then you must also specify DISCRETEY in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

Optional Arguments
COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
\texttt{colormodel=TwoColorRamp}

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
\texttt{colormodel=(blue yellow green)}

Default The ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

\textbf{COLORRESPONSE=numeric-variable} specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

\textbf{COLORSTAT=}FREQ | PCT | SUM | MEAN specifies the statistic to use for the COLORRESPONSE= variable.

Defaults FREQ

SUM if COLORRESPONSE= is specified

\textbf{DISCRETEX} forces the X axis to be discrete when the X= variable is numeric.

Requirement If \texttt{X=} specifies a numeric variable and the X-axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interactions If \texttt{X=} specifies a character variable, then this option is ignored, and the X axis is considered to be discrete. When this option is used, the XENDLABELS= option is ignored.

\textbf{DISCRETEY} forces the Y axis to be discrete when the Y= variable is numeric.
Requirement: If Y= specifies a numeric variable and the Y-axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interactions: If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

When this option is used, the YENDLABELS= option is ignored.

FILLATTRS=(TRANSPARENCY=number)

- Specifies the transparency of the area fill in the rectangles.
- Default: The TRANSPARENCY= option value.
- Range: 0 (opaque) to 1 (entirely transparent)
- Interaction: This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.
- Tip: You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill.

Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

FREQ=numeric-variable

- Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction: If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note: If the value is not an integer, only the integer portion is used.

NAME="text-string"

- Specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The *text-string* is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE

- Displays an outline around each colored region.

Default: No outline is displayed

**OUTLINEATTRS=style-element *(options)* | *(options)*

- Specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

SHOWXBINS
specifies that bins be used as the basis for the X-axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y-axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)
a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP are X, Y, and COLORRESPONSE. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGemap option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

 ODS GRAPHICS / IMAGemap;

Interaction This option replaces all of the information that is displayed by default.
Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(x y)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation's weight is zero, negative, or missing, the observation is deleted from the analysis.

XBINSIZE=positive-number

specifies the horizontal size of bins in X-axis coordinate system units. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 1023

XBINSTART=positive-number

specifies the data value for the first bin of the X role. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 1023

XENDLABELS

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interactions This option has no effect unless the SHOWXBINS option is also used.

This option is ignored when the X axis is discrete.

YBINSIZE=positive-number

specifies the vertical size of bins in Y-axis coordinate system units. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 1023

YBINSTART=positive-number

specifies the data value for the first bin of the Y role. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 1023

YENDLABELS

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.
Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interactions This option has no effect unless the SHOWYBINS option is also used.

This option is ignored when the Y axis is discrete.

HEATMAPPARM Statement

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

Requirements: The COLORGROUP= role or the COLORRESPONSE= role must be specified.

The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

Interaction: Starting with SAS 9.4M4, the number of bins is limited to 100,000. If the number of bins exceeds the limit, the heat map is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement NXYBINSMAX= option, which defaults to 100,000. See NXYBINSMAX= on page 107.

Notes: The data for a parameterized heat map should contain only one observation for each X and Y value pair.

This feature applies to SAS 9.4M3 and later releases.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Heat Maps” on page 21

Syntax

HEATMAPPARM X=variable Y=variable
COLORGROUP=variable </options>;

HEATMAPPARM X=variable Y=variable
COLORRESPONSE=numeric-variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE=
 option.

FILLATTRS=(TRANSPARENCY=number)
NOMISSINGCOLOR
excludes missing values of the COLORGROUP= variable or of the
COLORRESPONSE= variable from the heat map.

OUTLINE
displays an outline around each colored region.

OUTLINEATTRS= style-element <(options)> | (options)
specifies the appearance of the rectangle outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower
endpoints, or upper endpoints of the bins.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower
endpoints, or upper endpoints of the bins.

Axis options

SHOWXBINS
specifies that bins be used as the basis for the X-axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y-axis tick marks.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the
bins for the X axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the
bins for the Y axis.

Data options

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP=
option.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are
selected.
Plot reference options

`NAME="text-string"`
specifies a name for the plot.

Required Arguments

X=variable
specifies the variable for the X axis.

Requirement
If you specify a numeric variable and the X-axis type is discrete, then you must also specify DISCRETEX in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

Y=variable
specifies the variable for the Y axis.

Requirement
If you specify a numeric variable and the Y-axis type is discrete, then you must also specify DISCRETEY in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

COLORGROUP=variable
specifies a variable that is used to color the regions of the heat map.

Requirement
This argument is required when the response variable is of type discrete.

COLORRESPONSE=numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Requirement
This argument is required when the response variable is of type interval.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This feature applies to the COLORGROUP variable in the heat map.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

`style-element`
specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

DISCRETEX

forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X-axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interactions If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

When this option is used, the XENDLABELS= option is ignored.

DISCRETEY

forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y-axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interactions If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

When this option is used, the YENDLABELS= option is ignored.

FILLATTRS=(TRANSPARENCY=number)

specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.
Range 0 (opaque) to 1 (entirely transparent)

Interaction This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Note The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.

Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCOLOR excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.

Default Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

OUTLINE displays an outline around each colored region.

Default No outline is displayed

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.
RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

SHOWXBINS
specifies that bins be used as the basis for the X-axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y-axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

**Tip**

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**XENDLABELS**

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

**Default**

If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the XVALUES= option identifies the X data as endpoint values or midpoint values.

**Interactions**

This option has no effect unless the SHOWXBINS option is also used.

This option is ignored when the X axis is discrete.

**XVALUES=** MIDPOINTS | LEFTPOINTS | RIGHTPOINTS

specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

**Default**

MIDPOINTS

**YENDLABELS**

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

**Default**

If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the YVALUES= option identifies the Y data as endpoint values or midpoint values.

**Interactions**

This option has no effect unless the SHOWYBINS option is also used.

This option is ignored when the Y axis is discrete.
YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Default: MIDPOINTS

HIGHLow Statement

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

Note: This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About High-Low Plots” on page 23

Syntax

HIGHLow X=variable | Y=variable
HIGH=numeric-variable LOW=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

CLIPCAP
displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.

CLIPCAPSHAPE=DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
specifies the type of cap used for the clip cap.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines or bars from the category midpoints.

**FILL**  
NOFILL  
specifies whether the area fill is visible for bars.

**FILLATTRS=**  
*style-element*  
<*(options)*>  
* (options)  
specifies the fill color and transparency.

**FILLPATTERN**  
enables the display of line fill patterns for the plot.

**FILLPATTERNATTRS=**  
*style-element*  
<*(options)*>  
* (options)  
specifies the line-fill color and pattern.

**HIGHCAP=**  
*character-variable*  
| NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW  
specifies the type of cap used at the high end of the bar or line.

**INTERVALBARWIDTH=**  
*numeric-value*  
specifies the thickness of the bar when the X (or Y) data is numeric.

**LINEATTRS=**  
*style-element*  
<*(options)*>  
* (options)  
specifies the appearance of the outlines for the band.

**LOWCAP=**  
*character-variable*  
| NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW  
specifies the type of cap used at the low end of the bar or line.

**OUTLINE**  
NOOUTLINE  
specifies whether the outlines of the bars are visible.

**RATTRID=**  
*character-value*  
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=**  
*value*  
specifies the degree of transparency for the plot.

**Data tip options**

**TIP=**  
*variable-list*  
| NONE  
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=**  
*format-list*  
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=**  
*label-list*  
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=**  
*numeric-value*  
specifies the cluster width as a ratio of the maximum width.

**GROUP=**  
*variable*  
specifies a variable that is used to group the data.

**GROUPDISPLAY=**  
OVERLAY  
| CLUSTER  
specifies how to display grouped data.

**GROUPORDER=**  
DATA  
| REVERSEDATA  
| ASCENDING  
| DESCENDING  
specifies the ordering of the groups within a category.

**NOMISSINGGROUP**  
specifies that missing values of the group variable are not included in the plot.
Label options

**HIGHLABEL=variable**
specifies the label to be shown at the high end of the line or bar.

**LABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

**LEGENDLABEL="text-string"**
specifies a label that identifies the elements from the band plot in the legend.

**LOWLABEL=variable**
specifies the label to be shown at the low end of the line or bar.

Plot options

**CLOSE=numeric-variable**
specifies the data for the CLOSE tick on the bar or line.

**OPEN=numeric-variable**
specifies the data for the OPEN tick on the bar or line.

**TYPE=BAR | LINE**
specifies how the data is to be represented.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

**NAME="text-string"**
specifies a name for the plot.

Required Arguments

**X=variable | Y=variable**
specifies a variable that is used to plot the values along the N or Y axis.

Note: If you specify X=variable, then the statement creates vertical lines or bars on the X axis, and the HIGH and LOW values are plotted along the Y axis. Conversely, if you specify Y=variable, then the statement creates horizontal lines or bars on the Y axis, and the HIGH and LOW values are plotted along the X axis.

**HIGH=numeric-variable**
specifies the upper value for the floating lines or bars.

**LOW=numeric-variable**
specifies the lower value for the floating lines or bars.

Optional Arguments

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default 0.85

Requirement This option is applicable only when the X or Y axis is discrete.

Interaction This option has no effect unless TYPE= BAR.

CLIPCAP
displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the MIN= and MAX= axis options are specified for an axis and a data value exceeds the specified axis range, the bar or line for that value is clipped. If the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y-axis range. The cap is a vertical arrowhead that points toward the clip edge (▼ or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by the X-axis range. The cap is a horizontal arrowhead that points toward the clip edge (◀ or ▶).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side where the bar or line was clipped.

Interaction Clip indicators appear only when CLIPCAP is specified and the data values exceed the axis range that is specified by the MIN= and MAX= options. When the MIN= and MAX= options are not specified, the axis range is adjusted to accommodate the data values, and clipping does not occur.

Note When the high-low TYPE=LINE, you can change the appearance of the clip cap using the CLIPCAPSHAPE= option.

Tip If you specify the HIGHLABEL or LOWLABEL option, and the bar or line is clipped, the label value is still drawn outside the tip of the clip cap. If the entire bar or line is clipped, no labels are shown.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
</table>
Default: DEFAULT

Requirement: The shape can be changed only when TYPE=LINE (the default value).

CLOSE=numeric-variable

specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has higher X values. For a horizontal plot, the value is represented by an indicator on the side with higher Y values.

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Requirement: This option is applicable only when the X or Y axis is discrete.

Interactions: This option is applicable only when TYPE=BAR.

This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
- NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example: colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement: The list of colors must be enclosed in parentheses.
Example  
\texttt{colormodel=(blue yellow green)}

Default  
The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for lines or for outline-only bars.

Interaction  
For this option to take effect, the \texttt{COLORRESPONSE=} option must also be specified in the statement.

\textbf{COLORRESPONSE=\texttt{numeric-column}}

specifies the numeric column that is used to map colors to a gradient legend.

\textbf{Note:} This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction  
When the \texttt{GROUP=} option is specified with the \texttt{COLORRESPONSE=} option, the color attributes are controlled by the \texttt{COLORRESPONSE=} option.

Tip  
The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

See  
"GRADLEGEND Statement" on page 259

"Using Gradient Color Legends" on page 1637

\textbf{DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot.

\textbf{Note:} This feature applies to SAS 9.4M1 and later releases.

The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

\textit{Table 8.20}  \textbf{DATASKIN Options for Filled Areas}

\begin{tabular}{|c|c|c|}
\hline
\texttt{NONE} & \texttt{CRISP} & \texttt{GLOSS} \\
\hline
\includegraphics[width=0.1\textwidth]{none.png} & \includegraphics[width=0.1\textwidth]{crisp.png} & \includegraphics[width=0.1\textwidth]{gloss.png} \\
\hline
\texttt{MATTE} & \texttt{PRESSED} & \texttt{SHEEN} \\
\hline
\includegraphics[width=0.1\textwidth]{matte.png} & \includegraphics[width=0.1\textwidth]{pressed.png} & \includegraphics[width=0.1\textwidth]{sheen.png} \\
\hline
\end{tabular}

High-low plots can specify lines rather than bars.

\textit{Table 8.21}  \textbf{DATASKIN Options for Lines}

\begin{tabular}{|c|c|c|}
\hline
\texttt{NONE} & \texttt{CRISP} & \texttt{GLOSS} \\
\hline
\includegraphics[width=0.1\textwidth]{none.png} & \includegraphics[width=0.1\textwidth]{crisp.png} & \includegraphics[width=0.1\textwidth]{gloss.png} \\
\hline
\end{tabular}
Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions: This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines or bars from the category midpoints. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset from the category midpoints)

Requirement: This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL
specifies whether the area fill is visible for bars. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default: The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions: This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATRERS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataConfidence style element in the
current style for ungrouped data. GraphData1 ... GraphData n style
elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interactions If you specify a group, color might be used to distinguish the
group values. To ensure that group values are distinguished by
their fill patterns, use the ATTRPRIORITY option in the ODS
GRAPHICS statement. Example:

ods graphics / attrpriority=none;

TYPE=BAR must be specified for the fill pattern to have any
effect.

Accessibility note This feature helps support accessibility. Graphs that use this
feature do not rely on color alone to distinguish categories of
data.

Tips Use the FILLPATTERNATTRS= option to specify the
appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to
override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a
number of different color-naming schemes. For more information, see “Color-
Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color
constant across all group values.
PATERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction
prefix (R for right, L for left, and X for cross hatch) and a line-identification
number, 1–5. The following table shows the patterns for each of the possible
combinations.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATERN= setting has the effect of holding the fill
pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as
HTMLBlue, to change the fill pattern for each group value,
specify ATTRPRIORITY=NONE in an ODS GRAPHICS
statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be
specified.

Accessibility
This feature helps support accessibility. Graphs that use this
feature do not rely on color alone to distinguish categories of
data.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each
group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.
Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=OVERLAY | CLUSTER specifies how to display grouped data.

OVERLAY

groups are overlaid without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\textit{n} style elements in the current style.

CLUSTER

observations with different group values are displayed in adjacent clusters around the category value. Each set of group values is centered at the midpoint tick mark for the category.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is discrete.

Interactions GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR. This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW**

specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.
Figure 8.6  Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>NOIE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>![NOIE cap image]</td>
<td>![SERIF cap image]</td>
<td>![BARBEDARROW cap image]</td>
</tr>
<tr>
<td>FILLEDARROW</td>
<td>OPENARROW</td>
<td>CLOSEDARROW</td>
</tr>
<tr>
<td>![FILLEDARROW cap image]</td>
<td>![OPENARROW cap image]</td>
<td>![CLOSEDARROW cap image]</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction: When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**HIGHLABEL=variable**
specifies the label to be shown at the high end of the line or bar.

**INTERVALBARWIDTH=numeric-value**
specifies the thickness of the bar when the X (or Y) data is numeric.

Default: The default thickness of the bar is derived from the minimum interval between the data values along X or Y.

Requirement: This option is applicable only when the X or Y axis is a linear axis or a TIME axis.

Interaction: This option has no effect unless TYPE=BAR.

**LABELATTRS=style-element<options> | (options)**
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults: GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
Examples

```
LABELATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

**LEGENDLABEL=“text-string”**

specifies a label that identifies the elements from the band plot in the legend. By default, the label "band" is used for ungrouped data, and the group values are used for grouped data.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

**LINEATTRS=style-element<(options)> | (options)**

specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect unless you also specify the OUTLINES option.

**LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW**

specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.
Restriction: Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction: When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**LOWLABEL=variable**
specifies the label to be shown at the low end of the line or bar.

**NAME="text-string"**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The `text-string` is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

Interaction: This option has no effect unless GROUP= is also specified.

**OPEN=numeric-variable**
specifies the data for the OPEN tick on the bar or line.

For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

**OUTLINE | NOOUTLINE**
specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default: OUTLINE
Interactions

This option has no effect unless TYPE=BAR.

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

See
SAS Formats and Informats: Reference

Example
```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**TYPE=BAR | LINE**

specifies how the data is to be represented. BAR uses fill and outline attributes.
LINE uses line attributes.

Default LINE

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip  Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

HISTOGRAM Statement

Creates a histogram that displays the frequency distribution of a numeric value.

Interactions:  The HISTOGRAM statement can be combined only with DENSITY statements in the SGPANEL procedure. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Starting with SAS 9.4M4, the number of bins is limited to 10,000. If the number of bins exceeds the limit, the histogram is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement NBINSMAX= option, which defaults to 10,000. See NBINSMAX= on page 107.

Note:  The range of the response variable is automatically divided into an appropriate number of bins.

Examples:
“About Histograms” on page 50
“Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” on page 779

Syntax

HISTOGRAM response-variable <option(s)>;
Summary of Optional Arguments

**Appearance options**

- **ATTRID=character-value**
  
  Specifies the value of the ID variable in a discrete attribute map data set.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  
  Specifies a special effect to be used on the plot.

- **FILL**
  
  Specifies whether the area fill is visible.

- **FILLNOFILL**
  
  Specifies whether the area fill is visible.

- **FILLATTRS=style-element <(options)> | (options)**
  
  Specifies the fill color and transparency.

- **FILLENDCOLOR=color**
  
  Specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
  
  Enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <(options)> | (options)**
  
  Specifies the line-fill color and pattern.

- **FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
  
  Specifies the fill type that is applied to the chart.

- **OUTLINE**
  
  Specifies whether outlines are displayed for the bars.

- **NOOUTLINE**
  
  Specifies whether outlines are displayed for the bars.

- **TRANSPARENCY=value**
  
  Specifies the degree of transparency for the plot.

**Group options**

- **GROUP=variable**
  
  Specifies a variable that is used to group the data.

**Label options**

- **DATALABEL<= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>**
  
  Specifies the statistic to display at the end of each bin.

- **DATALABELATTRS=style-element <(options)> | (options)**
  
  Specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **LEGENDLABEL="text-string"**
  
  Specifies a label that identifies the histogram in the legend.

**Plot options**

- **BINSTART=numeric-value**
  
  Specifies the X coordinate of the first bin.

- **BINWIDTH=numeric-value**
  
  Specifies the bin width.

- **BOUNDARY=LOWER | UPPER**
  
  Specifies how boundary values are assigned to bins.

- **FREQ=numeric-variable**
  
  Specifies a variable for the frequency count for each observation in the input data.
**NBINS=**numeric-value
specifies the number of bins.

**SCALE=**COUNT | PERCENT | PROPORTION
specifies the scaling that is applied to the vertical axis.

**WEIGHT=**numeric-variable
specifies a variable in the input data set that contains values to be used as weights for the bin height.

**Plot reference options**
**NAME=**"text-string"
specifies a name for the plot.

**Required Argument**

**response-variable**
specifies a response variable for the histogram.

**Optional Arguments**

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps” on page 1733

**BINSTART=**numeric-value
specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

Default  The default value is determined by the system.

**BINWIDTH=**numeric-value
specifies the bin width. The system determines the number of bins. The bins always span the range of the data.

Default  The default value is determined by the system.

Restriction  The maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log.

Interaction  This option is ignored if the NBINS= option is also specified.

**BOUNDARY=**LOWER | UPPER
specifies how boundary values are assigned to bins.
LOWER
    specifies that boundary values are assigned to the lower bin.

UPPER
    specifies that boundary values are assigned to the upper bin.

Default  UPPER

**DATALABEL**<\ n NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>  
specifies the statistic to display at the end of each bin.

---

**Note:** This feature applies to **SAS 9.4M1** and later releases.

You can specify one of the following:

NONE
    suppresses the data labels.

AUTO
    uses the SCALE= option value. By default, SCALE=PERCENT.

COUNT

DENSITY

PERCENT

PROPORTION
    specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bin.

Default  If DATALABEL is specified without a value, then the default is AUTO.

Interaction  When DATALABEL=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bin.

**DATALABELATTRS**=style-element<(options)>  | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults  GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction  This option has no effect unless the DATALABEL option is also specified.

Examples  DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabel1Text
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 8.23  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>None</th>
<th>Crisp</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Image" /></td>
<td><img src="image2" alt="Image" /></td>
<td><img src="image3" alt="Image" /></td>
</tr>
<tr>
<td>Matte</td>
<td>Pressed</td>
<td>Sheen</td>
</tr>
<tr>
<td><img src="image4" alt="Image" /></td>
<td><img src="image5" alt="Image" /></td>
<td><img src="image6" alt="Image" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions: This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See: “Using Data Skins” on page 1685

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default: The default status of the area fill is specified by the DisplayOpt attribute of the GraphHistogram style element in the current style.
Interactions  Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=** *style-element* <*(options)*> | *(options)*
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interactions**  This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLENDCOLOR=** *color*
specifies a fill color that is applied to the chart at the baseline.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Default**  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

**Interactions**  This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

**FILLPATTERN**
-enables the display of line fill patterns for the plot.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**  If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```plaintext
ods graphics / attrpriority=none;
```

**Accessibility note**  This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.
Tips

Use the FILLPATTERNATRSl option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATRSl=style-element (options) | (options)**

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=style-reference | color**

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=style-reference | line-pattern**

specifies the type of line pattern to use for the fill.

*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.24 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.
Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**

specifies the fill type that is applied to the chart.

**Note:** This feature applies to SAS 9.4M2 and later releases.

**SOLID**

- each bin is filled with the color that is assigned to the bin fill area.

**GRADIENT**

Prior to SAS 9.4M5, each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bin gradually changing to the color of the wall at the baseline of the bin. The option does not involve transparency. Only the color is affected.

Interactions

To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**

(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**ALPHAGRADIENT**

a gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

**Note:** This feature applies to SAS 9.4M5 and later releases.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips

- If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bins.
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to SAS 9.4M2 and later releases.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**LEGENDLABEL="text-string"**

specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

**NAME="text-string"**

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NBINS=numeric-value**

specifies the number of bins. The system determines the BINWIDTH= value. The bins always span the range of the data.

The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with the NBINS= option.

Default The default number of bins is determined by the system.

Range 2–10,000
The limit on the number of bins is specified by the ODS GRAPHICS statement NBINSMAX= option, which defaults to 10,000. See “NBINSMAX=” on page 107.

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the bar outlines is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SCALE=COUNT | PERCENT | PROPORTION
specifies the scaling that is applied to the vertical axis. Specify one of the following values:

COUNT
the axis displays the frequency count.

PERCENT
the axis displays values as a percentage of the total.

PROPORTION
the axis displays values as proportions (0.0 to 1.0) of the total.

Default PERCENT

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable in the input data set that contains values to be used as weights for the bin height.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
HLINE Statement

Creates a horizontal line chart (the line is vertical). You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

Restrictions: The HLINE statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628. When category plots are overlaid, all of the plots must use the same category variable.

See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Line Charts” on page 60

Syntax

HLINE category-variable [/option(s)];

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from the discrete category values.

LINEATTRS=style-element /(options) | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a category variable to divide the values into groups.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

CURVELABEL="text-string"
adds a label for the line.

CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL =variable
displays a label for each data point.

DATALABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL
NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element<options> | (options)
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
accepts a missing value as a valid category value.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the lines.
Optional Arguments

**ALPHA=** *numeric-value*

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default: .05

Interactions: This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

**ATTRID=** *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BREAK**

breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.

Interactions: This option is ignored when the Y axis is discrete and the MISSING option is specified. To break the line at missing values in that case, remove the MISSING option.

Note: The observation is excluded from the graph when there is a missing value for the FREQ variable.

**CATEGORYORDER=** *RESPASC | RESPDESC*

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

**RESPASC**

sorts by the response values in ascending order.

**RESPDESC**

sorts by the response values in descending order.

Default: The plot is sorted in ascending order based on the category values.

Restriction: This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.
Requirement

This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

**CLUSTERWIDTH=numeric-value**

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

**CURVELABEL<="text-string">**

adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

**CURVELABELATTRS=style-element<(options)> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**  
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**  
This option has no effect unless the CURVELABEL option is also specified.

**Examples**  
CURVELABELATTRS=(Color=Green Family="Arial" Size=8  
Style=Italic Weight=Bold)

Here is an example that specifies a style element:  
CURVELABELATTRS=GraphTitleText

**CURVELABELPOS=MIN | MAX | START | END**  
specifies the location of the curve label. Specify one of the following values:

- **MIN**  
places the label at the part of the curve closest to the minimum X-axis value.

- **MAX**  
places the label at the part of the curve closest to the maximum X-axis value.

- **START**  
places the curve label at the first point on the curve.

- **END**  
places the curve label at the last point on the curve.

**Default**  
END

**Interaction**  
This option has no effect unless the CURVELABEL option is also specified.

**DATALABEL <=variable>**  
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

  If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

**Interactions**  
When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options.
Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

**DATALABELATTRS=**<style-element>(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=**position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interaction**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 8.25 DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

**Table 8.26**  
**DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Example of NONE]</td>
<td>![Example of CRISP]</td>
<td>![Example of GLOSS]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Example of MATTE]</td>
<td>![Example of PRESSED]</td>
<td>![Example of SHEEN]</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See: "Using Data Skins" on page 1685

**DISCRETEOFFSET=numeric-value**  
specifies an amount to offset all lines from the discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**  
specifies that markers have a fill and an outline.

Requirement: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions: This option has no effect unless MARKERS is also specified.
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions** If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

**Interactions** If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

**GROUP=variable**
specifies a category variable to divide the values into groups. A separate plot is created for each unique value of the category variable.

**Interaction** If you specify more than one categorization plot statement, then all of the plots must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then the GROUP= option has no effect.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped lines.

**CLUSTER** grouped items are drawn adjacent to each other.

**OVERLAY** grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\( n \) style elements in the current style.

**Default** OVERLAY

**Interaction** This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**DATA** orders the groups within a category in data order of the group variable.

**REVERSEDATA** orders the groups within a category in the reverse data order of the group variable.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.
ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions: The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note: The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip: The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

**LEGENDLABEL=“text-string”**
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=style-element<(options)> | (options)**
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1
Interaction For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.
Tip The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.
Interaction Limit lines are displayed only when you specify STAT= MEAN.
Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following

CLM confidence limits

STDDEV standard deviation

STDERR standard error

Default If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.
Interaction If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.
Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or
DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

**LINEATTRS=**

`style-element <(options)> | (options)`
specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**MARKERATTRS=**

`style-element <(options)> | (options)`
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction: This option has no effect unless you also specify the MARKERS option.

**MARKERFILLATTRS=**

`style-element<(COLOR=color)> | (COLOR=color)`
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=**

`style-element <(options)> | (options)`
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interactions**

This option has no effect unless FILLOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKERS**

adds data point markers to the plot.

**MISSING**

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

**Interaction**

This option has no effect when FREQ= is specified.

**NAME=**"text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOLIMITCAPS**

suppresses the serif cap on limit lines, if limit lines are displayed.

**Note:** This feature applies to SAS Viya 3.5 and later releases.

**Interaction**

The appearance of the limit lines is controlled by the LIMITATTRS= option.

**NUMSTD=**$n$

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

**Default**

1
RESPONSE=\textit{response-variable} 
  specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the horizontal axis.

SPLITCHAR=\textit{"character-list"} 
  splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

\textit{"character-list"} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=\textit{"abc"} 

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip: If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP 
  specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT 
  specifies the horizontal alignment of the value text that is being split.
Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**

specifies the statistic for the horizontal axis. Specify one of the following:

**FREQ**

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

**MEAN**

the mean of the response variable.

Interaction: For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

**MEDIAN**

the median of the response variable.

Interaction: For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

**PERCENT**

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

**Note**

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

**SUM**

the sum of the response variable. This is the default value when you specify the RESPONSE= option.
Interaction  For this value to take effect, you must also specify the RESPONSE= option.

Defaults  SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction  If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction  When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL  specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults  The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions  This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)  a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE  suppresses the data tips from this plot.

Note:  This feature applies to SAS 9.4M1 and later releases.

Requirement  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;
Interaction  This option replaces all of the information that is displayed by default.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction  This option has no effect unless TIP= is also specified.

Note  A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip  Use the TIPLABEL= option to assign labels to the list of variables.

See  SAS Formats and Informats: Reference

Example  tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.
Example: `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

- Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
- **Default**: 0.0
- **Range**: 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

- Specifies an HTML page to be displayed when parts of the plot are selected.
- **character-variable**: specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.
- **Example**: `https://www.sas.com/en_us/home.html`
- **Default**: By default, no HTML links are created.
- **Interactions**: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

**Tip**: Use the `DRILLTARGET=` option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**WEIGHT=numeric-variable**

- Specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.
- **Requirement**: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
- **Interaction**: If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.
INSET Statement

Adds a text box to each panel cell of the graph.

Restriction: Only one INSET statement can be specified in the PROC SGPANEL step. If more than one is specified, the first inset is generated and a message is logged for the additional statements.

See: “About Text Insets” on page 37

Syntax

INSET variable <...variable-n> <options>;

Summary of Optional Arguments

Appearance options

BACKCOLOR=color
  specifies the background color of the inset.
BORDER
NOBORDER
  specifies whether to display a border around the text box.
NOLABEL
  suppresses the label.
OPAQUE
  forces the inset background to be opaque rather than transparent.
POSITION=position-value
  specifies the position of the text box within the plot.
SEPARATOR="string"
  specifies one or more characters to place between the data label and the data value.
TEXTATTRS=style-element<(options)> | (options)
  specifies the appearance of the text in the text box.
TITLE="text-string"
  specifies a title for the text box.
TITLEATTRS=style-element<(options)> | (options)
  specifies the appearance of the title.

Required Argument

variable <...variable-n>
  specifies one or more variables to use for the data-driven text inside the inset. Typically, the variable is a computed numeric value, such as a mean or a sum.
For non-computed variables, the statement displays the value of the first observation for each classification.

The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using the NOLABEL option.) The inset values come from the variable data.

Tip If the text does not fit in the space provided, the inset might become clipped. Use the TEXTATTRS= option to change the font size or other font characteristics.

Optional Arguments

**BACKCOLOR=**<br>
Specifies the background color of the inset. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default By default, the background is transparent.

Interaction If BACKCOLOR= is set, then the OPAQUE option is also set automatically.

**BORDER | NOBORDER**<br>
Specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

**NOLABEL**<br>
Suppresses the label.

Note: This feature applies to SAS 9.4M2 and later releases.

**OPAQUE**<br>
Forces the inset background to be opaque rather than transparent. This option is useful when a transparent background makes the text in the inset difficult to see. For example, if the inset is positioned on top of a histogram, specifying OPAQUE sets the inset off from the histogram.

Default The background is transparent unless BACKCOLOR= is also specified.

Interaction If BACKCOLOR= is specified, the background is always opaque.

**POSITION=**<br>
Specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
<tr>
<td>LEFT</td>
<td>RIGHT</td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.
SEPARATOR="string"
specifies one or more characters to place between the data label and the data value.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

---

With fonts that support Unicode, you can produce specific characters by specifying a hexadecimal value. A trailing x identifies a string as a hexadecimal value. You must also enclose the character specification in a special ODS handler string, in the format "\ESC\{Unicode \"hexadecimal-value\"x\}.

For example:

```plaintext
separator="\ESC\{unicode '03B1'x\};
```

This option produces the lowercase Greek letter alpha for the separator.

**Interaction**
This option is ignored if NOLABEL is also specified.

**TEXTATTRS=**<style-element><options>| (options)
specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Default**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Tip**
The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.

**Examples**

```plaintext
TEXTATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
TEXTATTRS=GraphDataText
```

**TITLE="text-string"
**
specifies a title for the text box. The title text is always center-aligned.

**TITLEATTRS=**<style-element><options>| (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Default**
GraphLabelText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Examples**

```plaintext
TITLEATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
TITLEATTRS=GraphLabelText
```
Example: Panel with Insets

/* Calculate the mean height and weight for the inset */
proc means data=sashelp.class nway;
   class sex;
   var weight height;
   output out=stats mean(weight)=mean_weight mean(height)=mean_height;
run;

/* Sort the data */
proc sort data=sashelp.class out=class;
   by sex;
run;

/* Match-merge the inset data with the original data */
data merged;
   merge class stats;
   by sex;
   label mean_height = "mean(height)";
   label mean_weight = "mean(weight)";
run;

proc sgpanel data=merged;
   panelby sex;
   histogram weight;
   density weight;
   inset mean_weight mean_height /
      position=topright textattrs=(style=italic)
         title="Averages";
run;

KEYLEGEND Statement

Add a legend to the plot.
Tip: You can define a legend item that can be included in the legend. For more information, see “LEGENDITEM Statement” on page 418. This feature applies to SAS 9.4M5 and later releases.

See: “Using Discrete Legends” on page 1636

Syntax

```
KEYLEGEND <"name-1" ..."name-n"> <options>;
```

Summary of Optional Arguments

Appearance options

- `ACROSS=n` specifies the number of columns in the legend.
- `BORDER` specifies whether the border around the legend is visible.
- `DOWN=n` specifies the number of rows in the legend.
- `LINELENGTH=dimension<units>` specifies the length of the line glyph for line entries in the legend.
- `OUTERPAD=dimension | (pad-options)` specifies the amount of extra space that is added outside the legend border.
- `POSITION=position-value` specifies the position of the legend within the graph outside of the axes.
- `TITLE="text-string"` adds a title to the legend.
- `TITLEATTRS=style-element<(options)> | (options)` specifies the appearance of the title.
- `VALUEATTRS=style-element<(options)> | (options)` specifies the appearance of the legend value labels.

Legend options

- `"name-1" ... "name-n"` specifies the names of one or more plots that you want to include in legend.
- `EXCLUDE=("item-name1" <"item-name2" ...>)` specifies a list of legend entries to exclude from the display.
- `SORTORDER=ASCENDING | DESCENDING | REVERSEAUTO` specifies the sort order to use for the legend entry labels.
- `TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL` specifies which visual attributes to display for legend entries in the legend.

Marker options

- `AUTOITEMSIZE`
specifies that all markers and swatches in the legend are sized in proportion to the font size used for the legend value labels.

**AUTOOUTLINE**

specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

**FILLASPECT=GOLDEN | positive-number**

specifies an aspect ratio for the fill swatches based on their height.

**FILLHEIGHT= dimension**

specifies the height of the fill swatches.

**SCALE=positive-number**

specifies a scale factor that is to be applied to the fill swatch height.

### Optional Arguments

**"name-1" ... "name-n"**

specifies the names of one or more plots that you want to include in legend. Each name that you specify must correspond to a value that you entered for the NAME= option in a plot statement.

You can specify names to control which plots are included in the legend. In addition, by specifying one or more names, you can use the KEYLEGEND statement to create a legend when no legend is created automatically.

**Note:** A KEYLEGEND statement without a "name" reference affects only the automatic legend.

**Default**

If you do not specify a name, then the legend contains references to all of the plots in the graph.

**Note**

The names specified here determine which plots are included, but not the labels that appear in the legend for those plots. To specify labels, use the LEGENDLABEL= option on the plot statements.

**ACROSS=n**

specifies the number of columns in the legend. By default, the number of columns is determined automatically.

**Note**

Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the ACROSS= option.

**AUTOITEMSIZE**

specifies that all markers and swatches in the legend are sized in proportion to the font size used for the legend value labels. These proportional sizes take effect regardless of the attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the color swatches are small compared to the labels. The second figure uses AUTOITEMSIZE to size the color swatches in proportion to the labels.
Use the VALUEATTRS= option to control the font size for the legend value labels.

**AUTOOUTLINE**
specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**Default**
When this option is not specified, the legend fill swatches are always outlined.

**Note**
The outlines are always 1 pixel wide with a solid pattern.

**BORDER | NOBORDER**
specifies whether the border around the legend is visible. The BORDER option shows the border. The NOBORDER option hides the border.

**Default**
**BORDER**

**DOWN=n**
specifies the number of rows in the legend. By default, the number of rows is determined automatically.

**Note**
Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the **DOWN=** option.

**EXCLUDE=(“item-name1” <“item-name2” ...>)**
specifies a list of legend entries to exclude from the display.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**Default**
No items are excluded.

**Requirement**
Each item name must be enclosed in quotation marks and separated from adjacent names by a space.

**Note**
When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.

**Tip**
For plots with groups, you can exclude specific group values.

**Example**
The following example excludes items Truck and Wagon from the legend.

\texttt{exclude=("Truck" "Wagon")}

**FILLASPECT=GOLDEN | positive-number**
specifies an aspect ratio for the fill swatches based on their height.

**Note:** This feature applies to **SAS 9.4M3** and later releases.
GOLDEN
specifies the golden ratio of 1.618 (width = 1.618 * height).

**positive-number**
specifies a custom aspect ratio.

**Default** The system determines the aspect.

**Interaction** This option is ignored when AUTOITEMSIZE is specified.

**Tip** Use FILLHEIGHT= to specify the height.

**FILLHEIGHT= dimension**
specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**Default** The system determines the height.

**Interaction** This option is ignored when AUTOITEMSIZE is specified.

**Tip** Use FILLASPECT= to specify the aspect ratio.

**LINELENGTH=dimension<units>**
specifies the length of the line glyph for line entries in the legend.

**Note:** This feature applies to SAS 9.4M2 and later releases.

The default units for **dimension** are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

**Default** The length is determined automatically by the system.

**OUTERPAD=dimension | (pad-options)**
specifies the amount of extra space that is added outside the legend border.

**dimension**
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

**(pad-options)**
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

**LEFT=dimension** specifies the amount of extra space added to the left side.

**RIGHT=dimension** specifies the amount of extra space added to the right side.

**TOP=dimension** specifies the amount of extra space added to the top.
BOTTOM=\textit{dimension} specifies the amount of extra space added to the bottom.

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} Use \textit{pad-options} to create non-uniform padding.

\textbf{Default} No padding

\textbf{Note} The default units for \textit{dimension} are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

\textbf{POSITION=\textit{position-value}} specifies the position of the legend within the graph outside of the axes. The positions are as follows:

- \textbf{BOTTOM} places the legend at the bottom of the graph.
- \textbf{LEFT} places the legend at the left side of the graph.
- \textbf{RIGHT} places the legend at the right side of the graph.
- \textbf{TOP} places the legend at the top of the graph.

\textbf{Default} BOTTOM

\textbf{Note} By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.

\textbf{SCALE=\textit{positive-number}} specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

\textbf{Note:} This feature applies to SAS 9.4M3 and later releases.

\textbf{Default} 1

\textbf{Restriction} This option does not apply to markers with pattern fills.

\textbf{Interaction} This option is ignored when AUTOITEMSIZE is specified.

\textbf{Tips} Use FILLHEIGHT= to change the base height.

Use FILLASPECT= to specify the width.

\textbf{SORTORDER=}\textit{ASCENDING} | \textit{DESCENDING} | \textit{REVERSEAUTO} specifies the sort order to use for the legend entry labels.

\textbf{Note:} This feature applies to \textit{SAS 9.4M2} and later releases.
The REVERSEAUTO value was added in SAS 9.4M5. This value reverses the order of the legend entry labels.

**Defaults**
When the procedure contains more than one plot statement, the default is based on the order of the plot statements.

For grouped data, the default is derived from the data order. If using SAS CAS data, the default is ASCENDING.

**Interaction**
This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

**Note**
Legend entries are sorted by the formatted values of the data.

**TITLE=**"text-string"
Annexes a title to the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

**Defaults**
In an auto-generated legend, no title is displayed unless the legend shows group values. If the legend shows group values, the group variable label is displayed when a label is assigned, or the group variable name is displayed when a label is not assigned.

In a custom legend created using plot NAME= options and a KEYLEGEND statement, by default, no legend title is displayed, even when the legend displays group values.

**Requirement**
`text-string` must be enclosed in quotation marks.

**Tips**
Use this option to add a title to a custom legend.

To suppress the default title in an auto-generated legend, specify `TITLE=""` in a KEYLEGEND statement as shown in the following example:

```sas
proc sgpanel data=sashelp.prdsale;
 panelby year;
 vline month / response=actual group=product;
 keylegend / title="";
run;
```

**TITLEATTRS=**`style-element<(<options>)> | (options)`
Specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Examples

\begin{verbatim}
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
\end{verbatim}

Here is an example that specifies a style element:

\begin{verbatim}
TITLEATTRS=GraphTitleText
\end{verbatim}

\textbf{TYPE=\texttt{FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL}}

specifies which visual attributes to display for legend entries in the legend.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M2} and later releases.

The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying \texttt{TYPE=MARKERSYMBOL} displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the \texttt{TYPE} specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords \texttt{FILLCOLOR} or \texttt{MARKERSYMBOL} result in the display of a single attribute. Other keywords (for example, \texttt{FILL}, \texttt{LINE}, or \texttt{MARKER}) result in legends that display a set of visual attributes. For example, the keyword \texttt{LINE} results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to \texttt{LINEPATTERN} or \texttt{MARKERSYMBOL}, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords \texttt{FILLCOLOR}, \texttt{LINECOLOR}, and \texttt{MARKERCOLOR}, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the \texttt{CONTRASTCOLOR} attribute of the GraphOutlines style element.

\textbf{Default} All attributes are displayed.

\textbf{VALUEATTRS=\texttt{style-element<(options)> | (options)}}

specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see \textit{“Text Attributes” on page 1658}.

\textbf{Defaults} Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData\textsubscript{1}...GraphData\textsubscript{n} style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples

\begin{verbatim}
VALUEATTRS=(Color=Green Family=Arial Size=8)
\end{verbatim}
Here is an example that specifies a style element:
valueattrs=GraphTitleText

Example

LegendItem Statement

Creates a legend item that can be included in the legend. The LEGENDITEM statement must be used with one or more plot statements. The procedure can contain multiple LEGENDITEM statements.

Notes:
This feature applies to SAS 9.4M5 and later releases.
When used with multiple plot statements, the order of the LEGENDITEM statement among the plot statements determines the legend item’s position in the automatic legend.
Any of the supported attribute options can be specified for a legend item regardless of its type. However, attribute options that do not apply to the specified TYPE= value are ignored. For example, the MARKERATTRS= option sets the attributes for a marker and is useful if you set TYPE=MARKER or TYPE=MARKERLINE. However, if TYPE= is set to a value that does not display a marker symbol, then the MARKERATTRS= option is ignored. Similarly, if you specify a marker legend item that uses a filled marker type, then specifying NOFILL has no effect.

See:  "KEYLEGEND Statement" on page 410

Syntax

```plaintext
LEGENDITEM TYPE=type NAME="text-string" <options>;
```

Summary of Optional Arguments

Appearance options

- **FILLATTRS=**<br>
  - `style-element <options> | (options)`
  - specifies the fill color and transparency when TYPE= is set to FILL.
- **FILLEDOUTLINEDMARKERS**
  - specifies that a filled marker also has an outline.
- **LINEATTRS=**<br>
  - `style-element <options> | (options)`
  - specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE.
- **MARKERATTRS=**<br>
  - `style-element <options> | (options)`
  - specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE.
- **NOFILL**
- **NOOUTLINE**
  - hides the fill or outline of the fill swatch for the legend item
- **OUTLINEATTRS=**<br>
  - `style-element <options> | (options)`
  - specifies the appearance of the outline when TYPE= is set to FILL.
- **TEXT=**<br>
  - `"text-string"`<br>
  - specifies the text to display when TYPE= is set to TEXT.
- **TEXTATTRS=**<br>
  - `style-element | style-element (text-options) | (text-options)`
  - specifies the color and font properties of the legend item when TYPE is set to TEXT.

Label options

- **LABEL=**<br>
  - `"text-string"`
  - specifies a label to be used for the item in the legend.
- **LABELATTRS=**<br>
  - `style-element <options> | (options)`
  - specifies the color and font attributes of the legend item’s label.

Required Arguments

- **TYPE=**<br>
  - `FILL | MARKER | MARKERLINE | LINE | TEXT`
  - specifies the type of legend item.
FILL
specifies a fill (displayed as a filled square). The appearance can be managed with the FILLATTRS= and OUTLINEATTRS= options.

MARKER
specifies a marker. The appearance can be managed with the MARKERATTRS= option.

MARKERLINE
specifies a marker and a line. The appearance can be managed with the MARKERATTRS= and LINEATTRS= options.

LINE
specifies a line. The appearance can be managed with the LINEATTRS= option.

TEXT
specifies text that can be displayed in the legend area. The text string is defined with the TEXT= option, and the text appearance can be managed with the TEXTATTRS= option.

NAME="text-string"
assigns a name to the legend item for reference in a KEYLEGEND statement.

Note The text-string is case-sensitive and must define a unique name within the procedure. The text-string must be enclosed in quotation marks.

Optional Arguments

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency when TYPE= is set to FILL. You can specify the color by using a style element or by specifying a specific option. If you specify a style element, you can also specify options to override the color.

Note: TRANSPARENCY cannot be derived from the style element, but it can be set in the options.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction This option has no effect if you specify the NOFILL option.

FILLEDOUTLINEDMARKERS
specifies that a filled marker also has an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless TYPE= is set to MARKER or MARKERLINE.

Use the FILLATTRS= and OUTLINEATTRS= options to specify attributes for the fill and outline.
Note When this option is specified, the default fill color is the color that is in effect for the FILLATTRS= option. The default line color is the color that is in effect for the OUTLINEATTRS= option. The default transparency is the transparency in effect for the MARKERATTRS= option (the transparency in the FILLATTRS= option is not honored).

LABEL="text-string"
specifies a label to be used for the item in the legend.

Default No label is displayed

Tip You can specify the font and color attributes for the label with the LABELATTRS= option.

LABELATTRS=style-element <options> | (options)
specifies the color and font attributes of the legend item’s label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Interaction For this option to take effect, the LABEL= option must also be specified.

LINEATTRS=style-element <options> | (options)
specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphDataDefault style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <options> | (options)
specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default GraphDataDefault style element in the current style. The affected attributes are ContrastColor, MarkerSize, and MarkerSymbol.

NOFILL | NOOUTLINE
hides the fill or outline of the fill swatch for the legend item

Default The fill and outline are shown.
Interactions

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

If you specify a marker legend item that uses a filled marker type, then specifying NOFILL has no effect.

**OUTLINEATTRS=**

If NOOUTLINE is also specified.

**TEXT=**

If this option is not specified in a legend item with TYPE=TEXT, then a default blank space is used.

**TEXTATTRS=**

specifies the color and font properties of the legend item when TYPE is set to TEXT. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Details**

The LEGENDITEM statement creates a definition for a legend item that can be included in a legend. The item that you define is independent of the data and enables you to customize the legend to enhance or replace a standard legend. For example, to display annotation text within the legend area, you can define a LEGENDITEM statement with TYPE=TEXT and specify the text in the TEXT= option.
The LEGENDITEM statement must be used with one or more plot statements within the procedure. The legend item is included in the automatically generated legend. The legend contains the legend item along with entries for the other plot statements. Note the following behaviors:

- When used with multiple plot statements, the order of the LEGENDITEM statement among the plot statements determines the legend item's position in the automatic legend.
- If a plot statement includes a group, then only the group plot shows up in the automatic legend by default.

You can override the automatic legend functionality with the KEYLEGEND statement. A single KEYLEGEND statement can reference one or more legend item names the same way it references plot names. Each legend item name that you specify must correspond to a value that you entered for the NAME= option in the LEGENDITEM statement.

See also “KEYLEGEND Statement” on page 410.

### Example

This example scatter plot shows the city miles per gallon (MPG) and the manufacturer’s suggested retail price (MSRP) for a group of vehicles. A Loess fit plot is also included. Without the LEGENDITEM statement, the auto-generated legend shows each of the six group values for vehicle type. The legend does not include the Loess plot.

*Figure 8.8 Graph without the LEGENDITEM or KEYLEGEND Statements*

In this example, the goal is to present the overall trend of vehicle prices and MPG rather than focus on individual vehicle types. The detailed legend shown in the previous figure is not needed.

The example shows how to customize the legend to do the following:

- combine all the vehicle types into a single legend entry
include the Loess plot

In the following program, the LEGENDITEM statement is used to represent all the vehicle types within a single legend entry. The legend item is a marker that matches the scatter plot that it represents. The marker is given a neutral color so as not to be associated with any one of the vehicle types. The KEYLEGEND statement includes both the legend item and the Loess plot.

```
title "MSRP and MPG for Various Vehicle Types";
proc sgpanel data=sashelp.cars;
 where origin in ("Asia" "Europe");
 panelby origin;
 scatter x=mpg_city y=msrp / group=type;
 loess x=mpg_city y=msrp / nomarkers name="fit";
 legenditem type=marker name="car_types" /
 label="Vehicle types"
 markerattrs=(color=black symbol=circle);
 keylegend "fit" "car_types";
run;
title;
```

The result is a legend with a single entry for vehicles and an entry for the Loess plot.

**Output 8.1**  Graph with the LEGENDITEM and KEYLEGEND Statements

---

**LINEPARM Statement**

Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.

**Requirement:** The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

**Example:** “About Parameterized Lines” on page 27
Syntax

LINEPARM X=numeric-value | numeric-variable
Y=numeric-value | numeric-variable
SLOPE=numeric-value | numeric-variable
<option(s)>;

Summary of Optional Arguments

Appearance options

  ATTRID=character-value
    specifies the value of the ID variable in a discrete attribute map data set.

  LINEATTRS=style-element<(options)> | (options)
    specifies the appearance of the line.

  NOEXTEND
    prevents the line from being extended beyond the axis offset.

  TRANSPARENCY=value
    specifies the degree of transparency for the plot.

Group options

  GROUP=variable
    specifies a variable that is used to group the data.

  NOMISSINGGROUP
    specifies that missing values of the group variable are not included in the plot.

Label options

  CURVELABEL "text-string"
    adds a label for the line.

  CURVELABELATTRS=style-element<(options)> | (options)
    specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

  CURVELABELPOS=MAX | MIN
    specifies the location of the curve label.

  LEGENDLABEL="text-string"
    specifies a label that identifies the plot in the legend.

  SPLITCHAR="character-list"
    specifies one or more characters used to split the text used for curve labels into multiple lines.

  SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.

  SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Plot options

  CLIP
    specifies that the data for the line is ignored when determining the data ranges for the axes.
Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

**X=numeric-value | numeric-variable**
specifies the X coordinate of a point.

**Notes**
Values are in the units of the data.

If the value specified for the X= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**Y=numeric-value | numeric-variable**
specifies the Y coordinate of a point.

**Notes**
Values are in the units of the data.

If the value specified for the Y= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**SLOPE=numeric-value | numeric-variable**
specifies the slope of the line. The slope can be positive or negative.

**Tips**
SLOPE=0 creates a horizontal line (parallel to the X axis).
SLOPE=. (missing value) creates a vertical line (parallel to the Y axis).

Optional Arguments

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**See** Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps” on page 1733

**CLIP**
specifies that the data for the line is ignored when determining the data ranges for the axes. Each axis scale is determined by the other plots in the overlay. This might result in the line not being displayed if its data range is not within the data ranges of the other plots. This option ensures that the line is displayed.
CURVELABEL <="text-string"> 
adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=style-element<(options)> | (options) 
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MAX | MIN 
specifies the location of the curve label. Specify one of the following values:

MIN  
places the curve label at the minimum value for the X axis.

MAX  
places the curve label at the maximum value for the X axis.

Default MAX

Interaction This option has no effect unless CURVELABEL is also specified.

GROUP=variable 
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “LineParm” is used (if you specify a numeric value for Y) or the Y variable name is used (if you specify a variable for Y).

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Default

Values are not split.

Interactions

This option has no effect unless CURVELABEL is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

LOESS Statement

Creates a fitted loess curve.

Restriction:

Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.
See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Loess Plots” on page 42

Syntax

```
LOESS X=numeric-variable Y=numeric-variable </options>;
```

Summary of Optional Arguments

**Appearance options**

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `LINEATTRS=style-element (<options>)` specifies the appearance of the fit curve.
- `NOMARKERS` removes the scatter markers from the plot.
- `SMOOTH=numeric-value` specifies a smoothing parameter value.
- `TRANSPARENCY=value` specifies the degree of transparency for the plot.

**Data tip options**

- `TIP=(variable-list) | NONE` specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
- `TIPFORMAT=(format-list)` applies formats to the list of data tip variables that you specify in the TIP= option.
- `TIPLABEL=(label-list)` applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- `GROUP=variable` specifies a classification variable to divide the values into groups.

**Label options**

- `CURVELABEL <"text-string">` adds a label for the curve.
- `CURVELABELATTRS=style-element<(options)> | (options)` specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
- `CURVELABELPOS=MIN | MAX | START | END` specifies the location of the curve label.
- `DATALABEL <variable>`
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when
there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the fit line in the legend.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLM <"text-string">
creates confidence limits.

CLMATTRS =style-element | (CLM-attrs-suboptions )
specifies the appearance of the mean value confidence limits by using an
ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have
the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local
regression.

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

**MAXPOINTS=n**
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

**REWEIGHT=n**
specifies the number of iterative reweighting steps to apply to the data.

**WEIGHT=numeric-variable**
specifies how observations are weighted.

### Plot reference options

**NAME="text-string"**
specifies a name for the plot.

### Required Arguments

**X=numeric-variable**
specifies the variable for the X axis.

**Y=numeric-variable**
specifies the variable for the Y axis.

### Optional Arguments

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits.

- Default: 0.05
- Range: 0.01 (complete confidence) to 0.99 (no confidence)
- Interaction: This option has no effect unless you also specify the CLM option.

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**CLM <="text-string"**
creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the ALPHA= option.

**CLMATTRS =style-element | (CLM-attrs-suboptions)**
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

---

**Note:** The CLMATTRS= option has no effect unless you also specify the CLM option.

---

**CLM-attrs-suboptions** can be the following suboptions:
CLMFILLATTRS=style-element <(options)> | (options)

Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interactions  CLMFILLATTRS= has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.

The transparency specified with this option overrides the CLMTRANSPARENCY= option.

Tip  If you want to display only the outlines, starting with SAS Viya 3.5, you can specify the OUTLINE and NOFILL suboptions.

Example  clmattrs=(clmfillattrs=(color=red transparency=.8))

CLMLINEATTRS=style-element <(options)> | (options)

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with the SAS Viya 3.5 you can specify the OUTLINE suboption.

Default  GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction  Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example  clmattrs=(outline clmlineattrs=(color=red thickness=8))

FILL

specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note:  This suboption is available with the SAS Viya 3.5 and later releases.

Default  FILL

Interaction  If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.
OUTLINE
NOOUTLINE

specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOOUTLINE

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Interaction The CLMATTRS= option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY= numeric-value

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL <="text-string”>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS= style-element (options) | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

**Interaction**
This option has no effect unless the CURVELABEL option is also specified.

**Examples**

```markdown
CURVELABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```markdown
CURVELABELATTRS=GraphTitleText
```

**CURVELABELPOS=MIN | MAX | START | END**

specifies the location of the curve label. Specify one of the following values:

**MIN**
places the label at the part of the curve closest to the minimum X-axis value.

**MAX**
places the label at the part of the curve closest to the maximum X-axis value.

**START**
places the curve label at the first point on the curve.

**END**
places the curve label at the last point on the curve.

**Defaults**
END

**Interaction**
This option has no effect unless the CURVELABEL option is also specified.

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**Interaction**
This option has no effect if you also specify the NOMARKERS option.

**DATALABELATTRS=style-element<\(options\)> | \(options\)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**

```markdown
DATALABELATTRS=(Color=Green Family="Arial" Size=8
```

LOESS Statement 435
Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

**Interactions**
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DEGREE=1 | 2**
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1

**FILLEDOUTLINEMARKERS**
specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

**Interaction**
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**GROUP=variable**
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

**Interactions**
If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

**INTERPOLATION=CUBIC | LINEAR**
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.
Default:  LINEAR

**JITTER**

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="default.png" alt="Default" /></td>
<td><img src="jitter_specified.png" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

Default: Markers that represent the same response value are overlaid, which results in some markers being obscured.

**Notes**

This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the fit line in the legend. By default, the label “Loess” is used, along with the value of the SMOOTH= option if specified.

**LINEATTRS=**style-element <(options)> | (options)

specifies the appearance of the fit curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Defaults**

For grouped data, GraphData1 ... GraphData$n$ style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Note**

If you overlay multiple Loess plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData$n$ style elements are used instead for the ContrastColor and LineStyle.
attributes. In this case, the LineThickness attribute comes from the GraphFit element.

**MARKERATTRS=** *style-element* *(options)* | *(options)*

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**MARKERFILLATTRS=** *style-element* *(COLOR=color)* | *(COLOR=color)*

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=** *style-element* *(options)* | *(options)*

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see "Marker Fills and Outlines" on page 1645.

**MAXPOINTS=n**
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default 201

**NAME="text-string"**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The *text-string* is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOLEGCLM**
hides the legend entry for the mean value confidence limits.

**NOLEGFIT**
hides the legend entry for the fit line.

**NOMARKERS**
removes the scatter markers from the plot.

**REWEIGHT=n**
specifies the number of iterative reweighting steps to apply to the data.

Default 0

**SMOOTH=numeric-value**
specifies a smoothing parameter value.

Default A smoothing value is determined automatically.

Range (0,1]

See What is loess regression? on blogs.sas.com.

The LOESS Procedure in SAS/STAT User's Guide for information about the fitting methodology that the LOESS statement uses.

**SPLITCHAR="character-list"**
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"*character-list*" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**  
Values are not split.

**Interactions**  
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**  
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**  
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

**See**  
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**  
specifies that the split characters are included in the displayed value.

**Interaction**  
This option has no effect unless SPLITCHAR= is also specified.

**See**  
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=**  
LEFT | CENTER | RIGHT  
specifies the horizontal alignment of the value text that is being split.

**Interaction**  
This option has no effect unless you specify the SPLITCHAR= option.

**See**  
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**TIP=**  
(variable-list) | NONE  
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)  
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE  
suppresses the data tips from this plot.
Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

NEEDLE Statement

Creates a plot with needles connecting each point to the baseline.

Restriction:  The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

See:  “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:  “About Needle Plots” on page 29

Syntax

NEEDLE X=variable Y=numeric-variable <options>;
Summary of Optional Arguments

Appearance options

- **ATTRID=**character-value
  specifies the value of the ID variable in a discrete attribute map data set.

- **BASELINEATTRS=**style-element <(options)> | (options)
  specifies the appearance of the baseline.

- **DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=**numeric-value
  specifies an amount to offset all needle lines from discrete X values.

- **DISPLAYBASELINE=**AUTO | ON | OFF
  specifies whether the baseline is displayed.

- **LINEATTRS=**style-element <(options)> | (options)
  specifies the appearance of the needle lines.

- **TRANSPARENCY=**value
  specifies the degree of transparency for the plot.

Data tip options

- **TIP=**(variable-list) | NONE
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=**(format-list)
  applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=**(label-list)
  applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

- **CLUSTERWIDTH=**numeric-value
  specifies the width of the group clusters as a fraction of the midpoint spacing.

- **GROUP=**variable
  specifies a variable that is used to group the data.

- **GROUPDISPLAY=**CLUSTER | OVERLAY
  specifies how to display grouped needles.

- **GROUPORDER=**DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

- **NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.

Label options

- **DATALABEL <=**variable>
  displays a label for each data point.

- **DATALABELATTRS=**style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=**position
  specifies the location of the data label with respect to the plot.
LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERS
adds markers to the tips of the needles.

Plot options

BASELINE=numeric-value
specifies a value on the Y axis for the baseline.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=variable
specifies the variable for the X axis.

Y=numeric-variable
specifies a numeric variable for the Y axis.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BASELINE=numeric-value
specifies a value on the Y axis for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the axis.

Default 0
The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=** *style-element* *(options)*
specifies the appearance of the baseline.

**Note:** This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**
The GraphAxisLines style element in the current style.

**Notes**
The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**CLUSTERWIDTH=** *numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

**Default**
0.8

**Interactions**
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**DATALABEL** *
variables* 

Displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**DATALABELATTRS=** *style-element* *(options)*
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATRRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATRRS=GraphLabelText

**DATALABELPOS=** *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 8.27** DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.
Table 8.28  DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Default  NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all needle lines from discrete X values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default  0.0 (no offset)

Requirement  This option is applicable only when the X axis is discrete.

DISPLAYBASELINE=AUTO | ON | OFF
specifies whether the baseline is displayed.

Note:  This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO  displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative needles. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON  always displays the baseline.

OFF  hides the baseline.
Default

ON

Tip

To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped needles.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData style elements in the current style.

Default

OVERLAY

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced. The size could be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.
DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.
Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction

This option has no effect unless you also specify the MARKERS option.

MARKERS

adds markers to the tips of the needles.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

*Interaction* This option has no effect unless SPLITCHAR= is also specified.

*See* “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=** **LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

*Interaction* This option has no effect unless you specify the SPLITCHAR= option.

*See* “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**TIP=**(variable-list) **| NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to **SAS 9.4M1** and later releases.

**Requirement**
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

*Interaction* This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

**TIPFORMAT=**(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.
Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

Specifies an HTML page to be displayed when parts of the plot are selected.

A character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example: https://www.sas.com/en_us/home.html

Default: By default, no HTML links are created.
Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

PBSPLINE Statement

Creates a fitted penalized B-spline curve.

Restriction: Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

See:
“Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Penalized B-Spline Plots” on page 43

Syntax

```
PBSPLINE X=numeric-variable Y=numeric-variable <options>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.

- **LINEATTRS=style-element <(options)> | (options)**
  specifies the appearance of the fitted curve.

- **N KNOTS=n**
  specifies the number of evenly spaced internal knots.

- **SM OOTH=numeric-value**
  specifies a smoothing parameter value.
TRANSPARENCY=value
    specifies the degree of transparency for the plot.

Data tip options
    TIP=(variable-list) | NONE
    specifies the data tip information to be displayed when the cursor is
    positioned over the graphics element.
    TIPFORMAT=(format-list)
    applies formats to the list of data tip variables that you specify in the TIP=
    option.
    TIPLABEL=(label-list)
    applies labels to the list of data tip variables that you specify in the TIP=
    option.

Label options
    CURVELABEL ="text-string">
    adds a label for the curve.
    CURVELABELATTRS=style-element<(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    CURVELABEL= option.
    CURVELABELPOS=MIN | MAX | START | END
    specifies the location of the curve label.
    DATALABEL =variable>
    displays a label for each data point.
    DATALABELATTRS=style-element<(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    DATALABEL= option.
    DATALABELPOS=position
    specifies the location of the data label with respect to the plot.
    SPLITCHAR="character-list"
    splits the text for curve and data labels at the specified characters when
    there is not enough room to display the text normally.
    SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.
    SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Legend options
    LEGENDLABEL="text-string"
    specifies a label that identifies the B-spline curve in the legend.
    NOLEGCLI
    hides the legend entry for the individual value prediction limits.
    NOLEGCLM
    hides the legend entry for the mean value confidence limits.
    NOLEGFIT
    hides the legend entry for the fit line.

Limit options
    CLI ="text-string">
    creates confidence limits for the individual predicted values.
    CLIATTRS=style-element | (CLI-attrs-suboptions)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

```
CLM ="text-string";
```

creates confidence limits.

```
CLMATTRS =style-element | (CLM-attrs-suboptions)
```

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

```
CLMTRANSPARENCY=numeric-value
```

specifies the degree of transparency for the confidence limits.

**Marker options**

```
FILLEDOUTLINEDMARKERS
```

specifies that markers have a fill and an outline.

```
JITTER
```

specifies that data markers are offset when multiple observations have the same response value.

```
MARKERATTRS=style-element <(options)> | (options)
```

specifies the appearance of the markers in the plot.

```
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
```

specifies the color of the marker fill.

```
MARKEROUTLINEATTRS=style-element <(options)> | (options)
```

specifies the appearance of the marker outlines.

```
NOMARKERS
```

removes the scatter markers from the plot.

**PBSPLINE options**

```
MAXPOINTS=n
```

specifies the maximum number of predicted points for the spline curve and for any confidence limits.

**Plot options**

```
ALPHA=numeric-value
```

specifies the confidence level for the confidence limits.

```
DEGREE=n
```

specifies the degree of the spline transformation.

```
FREQ=numeric-variable
```

specifies a variable for the frequency count for each observation in the input data.

```
GROUP=variable
```

specifies a classification variable to divide the values into groups.

```
WEIGHT=numeric-variable
```

specifies how observations are weighted.

**Plot reference options**

```
NAME="text-string"
```

specifies a name for the plot.

**Required Arguments**

```
X=numeric-variable
```

specifies the variable for the X axis.
Y=numeric-variable
specifies the variable for the Y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.
Default .05
Range 0.01 (complete confidence) to 0.99 (no confidence)
Interaction This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

CLI <="text-string">
creates confidence limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits. The confidence level is set by the ALPHA= option.

CLIATTRS=style-element | (CLI-attrs-suboptions)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

Note: The CLIATTRS= option has no effect unless you also specify the CLI option.

CLI-attrs-suboptions can be the following suboptions:

CLIFILLATTRS=style-element <(options)> | (options)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default GraphConfidence style element in the current style for ungrouped data. The affected attributes are Color and Transparency.

Interaction The CLIFILLATTRS= suboption has no effect unless you also specify the FILL suboption.

Example cliattrs=(fill clifillattrs=(color=yellow transparency=.8))
CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Example cliattrs=(clilineattrs=(color=orange pattern=longdash thickness=8px))

FILL NOFILL
specifies whether the prediction band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOFILL

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE NOOUTLINE
specifies whether the prediction band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default OUTLINE

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Default The default style element for CLIATTRS= is GraphPredictionLimits.

Interaction The CLIATTRS= option has no effect unless you also specify the CLI option.

CLM <="text-string">
creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the ALPHA= option.

CLMMATTRS =style-element | (CLM-attrs-suboptions )
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

Note: The CLMMATTRS= option has no effect unless you also specify the CLM option.
CLM-attrs-suboptions can be the following suboptions:

**CLMFILLATTRS=**<style-element> *(options)*

Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interactions **CLMFILLATTRS=** has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.

The transparency specified with this option overrides the **CLMTRANSPARENCY=** option.

Tip If you want to display only the outlines, starting with **SAS Viya 3.5**, you can specify the OUTLINE and NOFILL suboptions.

Example
```
clmattrs=(clmfillattrs=(color=red transparency=.8))
```

**CLMLINEATTRS=**<style-element> *(options)*

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with the **SAS Viya 3.5**, you can specify the OUTLINE suboption.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example
```
clmattrs=(outline clmlineattrs=(color=red thickness=8))
```

**FILL**

**NOFILL**

specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

---

**Note:** This suboption is available with the **SAS Viya 3.5** and later releases.

---

Default **FILL**

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.
OUTLINE
NOOUTLINE

specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOOUTLINE

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Interaction The CLMATTRS= option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL <="text-string”>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=style-element<options> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of
the GraphData1...GraphData n style elements.

**Interaction**
This option has no effect unless the CURVELABEL option is also
specified.

**Examples**
CURVELABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

**CURVELABELPOS=MIN | MAX | START | END**
specifies the location of the curve label. Specify one of the following values:

**MIN**
places the label at the part of the curve closest to the minimum X-axis value.

**MAX**
places the label at the part of the curve closest to the maximum X-axis value.

**START**
places the curve label at the first point on the curve.

**END**
places the curve label at the last point on the curve.

**Default**
END

**Interaction**
This option has no effect unless the CURVELABEL option is also
specified.

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, then the values of
that variable are used for the data labels. If you do not specify a variable, then
the values of the Y variable are used for the data labels.

**Interaction**
This option has no effect if you also specify the NOMARKERS
option.

**DATALABELATTRS=style-element<options> | (options)**
specifies the appearance of the labels in the plot when you use the
DATALABEL= option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also
specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**
GraphDataText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight .

Color attribute of the GraphDataText style element in the current
style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of
the GraphData1...GraphData n style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also
specified.

**Examples**
DATALABELATTRS=(Color=Green Family="Arial" Size=8
Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

**DATALABELPOS=position**

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**DEGREE=n**

specifies the degree of the spline transformation.

Default: 3

Ranges: 0–174 in SAS 9.4M1 and earlier releases.

0–10 starting with SAS 9.4M2.

Restriction: Starting with SAS 9.4M2, DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**Requirement**

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

**Interaction**

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated *n* times for computational purposes, where *n* is the value of the numeric variable.

**Restriction**

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

**Note**

If the value is not an integer, only the integer portion is used.
GROUP=variable
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interactions If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is specified, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Image" /></td>
<td><img src="image2.png" alt="JITTER Specified Image" /></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults For grouped data, GraphData1 ... GraphDataN style elements in the current style are used. The affected attributes are ContrastColor and
LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Note** If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData\(n\) style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

**MARKERATTRS=**

Sets the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**MARKERFILLATTRS=**

Sets the color of the marker fill. You can specify colors using different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**MARKEROUTLINEATTRS=**

Sets the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

**Interactions**
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

### MAXPOINTS=\(n\)

specifies the maximum number of predicted points for the spline curve and for any confidence limits.

**Default**
201

### NAME=\"text-string\"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**
The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

### NKNOTS=\(n\)

specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots are usually enough to follow the functional form found in most data.

**Default**
100

**Range**
0 to 1000

### NOLEGCLI

hides the legend entry for the individual value prediction limits.

### NOLEGCLM

hides the legend entry for the mean value confidence limits.

### NOLEGFIT

hides the legend entry for the fit line.

### NOMARKERS

removes the scatter markers from the plot.

### SMOOTH=\textit{numeric-value}

specifies a smoothing parameter value.
A smoothing value that minimizes a lack-of-smoothness penalty is determined automatically.

**Range**

[0,1]

**Tip**

Specify SMOOTH=0 for an ordinary B-spline fit.

**See**

The TRANSREG Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the PBSPLINE statement uses.

**SPLITCHAR=**"character-list"

plits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**

Values are not split.

**Interactions**

This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.
See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=**LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

---

**Note:** This feature applies to SAS 9.4M1 and later releases.

---

**Requirement** You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```text
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

**Note** The option affects only the scatter plot in this statement.

**Tip** Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```text
tip=(age weight)
```

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default** The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation's weight is zero, negative, or missing, the observation is deleted from the analysis.
Starting with SAS 9.4M2, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

POLYGON Statement

Draws a polygon from data stored in a data set.

Restrictions:
You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

The POLYGON statement does not support data that resides in a CAS in-memory table. Only SAS data sets are supported for polygons.

Note: This feature applies to SAS 9.4M1 and later releases.

Syntax

POLYGON X=x-variable Y=y-variable ID=id-variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BACKLIGHT<=number
specifies that label text should have a back light of a contrasting color.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

FILL
NOFILL
specifies whether the polygons are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLPATTERN
enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.
LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the polygon outline.

OUTLINE
NOOUTLINE
specifies whether the polygons have outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

ROTATE=numerical-column | number
specifies the angle of rotation for the polygon measured in degrees.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

XOFFSET=numerical-value | numerical-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

YOFFSET=numerical-value | numerical-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is specified.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LABEL <=variable>
specifies a label for the polygon curve.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot.

LABELLOC=INSIDEBOX | OUTSIDEBOX
specifies the location of the polygon label.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=x-variable

specifies the variable for the X values.

Y=y-variable

specifies the variable for the Y values.

ID=id-variable

specifies the variable for the ID values that identify the polygon or polygons. All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.

Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BACKLIGHT<=number>

specifies that label text should have a back light of a contrasting color. When you specify the BACKLIGHT option, you can also specify a number. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.
The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).

### Defaults
0 (no back-light effect) when the BACKLIGHT option is not used.

When no number is specified for the BACKLIGHT option, the default is 0.5 when no GROUP= or COLORRESPONSE= option is used. The default is 0.75 when the GROUP= or COLORRESPONSE= option is used.

### Range
0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

### Note
This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

### COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
colormodel=TwoColorRamp

**color-list**
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

**Example** `colormodel=(blue yellow green)`

**Default** The ThreeColorRamp style element for filled polygons. The ThreeColorAltRamp style element for unfilled polygons.

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**COLORRESPONSE=numeric-column** specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction** When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

**Tip** The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See** “GRADLEGEND Statement” on page 259

“Using Gradient Color Legends” on page 1637

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN** specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

**Table 8.29 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

FILL | NOFILL
specifies whether the polygons are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.

Default NOFILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATRGS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility note This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips Use the FILLPATTERNATRGS= option to specify the appearance of the fill pattern.
Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=style-element <(options)> | (options)**
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**options** can be one or both of the following:

**COLOR=style-reference | color**
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=style-reference | line-pattern**
specifies the type of line pattern to use for the fill.

**line-pattern** is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

<table>
<thead>
<tr>
<th>Table 8.30  Fill Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pattern Name</strong></td>
</tr>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L4</td>
</tr>
<tr>
<td>L5</td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value,
specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**GROUP=variable**

creates a separate polygon color or outline pattern for each unique grouping that is specified. The plot elements for each group value are automatically distinguished by different visual attributes.

The polygon attributes for each unique group value are derived from the GraphData1–GraphDataN and GraphMissing style elements. If the polygon is filled, then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR attribute is used for the polygon outline. If the polygon is not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

**LABEL <=variable>**

specifies a label for the polygon curve.

**LABELATTRS=<style-element><(options)> | (options)**

specifies the appearance of the labels in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Interaction  This option has no effect unless the LABEL= option is also specified.

Examples  LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphValueText

LABELLOC=INSIDEBBOX | OUTSIDEBBOX
specifies the location of the polygon label.

INSIDEBBOX
inside the polygon.

OUTSIDEBBOX
outside the polygon but inside the plot area.

Default  INSIDEBBOX

Interactions  This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELPOS= option.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label. Specify one of the following values:

CENTER
centers the label.

Interaction  LABELPOS=CENTER has no effect if you also specify LABELLOC=OUTSIDEBBOX. The default label position is used in this case.

XMIN
places the label at the part of the polygon closest to the minimum X-axis value, centered in the Y-axis range.

XMAX
places the label at the part of the polygon closest to the maximum X-axis value, centered in the Y-axis range.

YMIN
places the label at the part of the polygon closest to the minimum Y-axis value, centered in the X-axis range.

YMAX
places the label at the part of the polygon closest to the maximum Y-axis value, centered in the X-axis range.

Default  CENTER

Interactions  This option has no effect unless the LABEL= option is also specified.
The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELLOC= option.

When LABELLOC=OUTSIDE, increasing the length of the label might cause the available plot area to decrease. Also, when LABELLOC=OUTSIDE, the label might collide with the axis ticks and tick values.

**LEGENDDLABEL=“text-string”**
specifies the label that identifies the polygon in the legend.

**LINEATTRS=style-element<options> | (options)**
specifies the appearance of the polygon outline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Defaults**
For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attributes of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1 – GraphData n style elements.

**Interactions**
This option is ignored if the NOOUTLINE option is also specified.

This option is ignored if the DATASKIN= option is also specified.

**Note**
If this option is used with grouped data, the COLOR= suboption has the effect of holding the polygon outline color constant across all group values.

**NAME=“text-string”**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**
The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

**Interaction**
This option has no effect unless GROUP= is also specified.

**OUTLINE | NOOUTLINE**
specifies whether the polygons have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default**
OUTLINE

**Interaction**
If NOOUTLINE and NOFILL are both specified, then both options are ignored.
Tip
Use the LINEATTRS= option to control the appearance of the outline.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

ROTATE=numeric-column | number
specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counterclockwise direction, and negative angles are measured in the clockwise direction.

Default 0 (no rotation is performed)

Interaction When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEbbox and CENTER respectively.

Notes An angle that exceeds 360 degrees in absolute value can be specified.

Rotating a polygon might cause clipping in some cases.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon. Specify one of the following:

AUTO
rotates the label with the rotation of the polygon.

NONE
do not rotate the label with the rotation of the polygon. The label position remains fixed regardless of the polygon rotation.

VERTICAL
rotates the label to a vertical position.

Default AUTO

Interaction If ROTATION= is also specified, then ROTATELABEL=VERTICAL is ignored.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

**Default**
A single space

**Interactions**
This option has no effect unless LABEL= is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=** *LEFT | CENTER | RIGHT*
specifies the horizontal alignment of the value text that is being split.

**Interaction**
This option has no effect unless you specify the SPLITCHAR= option.

**See**
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**TIP=**(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**
suppresses the data tips from this plot.

**Requirement**
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

**Interaction**
This option replaces all of the information that is displayed by default.
Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

**TIPFORMAT=(format-list)**

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

**Note** A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example tifformat=(auto F5.2)

**TIPLABEL=(label-list)**

Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)
Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

**URL=** *character-variable*
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**  https://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGemap in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

XOFFSET= *numeric-value | numeric-variable*
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Default 0.0 (no offset)
Range −0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.

Requirement The X axis must be discrete.

YOFFSET= *numeric-value | numeric-variable*
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Default 0.0 (no offset)
Range −0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.

Requirement The Y axis must be discrete.
Details

Overview

The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point to the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.

Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.

Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.

Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
- specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.
- specify an HTML page to display when the selectable polygon is clicked.

Drawing a Single Polygon

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

```plaintext
data polydata;
  input id $1-2 x y;
datalines;
P1  40  100
P1  20  220
P1 160 200
P1  180 80
P1  40  100;
run;
proc sgplot data=polydata;
polygon X=x Y=y ID=id / fill outline;
run;
```

The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.

Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the
order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

data polydata;
 input id x y;
datalines;
 1 0 0
 1 20 0
 1 20 30
 1 0 30
 1 0 0
 2 30 0
 2 50 0
 2 40 30
 2 30 0
 3 60 0
 3 80 5
 3 80 15
 3 70 30
 3 60 30
 3 60 0
 ;
run;

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.

The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the
starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Example

For examples, see the following examples as used in the SGPLOT procedure:
- “Example 1: Create a Single Filled Hexagon” on page 1162
- “Example 2: Use a Polygon to Highlight Data in a Scatter Plot” on page 1162

REFLINE Statement

Creates a horizontal or vertical reference line.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Reference Lines” on page 25

Syntax

```
REFLINE variable | value-1< ... value-n> /options;
```

Summary of Optional Arguments

Appearance options

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
 - specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value`
 - specifies an amount to offset all lines from discrete X or Y values.
- `DISCRETETHICKNESS=numeric-value`
 - specifies that the line thickness should be interpreted as a percentage of the mid-point spacing.
- `LINEATTRS=style-element <options> | (options)`
 - specifies the appearance of the reference line.
- `NOCLIP`
 - extends the plot axes to contain the reference lines.
- `TRANSPARENCY=value`
 - specifies the degree of transparency for the reference line.

Axis options

- `AXIS=X | Y`
 - specifies the axis that contains the reference line values.
Label options

LABEL <=variable>

creates labels for each reference line.

LABELATTRS=style-element<options> | (options)
specifies the appearance of the labels.

LABELPOS=MIN | MAX

specifies the position of the labels.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
splits the text for labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

variable
draws a reference line for each value of the specified variable.

Requirements

Values must be the same type as the data type of the axis. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Unformatted numeric values do not map to a formatted discrete axis. For example, if reference lines are drawn at points on a discrete X axis, the specified variable must use the same format that is used for the X axis.

value-1 <... value-n>
draws one or more reference lines at the values that you specify.

Requirements

Values must be the same type as the data type of the axis. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Unformatted numeric values do not map to a formatted discrete axis. For example, if reference lines are drawn at points on a discrete X axis, the REFLINE values must be the formatted value that appears on the X axis.

Optional Arguments

AXIS=X | Y
specifies the axis that contains the reference line values. For example, if you specify AXIS= X, vertical reference lines are drawn at points on the X axis.
Default: Y

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

Table 8.31 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See: “Using Data Skins” on page 1685

DISCRETEOFFSET= **numeric-value**
specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X or Y axis is discrete.

DISCRETETHICKNESS= **numeric-value**
specifies that the line thickness should be interpreted as a percentage of the mid-point spacing.

Note: This feature applies to SAS 9.4M5 and later releases.

The following partial images show horizontal reference lines with varying values for DISCRETETHICKNESS=:
DISCRETETHICKNESS=0.1
(Occupies one tenth of the mid-point spacing)

DISCRETETHICKNESS=0.5
(Occupies one half of the mid-point spacing)

DISCRETETHICKNESS=0.75
(Occupies 75% of the mid-point spacing)

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Age</td>
<td>Age</td>
</tr>
</tbody>
</table>

Default: 0.01
Range: 0–1
Requirement: This option is applicable only when the X or Y axis is discrete.
Interaction: When DISCRETETHICKNESS= is used, specifying the LINEATTRS thickness option has no effect.
Note: Specifying a value of 0 effectively hides the line.
Tip: This feature enables you to display category color bands.

LABEL

`<variable> | <=("text-string-1" ... "text-string-n")>`

creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

- **variable**
 a variable for the label value.

- **Restriction**: This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

- **"text-string-1" ... "text-string-n"**
 a text string for the label value.

- **Restriction**: The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element<options> | (options)

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults: GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS=MIN | MAX

specifies the position of the labels. MIN specifies the label is placed at the minimum value of the data axis. MAX specifies that the label is placed at the maximum value of the data axis.

LEGENDLABEL="text-string"

 specifies a label that identifies the plot in the legend. By default, the label "Reference Line" is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the reference line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP

extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

SPLITCHAR="character-list"

splits the text for labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=

LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=

specifies the degree of transparency for the reference line.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

Note

This option does not affect the reference-line label.
REG Statement

Creates a fitted regression line or curve.

Restriction: Starting with **SAS 9.4M5**, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Interaction: A linear regression (DEGREE=1) cannot be used with logarithmic axes.

See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types.

Examples: “About Regression Plots” on page 44
“Example 2: Creating a Panel of Regression Curves” on page 780

Syntax

REG X=numeric-variable Y=numeric-variable /options;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.
- **LINEATTRS=style-element (options) | (options)**
 specifies the appearance of the fit line.
- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.

Data tip options

- **TIP=(variable-list) | NONE**
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
- **TIPFORMAT=(format-list)**
 applies formats to the list of data tip variables that you specify in the TIP= option.
- **TIPLABEL=(label-list)**
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

- **GROUP=variable**
specifies a classification variable to divide the values into groups.

Label options

CURVELABEL ="text-string"
adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL =variable
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the regression curve in the legend.

NOLEGCLI
hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI ="text-string"
creates confidence limits for the individual predicted values.

CLIATTRS=style-element | (CLI-attrs-suboptions)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

CLM ="text-string"
creates confidence limits.

CLMATTRS =style-element | (CLM-attrs-suboptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.
JITTER

specifies that data markers are jittered when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines.

NOMARKERS

removes the scatter markers from the plot.

Plot options

ALPHA=numeric-value

specifies the confidence level for the confidence limits.

DEGREE=n

specifies the degree of the polynomial fit.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data.

MAXPOINTS=n

specifies the maximum number of predicted points for the regression curve and for any confidence limits.

WEIGHT=numeric-variable

specifies how observations are weighted.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=numeric-variable

specifies the variable for the X axis.

Y=numeric-variable

specifies the variable for the Y axis.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you specify the CLI or CLM option (or both).
ATTRID=\texttt{character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps" on page 1733

\texttt{CLI <="text-string">}

creates confidence limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits. The confidence level is set by the ALPH\texttt{A}= option.

\texttt{CLIATTRS=style-element | (CLI-attrs-suboptions)}

specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

\texttt{CLI-attrs-suboptions} can be the following suboptions:

\texttt{CLIFILLATTRS=style-element \langle \text{options} \rangle | (\text{options})}

Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

\texttt{Note:} This suboption is available with the SAS Viya 3.5 and later releases.

Default GraphConfidence style element in the current style for ungrouped data. The affected attributes are Color and Transparency.

Interaction The CLIFILLATTRS= suboption has no effect unless you also specify the FILL suboption.

Example \texttt{cliattrs=(fill clifillattrs=(color=yellow transparency=.8))}

\texttt{CLILINEATTRS=style-element \langle \text{options} \rangle | (\text{options})}

Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Example \texttt{cliattrs=(clilineattrs=(color=orange pattern=longdash thickness=8px))}
FILL

NOFILL
specifies whether the prediction band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default: NOFILL

Interaction: If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE

NOOUTLINE
specifies whether the prediction band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default: OUTLINE

Interaction: If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

CLM

<text-string>
creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the ALPHA= option.

CLMATTRS

style-element | (CLM-attrs-suboptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

Note: The CLMATTRS= option has no effect unless you also specify the CLM option.

CLM-attrs-suboptions can be the following suboptions:

CLMFILLATTRS

style-element <(options)> | (options)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interactions: CLMFILLATTRS= has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.
The transparency specified with this option overrides the CLMTRANSPARENCY= option.

Tip If you want to display only the outlines, starting with SAS Viya 3.5, you can specify the OUTLINE and NOFILL suboptions.

Example `clmattrs=(clmfillattrs=(color=red transparency=.8))`

CLLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with the SAS Viya 3.5 you can specify the OUTLINE suboption.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example `clmattrs=(outline clmlineattrs=(color=red thickness=8))`

FILL NOFILL
specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default FILL

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE NOOUTLINE
specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOOUTLINE

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.
The CLMATTRS= option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY= `numeric-value`

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL `<"text-string"`

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS= `style-element<(options)> | (options)`

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS= MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:
MIN
places the label at the part of the curve closest to the minimum X-axis value.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=\(n \)

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

Ranges 0–174 in SAS 9.4M1 and earlier releases.

1–10 starting with SAS 9.4M2.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=\(\text{numeric-variable} \)

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note
If the value is not an integer, only the integer portion is used.

GROUP=\(\text{variable} \)

specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interactions
If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

JITTER

specifies that data markers are jittered when multiple observations have the same response value. When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of jittering.
Default | JITTER Specified

Default No jittering. Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on the REG curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"

specifies a label that identifies the regression curve in the legend. By default, the label “Regression” is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element *(options)* | *(options)*

specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults For grouped data, GraphData1 ... GraphData n style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element *(options)* | *(options)*

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=
style-element \(<\text{(COLOR=}\text{color})>\) | \((\text{COLOR=}\text{color})\)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=
style-element \(<\text{(options)}>\) | \((\text{options})\)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MAXPOINTS=
\(n\)

specifies the maximum number of predicted points for the regression curve and for any confidence limits.
NAME="text-string"
 specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLI
 hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM
 hides the legend entry for the mean value confidence limits.

NOLEGFIT
 hides the legend entry for the fit line.

NOMARKERS
 removes the scatter markers from the plot.

SPLITCHAR="character-list"
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

 When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

 You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

 The split characters are case sensitive.
Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the *w.d* SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

See

SAS Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign labels to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

Specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.
SCATTER Statement

Creates a scatter plot.

See:
“Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Scatter Plots” on page 30

Syntax

SCATTER X=variable Y=variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot.

ERRORCAPSCALE=numeric-value
- specifies a positive number to use as a multiplier for changing the default width of the error-bar caps.

LABELSTRIP
- strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

NOERRORCAPS
- suppresses the serif cap on error bars, if error bars are displayed.

RATTRID=character-value
- specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
- specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
- specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
- applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
- applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
- specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
- specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
- specifies how to display grouped markers.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
- specifies the ordering of the groups within a category.

NOMISSINGGROUP
- specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
- displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
- specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
- specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
- specifies a label that identifies the markers from the plot in the legend.

SPLITCHAR="character-list"
- splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.
SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.
JITTER <=UNIFORM>
 specifies that data markers are jittered when multiple observations have
 the same response value.
JITTERWIDTH=positive-number
 specifies the width of the jitter space as a fraction of either the midpoint
 spacing or of the minimal interval width.
MARKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot.
MARKERCHAR=variable
 specifies a variable whose values replace the marker symbols in the plot.
MARKERCHARATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot when you use the
 MARKERCHAR= option.
MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
 specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element<(options)> | (options)
 specifies the appearance of the marker outlines.

Plot options

FREQ=numeric-variable
 specifies a variable for the frequency count for each observation in the
 input data.
URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are
 selected.
XERRORLOWER=numeric-variable
 specifies a variable that contains the lower endpoints for the X error bars.
XERRORUPPER=numeric-variable
 specifies a variable that contains the upper endpoints for the X error bars.
YERRORLOWER=numeric-variable
 specifies a variable that contains the lower endpoints for the Y error bars.
YERRORUPPER=numeric-variable
 specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME="text-string"
 specifies a name for the plot.

Required Arguments

X=variable
 specifies the variable for the X axis.
Y=variable
specifies the variable for the Y axis.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8
Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.
Requirement The list of colors must be enclosed in parentheses.

Example \texttt{colormodel=(blue yellow green)}

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the \texttt{COLORRESPONSE=} option must also be specified in the statement.

\texttt{COLORRESPONSE=}\texttt{numeric-column}

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the \texttt{GROUP=} option is specified with the \texttt{COLORRESPONSE=} option, the color attributes are controlled by the \texttt{COLORRESPONSE=} option.

Tip The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

See \texttt{"GRADLEGEND Statement" on page 259}\n
\texttt{"Using Gradient Color Legends" on page 1637}

\texttt{DATALABEL <=variable>}

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

\texttt{DATALABELATTRS=style-element<\texttt{(options)}> | \texttt{(options)}>}

specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see \texttt{"Text Attributes" on page 1658}.

Defaults GraphDataText style element in the current style. The affected attributes are \texttt{FontFamily}, \texttt{FontSize}, \texttt{FontStyle}, and \texttt{FontWeight}.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction This option has no effect unless the \texttt{DATALABEL} option is also specified.

Note When the \texttt{DATALABELPOS=} option is specified, the data label font size might be reduced in some cases to avoid overlapping labels and markers.

Examples \texttt{DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:
\texttt{DATALABELATTRS=GraphLabel1Text}
DATALABELPOS= *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Position</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
</tr>
<tr>
<td>CENTER</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
</tr>
</tbody>
</table>

Interactions: This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN= **NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

<table>
<thead>
<tr>
<th>Data Skin</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: You can use the MARKERATTRS= option to specify a filled marker symbol.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See: “Using Data Skins” on page 1685
DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:

COLOR=color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.

PATTERN=line-pattern
specifies the line pattern for the line. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default: The default line pattern is specified by the LineStyle attribute of the GraphError style element in the current style.

THICKNESS=n <units>
specifies the thickness of the line. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

Default: The default line thickness is specified by the LineThickness attribute of the GraphError style element in the current style.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps. For example, ERRORCAPSCALE=2 doubles the default cap width and ERRORCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default: 1

Interaction: This option has no effect if NOERRORCAPS is specified.

Tip: The thickness (height) of a cap honors the line thickness specified in the ERRORBARATTRS= option. The cap pattern is always solid.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled”
suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped markers.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\(n \) style elements in the current style.

Default OVERLAY

Interactions This option is ignored unless GROUP= is specified.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need
larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JITTER <=UNIFORM>
specifies that data markers are jittered when multiple observations have the same response value. You can specify JITTER by itself or JITTER=UNIFORM.

JITTER
When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.
Although the examples were created using the SGPLOT procedure, the jittering feature works the same in the SGPANEL procedure.

The following figures show a box plot and a scatter plot. The figures show the case in which the X axis is discrete and the Y axis is linear.

Table 8.33 X Axis Is Discrete and Y Axis Is Linear

In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

Note: When the JITTER width is not wide enough to fit long strings of markers, those long strings are squeezed to fit. The other strings that do fit are not squeezed. To force the JITTER option to squeeze all the strings of markers proportionally, specify JITTER=UNIFORM.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

Table 8.34 Both Axes Are Linear

JITTER=UNIFORM

JITTER=UNIFORM specifies that data markers should first be jittered and then squeezed together uniformly across all category values.

Note: This feature applies to SAS 9.4M5 and later releases.
If UNIFORM is not specified, data markers are squeezed together only for those categories whose data markers cannot fit within the jittering space.

The following partial graphs show the effect of specifying the UNIFORM argument.

Table 8.35 JITTER versus JITTER=UNIFORM

<table>
<thead>
<tr>
<th>JITTER</th>
<th>JITTER=UNIFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sedan</td>
<td>Sedan</td>
</tr>
<tr>
<td>Sports</td>
<td>Sports</td>
</tr>
<tr>
<td>Vegan</td>
<td>Vegan</td>
</tr>
</tbody>
</table>

Restriction The JITTER=UNIFORM option is available only for discrete, one-dimensional jittering.

Default When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.

Interaction The JITTER option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.

Note By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JITTERWIDTH=positive-number

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

Note: This feature applies to SAS 9.4M2 and later releases.

Default 0.85

Notes The specified number can be greater than 1.

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.
Note: This feature applies to SAS 9.4M1 and later releases.

The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.

Interactions

This option affects marker strings only when the MARKERCHAR= option is specified.

This option affects data labels only when DATALABEL is specified.

Tip

Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

LEGENDLABEL="text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MARKERATTRS=style-element (options) | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERCHAR=variable

specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6. format is used.

Interaction

The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

Tip

If the MARKERCHAR= variable contains one or more long character strings, large axis offsets might result. In that case, use the OFFSETMIN= and OFFSETMAX= options in the axis statement to override the automatic axis offsets. See “Plot Axes” on page 1634.

MARKERCHARATTRS=style-element (options) | (options)

specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Defaults ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples MARKERCHARATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

MARKERCHARATTRS=GraphValueText

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.
NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Note: This feature applies to SAS 9.4M1 and later releases.

Interaction: The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction: This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See: Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY= LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list) a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.
Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")
TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

Restriction: The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example: https://www.sas.com/en_us/home.html

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip: Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

XERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.

SERIES Statement

Creates a series plot.

Restriction: Starting with **SAS 9.4M5**, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option **LINEPATTERNOBSMAX=**. The default is 10,000. If the limit is exceeded, the plot is not...
drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Note: The SERIES statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.

See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Series Plots” on page 32

Syntax

SERIES X=variable Y=variable <options>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the series line.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.
THICKRESP=numeric-variable
 specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped lines.

GROUPLC=variable
 specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
 specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPMC=variable
 specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

GROUPMS=variable
 specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

LCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLC= variable.

LPATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL.navigateByUrl

displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the series plot in the legend.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROPTIONLINEATTRS=style-element<(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the series plot data points.

Plot options

BREAK
creates a break in the line for each missing value for the Y variable.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Series options
SMOOTHCONNECT
specifies that a smoothed line passes through all vertices.

Required Arguments

\[X=variable \]
specifies the variable for the X axis.

\[Y=variable \]
specifies the variable for the Y axis.

Optional Arguments

\[\text{ARROWHEADPOS}= \text{START} | \text{END} | \text{BOTH} \]
specifies a position for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

\[\text{START} \]
displays an arrowhead at the starting point of each line.

\[\text{END} \]
displays an arrowhead at the ending point of each line.

\[\text{BOTH} \]
displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

\[\text{ARROWHEADSCALE}=\text{positive-number} \]
specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to SAS 9.4M3 and later releases.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

\[\text{ARROWHEADSHAPE}= \text{OPEN} | \text{FILLED} | \text{BARBED} \]
specifies a shape for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.
The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>Default</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>ARROWHEADPOS= must also be specified for this option to have any effect.</td>
</tr>
<tr>
<td>See</td>
<td>“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.</td>
</tr>
</tbody>
</table>

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BREAK

creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the **COLORRESPONSE=** column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the **COLORRESPONSE=** column.

Example: `colormodel=TwoColorRamp`

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as `GraphData3:Color`.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example: `colormodel=(blue yellow green)`

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the **COLORRESPONSE=** option must also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the **GROUP=** option is specified with the **COLORRESPONSE=** option, the color attributes are controlled by the **COLORRESPONSE=** option.

Tip The color ramp is specified by the **COLORMODEL=** option. The color ramp represents the range of unique response values.

See "GRADLEGEND Statement" on page 259

"Using Gradient Color Legends" on page 1637

CURVELABEL <="text-string" adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify **VALUES=**, **MAX=**, or **MIN=** in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.
By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS= *style-element*(options) | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

```plaintext
CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
CURVELABELATTRS=GraphTitleText
```

CURVELABELPOS= MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

MIN

places the label at the part of the curve closest to the minimum X-axis value.

MAX

places the label at the part of the curve closest to the maximum X-axis value.

START

places the curve label at the first point on the curve.

END

places the curve label at the last point on the curve.

Defaults END

Interaction

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.
DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDatann style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

Table 8.36 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NOVE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 8.37 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>DATASKIN Options for Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>CRISP</td>
</tr>
<tr>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td>PRESSED</td>
</tr>
<tr>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

DISCRETEOFFSET= numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROOUTLINEATTRS= options to specify attributes for the fill and outline.
GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note

When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

Default

OVERLAY

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced. The size could be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPPLC=variable

specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData n style elements based on the GROUPPLC= variable instead of the GROUP= variable.
Interactions

The GROUP= option must be specified for this option to have any effect. This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips

Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

See

For an overview, see “Example 1: Using Group Options with or without an Attribute Map” on page 1223 in the SGPLOT procedure.

GROUPLP=variable

specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect. This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tips

Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.

See

For an overview, see “Example 1: Using Group Options with or without an Attribute Map” on page 1223 in the SGPLOT procedure.

GROUPMC=variable

specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphDataN style elements based on the GROUPMC= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.
The MARKERS option must also be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Tips

Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPMC= variable with an attribute map ID.

See

For an overview, see "Example 1: Using Group Options with or without an Attribute Map" on page 1223 in the SGPLOT procedure.

GROUPMS=variable

specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphData n style elements based on the GROUPMS= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Tips

Use the GROUPMC= option to set the marker color. You can also use the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable with an attribute map ID.

See

For an overview, see "Example 1: Using Group Options with or without an Attribute Map" on page 1223 in the SGPLOT procedure.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.
ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC= variable. This option enables the plot to associate an attribute map with the line color group. The option specifies the value of the ID variable that maps attributes to LINECOLOR in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLC= option is specified.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example 1: Using Group Options with or without an Attribute Map” on page 1223.

Chapter 18, “Using Discrete Attribute Maps,” on page 1737
LEGENDLABEL="text-string"
specifies a label that identifies the series plot in the legend. By default, the label
of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the series line. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for
grouped data. The effective attributes are: ContrastColor, LineStyle,
and LineThickness.

LPATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLP=
variable. This option enables the plot to associate an attribute map with the line
pattern group. The option specifies the value of the ID variable that maps
attributes to LINEPATTERN in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.

Requirement The procedure statement must specify the attribute map data set
using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLP= option is specified.

This option overrides the PATTERN= suboption of the
LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot
statement. Doing so can cause unexpected results.

See For an overview, see "Example 1: Using Group Options with or
without an Attribute Map" on page 1223.

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on
page 1656.

Default GraphDataDefault style element in the current style for ungrouped
data. GraphData1 ... GraphData\(n\) style elements in the current style
for grouped data. The affected attributes are ContrastColor and
MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS
option.
MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKERS
adds data point markers to the series plot data points.

MCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker color group. The option specifies the value of the ID variable that maps attributes to MARKERCOLOR in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.
Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPMC= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example 1: Using Group Options with or without an Attribute Map” on page 1223.

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

MSATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPM= variable. This option enables the plot to associate an attribute map with the marker symbol group. The option specifies the value of the ID variable that maps attributes to MARKERSYMBOL in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPM= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example 1: Using Group Options with or without an Attribute Map” on page 1223.

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.
Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLITCHAR="character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THICKMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.
See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to SAS 9.4M3 and later releases.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

- The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.
- If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

- The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS
statement in order to generate data tips. For example, add the
following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats
and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data
tips.

A one-to-one correspondence exists between the format-list and the variable-list
that is specified for the TIP= option. A format must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a format to
a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using
the w.d SAS format. To avoid this error condition, insert an F in
front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example https://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.
SPLINE Statement

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

Notes:
- The SPLINE statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.
- The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 556.
- This feature applies to SAS 9.4M3 and later releases.

See:
- “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types
- “About Spline Plots” on page 33

Syntax

SPLINE X=variable Y=variable <options>;

Summary of Optional Arguments

Appearance options
- ARROWHEADPOS= START | END | BOTH
 specifies a position for arrowheads.
- ARROWHEADSCALE=positive-number
 specifies an arrowhead scale factor based on the thickness of the arrow line.
- ARROWHEADSHAPE= OPEN | FILLED | BARBED
 specifies a shape for arrowheads.
- ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.
- COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.
- COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.
- DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.
- DISCRETEOFFSET=numeric-value
 specifies an amount to offset all lines from discrete X or Y values.
- LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the spline line.
- RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.
THICKMAX=\texttt{dimension} \\
\hspace{1em} \text{specifies the maximum line thickness when a response variable is used to} \\
\hspace{1em} \text{determine the line thickness.}

\textbf{THICKMAXRESP=\texttt{numeric-value}} \\
\hspace{1em} \text{specifies the response value that corresponds to the maximum line} \\
\hspace{1em} \text{thickness.}

\textbf{THICKRESP=\texttt{numeric-variable}} \\
\hspace{1em} \text{specifies a response variable that is used to map a line thickness to each} \\
\hspace{1em} \text{group value.}

\textbf{TRANSPARENCY=\texttt{value}} \\
\hspace{1em} \text{specifies the degree of transparency for the plot.}

\textbf{Data tip options} \\
\textbf{TIP=\texttt{(variable-list)} | NONE} \\
\hspace{1em} \text{specifies the data tip information to be displayed when the cursor is} \\
\hspace{1em} \text{positioned over the graphics element.}

\textbf{TIPFORMAT=\texttt{(format-list)}} \\
\hspace{1em} \text{applies formats to the list of data tip variables that you specify in the TIP=} \\
\hspace{1em} \text{option.}

\textbf{TIPLABEL=\texttt{(label-list)}} \\
\hspace{1em} \text{applies labels to the list of data tip variables that you specify in the TIP=} \\
\hspace{1em} \text{option.}

\textbf{Group options} \\
\textbf{CLUSTERWIDTH=\texttt{numeric-value}} \\
\hspace{1em} \text{specifies the width of the group clusters as a fraction of the midpoint} \\
\hspace{1em} \text{spacing.}

\textbf{GROUP=\texttt{variable}} \\
\hspace{1em} \text{specifies a variable that is used to group the data.}

\textbf{GROUPDISPLAY=CLUSTER | OVERLAY} \\
\hspace{1em} \text{specifies how to display grouped lines.}

\textbf{GROUPLC=\texttt{variable}} \\
\hspace{1em} \text{specifies a variable that determines the line colors for a grouped plot} \\
\hspace{1em} \text{independently of the GROUP= variable.}

\textbf{GROUPLP=\texttt{variable}} \\
\hspace{1em} \text{specifies a variable that determines the line patterns for a grouped plot} \\
\hspace{1em} \text{independently of the GROUP= variable.}

\textbf{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING} \\
\hspace{1em} \text{specifies the ordering of the groups within a category.}

\textbf{NOMISSINGGROUP} \\
\hspace{1em} \text{specifies that missing values of the group variable are not included in the} \\
\hspace{1em} \text{plot.}

\textbf{Label options} \\
\textbf{CURVELABEL \textless \texttt{"text-string"\textgreater}} \\
\hspace{1em} \text{adds a label for the curve.}

\textbf{CURVELABELATTRS=\texttt{style-element<(options)> | (options)}} \\
\hspace{1em} \text{specifies the appearance of the labels in the plot when you use the} \\
\hspace{1em} \text{CURVELABEL= option.}

\textbf{CURVELABELPOS=MIN | MAX | START | END} \\
\hspace{1em} \text{specifies the location of the curve label.}

\textbf{LEGENDLABEL="text-string"}
specifies a label that identifies the spline plot in the legend.

SPLITCHAR="character-list"

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Plot options

BREAK

creates a break in the line for each missing value for the Y variable.

SEGPOINTS=positive-integer

specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=variable

specifies the variable for the X axis.

Y=variable

specifies the variable for the Y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH

specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START

displays an arrowhead at the starting point of each line.

END

displays an arrowhead at the ending point of each line.

BOTH

displays an arrowhead at each end of each line.

Default

No arrowheads are displayed when this option is not specified

See

“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSCALE=positive-number

specifies an arrowhead scale factor based on the thickness of the arrow line.

Default

1.0
ARROWHEADPOS= must also be specified for this option to have any effect.

Tip
Use a factor greater than 1.0 to make a larger arrowhead.

See "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1544 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads. The following figure shows each of the arrowhead shapes.

OPEN	←→
FILLED	←→
BARBED	←→

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

See "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1544 for an example of how to use this option.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps" on page 1733

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See "GRADLEGEND Statement" on page 259

"Using Gradient Color Legends" on page 1637

CURVELABEL <="text-string"> adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement.
than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=`style-element<(options)> | (options)`
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
```plaintext
CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```plaintext
CURVELABELATTRS=GraphTitleText
```

CURVELABELPOS= `MIN | MAX | START | END`

specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X-axis value.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default
END

Interaction
This option has no effect unless the CURVELABEL option is also specified.

DATASKIN= `NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Lines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CRISP</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GLOSS</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MATTE</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PRESSED</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SHEEN</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1… GraphDataN style elements in the current style.
Default: OVERLAY

Interaction
This option is ignored unless GROUP= is specified.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData n style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips
Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

See
For an overview, see Using Group Options on page 1223 in the SGPLOT procedure.

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData n style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tip
Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

See
For an overview, see Using Group Options on page 1223 in the SGPLOT procedure.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element (<options>) | (options)

specifies the appearance of the spline line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.
Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755

"Overview of Attribute Maps" on page 1733

SEPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

Default 20

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default: Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions: The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See: “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Default: The maximum value in the response column that is specified in the THICKRESP= option.

Interactions: The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.
Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected. The character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example: https://www.sas.com/en_us/home.html

Default: By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

Details

Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.

Figure 8.9 Spline and Series Plots

STEP Statement

Creates a step plot.

Restrictions: The vertical axis that is used with the STEP statement cannot be a discrete axis.

Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In
that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Note: The STEP statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.

See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Step Plots” on page 34

Syntax

STEP X=variable Y=numeric-variable </options>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values.

ERRORBARATTRS=style-element (options) | (options)
specifies the appearance of the error bars in the plot.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point.

LINEATTRS=style-element (options) | (options)
specifies the appearance of the step line.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.
THICKRESP=numeric-variable
 specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped step lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
 adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
 specifies the location of the curve label.

DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
 specifies the location of the data label with respect to the plot.

 LEGENDLABEL="text-string"
 specifies a label that identifies the step plot in the legend.

SPLITCHAR="character-list"
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the step plot data points.

Plot options

BREAK
creates a break in the line for each missing value.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=variable
specifies the variable for the X axis.

Y=numeric-variable
specifies the variable for the Y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.
END displays an arrowhead at the ending point of each line.
BOTH displays an arrowhead at each end of each line.
Default No arrowheads are displayed when this option is not specified
See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to SAS 9.4M3 and later releases.

Default 1.0
Interaction ARROWHEADPOS= must also be specified for this option to have any effect.
Tip Use a factor greater than 1.0 to make a larger arrowhead.
See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The following figure shows each of the arrowhead shapes.

```
OPEN
FILLED
BARBED
```

Default OPEN
Interaction ARROWHEADPOS= must also be specified for this option to have any effect.
See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733
BREAK
creates a break in the line for each missing value.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

CURVELABEL <="text-string">
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle. Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.
Examples

```
CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
CURVELABELATTRS=GraphTitleText
```

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

- **MIN**
 places the label at the part of the curve closest to the minimum X-axis value.

- **MAX**
 places the label at the part of the curve closest to the maximum X-axis value.

- **START**
 places the curve label at the first point on the curve.

- **END**
 places the curve label at the last point on the curve.

Default

```
END
```

Interaction

This option has no effect unless the **CURVELABEL** option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<(options)> | (options)

specifies the appearance of the labels in the plot when you use the **DATALABEL=** option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the **DATALABEL** option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATALABELPOS=position

specifies the location of the data label with respect to the plot. **position** can be one of the following values:
Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

Table 8.39 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 8.40 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the
specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps. For example, ERRORCAPSCALE=2 doubles the default cap width and ERRORCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction This option has no effect if NOERRORCAPS is specified.

Tip The thickness (height) of a cap honors the line thickness specified in the ERRORBARATTRS= option. The cap pattern is always solid.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped step lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

Default

OVERLAY

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced. The size could be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JUSTIFY=LEFT | CENTER | RIGHT

specifies the location of each step relative to its data point. Figure 8.12 on page 566 shows the effect of each option:

Figure 8.10 Values for JUSTIFY=

LEGENDLABEL="text-string"

specifies a label that identifies the step plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the step line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction

This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=

\(style-element\)\(<\)COLOR=color\)> \| (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=

\(style-element\)\(<\)options\)> \| (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.
MARKERS
adds markers to the step plot data points.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Note: This feature applies to SAS 9.4M1 and later releases.

Interaction: The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction: This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes When multiple characters are specified, the order of the characters in the list is not significant. The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THICKMAX=dimension specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.
THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to SAS 9.4M3 and later releases.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.
Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

YERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.
SYMBOLCHAR Statement

Defines a marker symbol using a Unicode character that can be referenced in other statements. The procedure can contain more than one SYMBOLCHAR statement.

Note: This feature applies to SAS 9.4M1 and later releases.

Syntax

SYMBOLCHAR NAME=identifier
CHAR="hex-string"x | keyword <options>;

Summary of Optional Arguments

HOFFSET=offset
 specifies a horizontal offset for the marker symbol.

ROTATE=number
 specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
 specifies a scale factor for the marker symbol as a percentage.

TEXTATTRS=style-element<(options)> | (options)
 specifies the text attributes for the character symbol.

VOFFSET=offset
 specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
 specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique identifier. The identifier is not case-sensitive.

Interaction
 If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See marker symbols on page 1656.

Note
 Do not enclose the identifier in quotation marks.

CHAR="hex-string"x | keyword
 specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

"hex-string"x
 specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the
Unicode hexadecimal constants at the following URL: http://www.unicode.org/charts/charindex.html

keyword
specifies a SAS keyword for a Unicode character, such as alpha or alpha_u. See Appendix 2, “Reserved Keywords and Unicode Values,” on page 1899.

Note: The “_u” in a keyword makes the character uppercase.

TIP This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.

Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

- **Default:** 0 (the marker symbol is centered on its data point)
- **Range:** –0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Interaction Starting with **SAS 9.4M3**, the specified offset is also applied to the marker symbol that is displayed in the legend.

Notes Prior to **SAS 9.4M3**, a positive offset moves the marker symbol bounding box to the right. A negative offset moves it to the left.

Starting with SAS 9.4M3, a positive offset moves the marker symbol to the right within its bounding box, and a negative offset moves it to the left. The bounding box remains centered on the data point. After the offset, the size, and the rotation are applied to the marker symbol, any portion of the symbol that falls outside of the marker bounding box is clipped.

Tip If clipping occurs, you can use this option, the VOFFSET= option, and the SCALE= option to remove the clipping. In the accompanying plot statement that uses markers, you can also use the suboption SIZE= in the MARKERATTRS= option to help remove the clipping.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counterclockwise direction, and negative angles are measured in the clockwise direction.

- **Default:** 0 (no rotation is performed)
- **Note** An angle that exceeds 360 degrees in absolute value can be specified.
SCALE=<i>double</i>
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default: 1.0 (100%)
Range: Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

TEXTATTRS=<i>style-element</i>(<i>options</i>)
specifies the text attributes for the character symbol. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Note: Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The color and size text attributes are derived from the MARKERATTRS= option in the plot statement.

Examples
Here is an example that specifies a style element:

```
TEXTATTRS=(Family='Albany AMT' Style=Italic Weight=Bold)
```

VOFFSET=<i>offset</i>
specifies a vertical offset for the marker symbol.

Default: 0 (the marker symbol is centered on its data point)
Range: –0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Interaction: Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

Notes: Prior to SAS 9.4M3, a positive offset moves the marker symbol bounding box up. A negative offset moves it down. Starting with SAS 9.4M3, a positive offset moves the marker symbol up within its bounding box, and a negative offset moves it down. The bounding box remains centered on the data point. After the offset, the size, and the rotation are applied to the marker symbol, any portion of the symbol that falls outside of the marker bounding box is clipped.

Tip: If clipping occurs, you can use this option, the HOFFSET= option, and the SCALE= option to remove the clipping. In the accompanying plot statement that uses markers, you can also use the suboption SIZE= in the MARKERATTRS= option to help remove the clipping.
Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

Unicode symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statement. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This enables you to use SYMBOLCHAR statements in IF/ELSE statements.

For an example that uses more than one SYMBOLCHAR statements, see the SAS blog More symbols, you say?.

Note: You might need to specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement to ensure that the data does not use color as the primary distinction between symbols. The need to specify ATTRPRIORITY=NONE depends on which ODS style you are using. If your results do not cycle through the symbols, try specifying ATTRPRIORITY=NONE in the ODS GRAPHICS statement.

You can modify the appearance of markers that are created by the SYMBOLCHAR statement in the following ways:

- use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option in the plot statement.

 Note: The WEIGHT= suboption has no effect on these markers.

- use the FAMILY=, WEIGHT=, and STYLE= suboptions of the TEXTATTRS= option in the SYMBOLCHAR statement to format the symbol character. The color and size are controlled using the MARKERATTRS= option.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified
Examples

Example 1: Simple SYMBOLCHAR Example

This example specifies the SAS keyword DELTA_U, which produces the delta (Δ) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.

```
proc sgpanel data=sashelp.class;
  panelby sex;
    symbolchar name=sym1 char=delta_u / rotate=180
textattrs=(Weight=Bold);
    scatter x=weight y=height / markerattrs=(symbol=sym1 size=15pt);
  run;
```

Example 2: SYMBOLCHAR Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign colors and symbols for each grouping of the variable SIZE.

In the example, the following marker symbols are used:

- ✓ indicates students whose height is 60 inches or more
- ✗ indicates students whose height is less than 60 inches

The procedure uses two SYMBOLCHAR statements to identify the marker symbols used in the plot. The example creates marker symbols from the Unicode check.
mark, heavy character (‘2714’x) and the Ballot X character (‘2717’x). The example then shows how to use the symbols in a scatter plot.

```sas
/* Create a data set with the group variable SIZE. */
data classHeight;
  set sashelp.class;
  size="Short";
  if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns colors and symbols for each grouping of SIZE. */
data myattrmap;
  input ID $ value  $ markercolor $ markersymbol $;
  datalines;
  myid  Short   green  greeny
  myid  Tall    red    redx
; run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12)) dattrmap=myattrmap;
  panelby sex;
  symbolchar name=redX char='2714'x;
  symbolchar name=greenY char='2717'x;
  scatter x=name y=height / attrid=myid
      markerattrs=(size=15pt)
      group=size;
run;
```
SYMBOLIMAGE Statement

Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.

Note: This feature applies to SAS 9.4M1 and later releases.

Syntax

SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" < /options>;

Summary of Optional Arguments

OFFSET=offset
 specifies a horizontal offset for the marker symbol.

ROTATE=number
 specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
 specifies a scale factor for the marker symbol as a percentage.

VOFFSET=offset
 specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
 specifies an identifier for the marker symbol. The identifier can be used in statements that support marker symbols.

Interaction If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See marker symbols on page 1656.

Note Do not enclose the identifier in quotation marks.

IMAGE="image-file-specification"
 specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements The image file specification must be enclosed in quotation marks.

The image file must be located on the local file system. URL access is not supported.

Example image="c:\temp\mylogo.gif"
Optional Arguments

OFFSET=offset
specifies a horizontal offset for the marker symbol.

Default: 0 (the marker symbol is centered on its data point)

Range: –0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Interaction: Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

Note: A positive offset moves the marker symbol bounding box to the right. A negative offset moves it to the left.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counterclockwise direction, and negative angles are measured in the clockwise direction.

Default: 0 (no rotation is performed)

Note: An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default: 1.0 (100%)

Range: Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

VOFFSET=offset
specifies a vertical offset for the marker symbol.

Default: 0 (the marker symbol is centered on its data point)

Range: –0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Interaction: Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

Note: A positive offset moves the marker symbol bounding box up. A negative offset moves it down.

Details

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.
The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUTLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLIMAGE Example

This example specifies the image file for a triangle (ѵ). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.
Example 2: SYMBOLIMAGE Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

给予了指示学生身高60英寸或以上

给予了指示学生身高小于60英寸

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markersymbol $;
 datalines;
 myid Short greeny
 myid Tall redx
;run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12))
 datattrmap=myattrmap;
 panelby sex;
 symbolimage name=redx image='c:\temp\redCheck.png';
 symbolimage name=greeny image='c:\temp\greenX.png';
 scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;
TEXT Statement

Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

Note: This feature applies to SAS 9.4M2 and later releases.

Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types.

Example: “About Text Plots” on page 36

Syntax

TEXT X=variable Y=variable TEXT=variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BACKFILL
displays filled bounding boxes around the text.

BACKLIGHT=number
specifies a back-light effect for the marker text.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)
specifies whether this plot's space requirements contribute to the calculation of the axis offsets.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

OUTLINE
displays outlined bounding boxes around the text.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines around the text boxes.

\[
\text{PAD=dimension<units> | (pad-options)}
\]

specifies the amount of extra space that is added inside the text-marker border.

\[
\text{RATTRID=character-value}
\]

specifies the value of the ID variable in a range attribute map data set.

\[
\text{TRANSPARENCY=value}
\]

specifies the degree of transparency for the plot.

Axis options

\[
\text{CLUSTERAXIS= X | Y}
\]

specifies the axis to use for clustering groups when \(\text{GROUPDISPLAY=CLUSTER}\).

Data tip options

\[
\text{TIP=(variable-list) | NONE}
\]

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\[
\text{TIPFORMAT=(format-list)}
\]

applies formats to the list of data tip variables that you specify in the \text{TIP=} option.

\[
\text{TIPLABEL=(label-list)}
\]

applies labels to the list of data tip variables that you specify in the \text{TIP=} option.

Group options

\[
\text{CLUSTERWIDTH=numeric-value}
\]

specifies the width of the group clusters as a fraction of the midpoint spacing.

\[
\text{GROUP=variable}
\]

specifies a variable that is used to group the data.

\[
\text{GROUPDISPLAY=CLUSTER | OVERLAY}
\]

specifies how to display grouped text markers.

\[
\text{NOMISSINGGROUP}
\]

specifies that missing values of the group variable are not included in the plot.

Legend options

\[
\text{LEGENDLABEL=\"text-string\"}
\]

specifies a label that identifies the markers from the plot in the legend.

Plot options

\[
\text{URL=character-variable}
\]

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

\[
\text{NAME=\"text-string\"}
\]

specifies a name for the plot.

Text options

\[
\text{POSITION=position-option | character-variable}
\]
specifies the position of the text with respect to the location of the data point.

ROTATE=number | numeric-column

specifies the angle of rotation in degrees for the text markers.

SIZEMAX=dimension<unit>

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

SIZEMAXRESPONSE=number

specifies the response value that corresponds to the maximum font size for text markers.

SIZEMIN=dimension<unit>

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

SIZERESPONSE=numeric-variable

specifies a response variable that is used to determine the font size for each text value.

SPLITCHAR=“character-list”

splits the text at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS

specifies a policy for avoiding collisions among the text markers.

SPLITWIDTH=width-in-characters

specifies the maximum width of each split line, expressed as a character count.

STRIP

specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

TEXTATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font properties of the marker text.

VCENTER=BBOX | BASELINE

specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

Required Arguments

X=variable

specifies the variable for the X axis.

Y=variable

specifies the variable for the Y axis.

TEXT=variable

specifies the variable for the text values that are used for the markers.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
"Overview of Attribute Maps" on page 1733

BACKFILL
displays filled bounding boxes around the text.

Tips Use the OUTLINE option to specify outlined boxes around the text.

Use the TRANSPARENCY= option to change the transparency of the backfill and the text. To change the transparency of only the backfill, use the TRANSPARENCY= suboption of the FILLATTRS= OPTION.

BACKLIGHT=number
specifies a back-light effect for the marker text. The effect is applied to the marker text only. *number* specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified to help illustrate the back-light effect.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults
0.5 when no GROUP= or COLORRESPONSE= option is used.
0.75 when the GROUP= or COLORRESPONSE= option is used.

Range
0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect.
Note This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

Default

Uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

Interaction

The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. The GROUP= option must also be used.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default

0.8

Interaction

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**

 specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**

 specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**

 specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default

The ThreeColorAltRamp style element
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See "GRADLEGEND Statement" on page 259
"Using Gradient Color Legends" on page 1637

CONTRIBUTEoffsets=ALL | NONE | (axis-offset-list)
specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.

The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTEoffsets= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

XMAX the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.

XMIN the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.

YMAX the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.

YMIN the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default ALL

DISCRETEoffset=numeric-value
specifies an amount to offset all markers from discrete X or Y values.
FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note
When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\text{n} style elements in the current style.

Default
OVERLAY
LEGENDLABEL="text-string"
 specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

NAME="text-string"
 specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

OUTLINE
 displays outlined bounding boxes around the text.

Tip Use the BACKFILL option to display filled bounding boxes around the text.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the outlines around the text boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify line color.

Default GraphOutlines style element in the current style for ungrouped data.
 GraphData1 ... GraphData{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless OUTLINE is also specified.

PAD=dimension<units> | (pad-options)
 specifies the amount of extra space that is added inside the text-marker border.

 dimension
 specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

 (pad-options)
 a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

 LEFT=dimension<units> TOP=dimension<units>
 RIGHT=dimension<units> BOTTOM=dimension<units>
Default Padding is a fraction of the font height.

Note Sides that are not assigned padding are padded with the default amount.

Tips This option is meaningful only when you also specify OUTLINE, BACKFILL, or both.

Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

POSITION=position-option | character-variable

specifies the position of the text with respect to the location of the data point. You can either specify a position option or specify the name of a variable that contains one or more position options.

Note: The ability to specify a variable applies to SAS 9.4M5 and later releases.

Here are the position options:

BOTTOM CENTER TOP
BOTTOMLEFT LEFT TOPLEFT
BOTTOMRIGHT RIGHT TOPRIGHT

The VCENTER= option specifies whether the position is relative to the text bound box or the text baseline. By default, the positions are relative to the text bounding box. The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.
When `character-variable` is specified and `SPLITJUSTIFY=` is also specified, the position values specified in `character-variable` are ignored and the text is positioned BOTTOMRIGHT.

RATTRID= `character-value`

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

ROTATE= `number` | `numeric-column`

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counterclockwise direction, and negative angles are measured in clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0

SIZEMAX= `dimension<unit>`

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

Note: This feature applies to SAS 9.4M3 and later releases.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
</tbody>
</table>
By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

Default: Three times the size specified in the GraphDataText style element for the maximum response variable value marker.

Interactions: The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips: Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached. Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE= *number*

specifies the response value that corresponds to the maximum font size for text markers.

Note: This feature applies to SAS 9.4M3 and later releases.

Default: The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction: The SIZERESPONSE= option must be specified for this option to have any effect.

Note: When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.

SIZEMIN= *dimension<unit>*

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

Note: This feature applies to SAS 9.4M3 and later releases.

The following table contains the units that are available:

Table 8.42 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default: The size specified in the GraphDataText style element for the minimum response column value marker.

Interaction: The SIZERESPONSE= option must be specified for this option to have any effect.

Tip: Use the SIZEMAX= option to specify the maximum text size.

SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default: The size specified in the GraphDataText style element for all text values.

Notes: When the variable value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value.

When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on.

When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip: Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.

SPLITCHAR="character-list"
splits the text at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS specifies a policy for avoiding collisions among the text markers.

NONE does not split the text for text markers that collide.

SPLIT splits the marker text at a split character only if a split is needed at that character in order to make the text fit the available space. No split occurs at split characters that occur where a split is not needed. If the text does not contain any of the specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.

See See the SPLITCHAR= option for information about specifying the split characters.
SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See See the SPLITCHAR= option for information about specifying the split characters.

Default NONE

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every width-in-characters characters.

Default Uses the width of the longest inter-split-character substring.

Restriction This option has effect only when SPLITPOLICY=SPLIT.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default Blanks are not stripped

Tip Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

Note When the POSITION= option is specified, the data label font size might be reduced in some cases to avoid overlapping labels.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Restriction Data tips in text plots are not supported in the SVG output format. To generate a text plot with data tips, use a bitmapped output format such as PNG. For example, add the following statement before your procedure:

 ODS GRAPHICS / IMAGEMAP OUTPUTFMT=PNG;

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

 ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tixlabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

Restriction
The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

**Tip**
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.
VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

BBOX
vertically centers the text with respect to its bounding box.

BASELINE
vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction  This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

Default  BBOX

Tip  Use the POSITION= option to specify the text position with respect to the text bounding box or the text baseline.

---

**VBAR Statement**

Creates a vertical bar chart that summarizes the values of a category variable.

Restrictions:  The VBAR statement can be combined only with other vertical categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628. When category plots are overlaid, all of the plots must use the same category variable.

Tips:  Starting with SAS 9.4M3, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements. The VBAR statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

See:  “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:  “About Bar Charts” on page 51

---

**Syntax**

VBAR category-variable <option(s)>;

---

**Summary of Optional Arguments**

**Appearance options**

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.
BASELINEATTRS=\textit{style-element} <\textit{options}> | \textit{options}

specifies the appearance of the baseline.

COLORMODEL=\textit{style-element} | \textit{color-list}

specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=\textit{numeric-column}

specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

DISCRETEOFFSET=\textit{numeric-value}

specifies an amount to offset all bars from the category midpoints.

DISPLAYBASELINE=\textit{AUTO} | \textit{ON} | \textit{OFF}

specifies whether the baseline is displayed.

FILL

NOFILL

specifies whether the bars are filled.

FILLATTRS=\textit{style-element} <\textit{options}> | \textit{options}

specifies the fill color and transparency.

FILLENDCOLOR=\textit{color}

specifies a fill color that is applied to the chart at the baseline.

FILLPATTERN

enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=\textit{style-element} <\textit{options}> | \textit{options}

specifies the line-fill color and pattern.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

NOZEROBARS

suppresses zero-length bars.

OUTLINE

NOOUTLINE

specifies whether the bars have outlines.

OUTLINEATTRS=\textit{style-element} <\textit{options}> | \textit{options}

specifies the appearance of the bar outlines.

RATTRID=\textit{character-value}

specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=\textit{value}

specifies the degree of transparency for the plot.

\textbf{Axis options}

BASELINE=\textit{numeric-value}

specifies the response axis intercept for the baseline.

\textbf{Data tip options}

TIP=(\textit{variable-list}) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(\textit{format-list})

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(\textit{label-list})
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH=**<em>numeric-value</em>
  - specifies the cluster width as a ratio of the maximum width.
- **GROUP=**<em>variable</em>
  - specifies a variable that is used to group the data.
- **GROUPDISPLAY=**<em>STACK | CLUSTER</em>
  - specifies how to display grouped bars.
- **GROUPORDER=**<em>DATA | REVERSEDATA | ASCENDING | DESCENDING</em>
  - specifies the ordering of the groups within a category.

**Label options**

- **DATALABEL <=**<em>variable</em>
  - displays a label for each bar.
- **DATALABELATTRS=**<em>style-element<options> | (options)</em>
  - specifies the appearance of the labels in the plot when you use the DATALABEL= option.
- **DATALABELFITPOLICY=**<em>policy-value</em>
  - specifies a policy for avoiding collisions among the bar labels, when displayed.
- **SEGLABEL**
  - displays a label inside each segment of a stacked bar.
- **SEGLABELATTRS=**<em>style-element<options> | (options)</em>
  - specifies the text properties of the bar segment label text.
- **SEGLABELFITPOLICY=**<em>NONE | NOCLIP | THIN</em>
  - specifies a policy for fitting the bar segment labels within the bar segments.
- **SEGLABELFORMAT=**<em>format</em>
  - specifies the text format used to display the bar segment labels.
- **SPLITCHAR=**<em>"character-list"</em>
  - splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.
- **SPLITCHARNODROP**
  - specifies that the split characters are included in the displayed value.
- **STATLABEL**
  - specifies whether the response variable statistic is displayed in the axis and legend labels.
- **NOSTATLABEL**
  - specifies whether the response variable statistic is displayed in the axis and legend labels.

**Limit options**

- **LIMITATTRS=**<em>style-element<options> | (options)</em>
  - specifies the appearance of the limit lines in the plot.
- **LIMITCAPSCALE=**<em>positive-number</em>
  - specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).
- **LIMITS=**<em>BOTH | LOWER | UPPER</em>
  - specifies which limit lines to display.
- **LIMITSTAT=**<em>CLM | STDDEV | STDERR</em>
  - specifies the statistic for the limit lines.
NUMSTD=n
    specifies the number of standard units for the limit lines, when you specify
    LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options
  ALPHA=numeric-value
    specifies the confidence level for the confidence limits.
  CATEGORYORDER=RESPASC | RESPDESC
    specifies the order in which the categories are arranged.
  FREQ=numeric-variable
    specifies a variable for the frequency count for each observation in the
    input data.
  LEGENDLABEL="text-string"
    specifies the label that identifies the bar chart in the legend.
  MISSING
    accepts a missing value as a valid category value.
  RESPONSE=response-variable
    specifies a numeric response variable for the plot.
  URL=character-variable
    specifies an HTML page to be displayed when parts of the plot are
    selected.
  WEIGHT=numeric-variable
    specifies how observations are weighted.

Plot reference options
  NAME="text-string"
    specifies a name for the plot.

Statistics options
  COLORSTAT=FREQ | PCT | SUM | MEAN
    specifies the statistic to use for computing the response colors.
  STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
    specifies the statistic for the vertical axis.

Required Argument
  category-variable
    specifies the variable whose values determine the categories of data
    represented by the bars. The variable generates the midpoints to which each
    observation in the data set contributes.

Starting with SAS 9.4M3, interval bar charts are supported when the category
axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value
    specifies the confidence level for the confidence limits. Specify a number
    between 0.00 (100% confidence) and 1.00 (0% confidence).
    Default .05
Interactions

This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.
If GROUPDISPLAY=STACK is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```
RESPDESC
sorts by the response values in descending order.

Default  The plot is sorted in ascending order based on the category values.

Restriction  This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement  This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions  When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes  Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default  0.8

Interactions  This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.
Note: This feature applies to SAS 9.4M3 and later releases.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

colormodel=TwoColorRamp

**color-list**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**

colormodel=(blue yellow green)

**Default**
The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

**Interaction**
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

**Tip**
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**
“GRADLEGEND Statement” on page 259
"Using Gradient Color Legends" on page 1637

**COLORSTAT=FREQ | PCT | SUM | MEAN**

specifies the statistic to use for computing the response colors.
Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.
When COLORRESPONSE= is not specified, the following values are valid:

FREQ   frequency count
PCT    percentages between 0 and 100
Alias  PERCENT can be used in place of PCT.

Defaults SUM when you also specify the COLORRESPONSE= option.
        FREQ when do not specify the COLORRESPONSE= option.

Note  This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>
displays a label for each bar.

  If you specify a variable, then the values of that variable are used for the data labels.
  If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.
  If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.
  If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL by itself without a variable.
  This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.

DATALABELATTRS=style-element<(<options>)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default  GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight
Interaction  This option has no effect unless the DATALABEL option is also specified.

Examples  DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=\textit{policy-value}\n specifies a policy for avoiding collisions among the bar labels, when displayed.
Select one of the following values:

\textbf{NONE}  
\begin{itemize}
\item does not rotate the bar labels. Labels that are too long overlap.
\end{itemize}

\textbf{ROTATE}  
\begin{itemize}
\item rotates the text 90 degrees, but only if collisions occur.
\end{itemize}

\textbf{SPLIT}  
\begin{itemize}
\item splits the labels at the character or characters specified in the SPLITCHAR= option.
\item No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.
\end{itemize}

\textbf{Default}  
The default split character is a space.

\textbf{Tips}  
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

\textbf{SPLITALWAYS}  
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default}  
The default split character is a space.

\textbf{Tips}  
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

\textbf{Defaults}  
\begin{itemize}
\item \texttt{ROTATE} if the column is numeric.
\item \texttt{SPLIT} if the column is character.
\end{itemize}

\textbf{Interaction}  
This option has no effect unless DATALABEL= is also specified.

\textbf{See}  
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

\textbf{DATASKIN=}\texttt{NONE} | \texttt{CRISP} | \texttt{GLOSS} | \texttt{MATTE} | \texttt{PRESSED} | \texttt{SHEEN}  
\begin{itemize}
\item specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work
best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 8.43** DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interactions** This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

**Note** When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**See** “Using Data Skins” on page 1685

**DISCRETEOFFSET=**numeric-value

specifies an amount to offset all bars from the category midpoints.

**Default** 0.0 (no offset)

**Range** -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

**Interaction** If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.
**DISPLAYBASELINE=**AUTO | ON | OFF  
specifies whether the baseline is displayed.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

**AUTO**  
displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

**ON**  
always displays the baseline.

**OFF**  
hides the baseline.

**Default**  
ON

**Tip**  
To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

**FILL | NOFILL**  
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

**Default**  
FILL

**Interactions**  
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=** style-element <(options)> | (options)  
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**  
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interactions**  
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLENDCOLOR=** color  
specifies a fill color that is applied to the chart at the baseline.
Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

Interactions

This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```plaintext
ods graphics / attrpriority=none;
```

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATRERS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATRERS=** \textit{style-element} \textit{<(options)>} | (options)

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

\textit{options} can be one or both of the following:

**COLOR=** \textit{style-reference} | \textit{color}

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=** \textit{style-reference} | \textit{line-pattern}

specifies the type of line pattern to use for the fill.
*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.44  Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="L1.png" alt="Example" /></td>
<td>R1</td>
<td><img src="R1.png" alt="Example" /></td>
<td>X1</td>
<td><img src="X1.png" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="L2.png" alt="Example" /></td>
<td>R2</td>
<td><img src="R2.png" alt="Example" /></td>
<td>X2</td>
<td><img src="X2.png" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="L3.png" alt="Example" /></td>
<td>R3</td>
<td><img src="R3.png" alt="Example" /></td>
<td>X3</td>
<td><img src="X3.png" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="L4.png" alt="Example" /></td>
<td>R4</td>
<td><img src="R4.png" alt="Example" /></td>
<td>X4</td>
<td><img src="X4.png" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="L5.png" alt="Example" /></td>
<td>R5</td>
<td><img src="R5.png" alt="Example" /></td>
<td>X5</td>
<td><img src="X5.png" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**

specifies the fill type that is applied to the chart.

**Note:** This feature applies to SAS 9.4M2 and later releases.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall.
at the baseline of the bar. The option does not involve transparency. Only the color is affected.

**Interactions**

To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**

(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**ALPHAGRADIENT**

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**

Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

**Tips**

If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**Default**

SOLID

**Interaction**

This option has no effect if NOFILL is also specified.

**FREQ=numeric-variable**

Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

**Restrictions**

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

**Interactions**

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

**GROUP=variable**

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Restriction  If you specify a group variable in a category chart, and the
procedure contains more than one category chart statement, all of
the charts must specify the same GROUP variable. If you do not
specify the same GROUP= option for all of the category charts,
then an error is generated.

Interaction  When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.

Note  When GROUP= is used with COLORRESPONSE=, only a gradient
color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color
legend.

Tips  ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change
the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is
enabled, use FILLPATTERN to distinguish the group values. See
“Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK  groups are overlaid without any clustering. All data elements for a given
group value are drawn at the exact coordinate, on top of one another. Each
group is represented by unique visual attributes derived from the
GraphData1... GraphDataN style elements in the current style.

CLUSTER  displays group values as separate adjacent bars that replace the single
category bar. Each set of group values is centered at the midpoint tick mark
for the category.

Note:  CLUSTER is supported only when the category axis is discrete.

Default  STACK

Interaction  This option is ignored unless GROUP= is specified.

Tip  The distance between the group elements in a cluster is controlled
by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA  orders the groups within a category in data order of the group variable.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL=“text-string”
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITCAPSCALE= positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

LIMITS=BOTH | LOWER | UPPER

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= option or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

BOTH
  adds lower and upper limit lines to the plot.

LOWER
  adds lower limit lines to the plot.

UPPER
  adds upper limit lines to the plot.

Default: By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions: Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

Tip: To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
  confidence limits
STDDEV
standard deviation

STDERR
standard error

Default
If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

Tip
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction
This option has no effect when FREQ= is specified.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.
This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes
If BASELINE= is specified, a zero-length bar value equals the baseline. When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip
This option is useful when the bar chart baseline is suppressed.

**NUMSTD=** *n*

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

**OUTLINE | NOOUTLINE**

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions
Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**OUTLINEATTRS=** *style-element (<options>) | (options)*

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.
Interaction  This option has no effect if NOOUTLINE is also specified.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See  Chapter 19, “Using Range Attribute Maps,” on page 1755

**RESPONSE=response-variable**
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

**SEGLABEL**
displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

![Bar chart example](image)

**Tips**  For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

**SEGLABELATTRS=style-element<(options)> | (options)**
specifies the text properties of the bar segment label text.
Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

**SEGLABELFITPOLICY=NONE | NOCLIP | THIN**

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

**NONE**

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**

drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=** _format_

specifies the text format used to display the bar segment labels.

Note: This feature applies to SAS 9.4M2 and later releases.

Default: The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction: This option has no effect unless SEGLABEL is also specified.

Note: When a segment-label format is specified with this option, the segment labels are formatted as specified by _format_. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand
automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

**SPLITCHAR=**"character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
The default split character is a space.

**Interactions**
This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**STAT=**FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

**FREQ**

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.
MEAN
the mean of the response variable.
Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.
Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.
Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.
FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.
STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

**Defaults**

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

**Interactions**

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

**Note:** This feature applies to SAS 9.4M1 and later releases.

**Requirement**

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

VBARBASIC Statement

Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Notes:

This feature applies to SAS 9.4M3 and later releases.

When using the VBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the VBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip:

The VBARBASIC statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

See:

Basic plot types on page 1629

“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types
Example: “About Bar Charts” on page 51

Syntax

VBARBASIC *category-variable* <*(options)>;

Summary of Optional Arguments

Appearance options

- **ATTRID**=*character-value*
 - specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH**=*numeric-value*
 - specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS**=*style-element* <*(options)> | *(options)*
 - specifies the appearance of the baseline.

- **COLORMODEL**=*style-element* | *(color-list)*
 - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE**=*numeric-column*
 - specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN**=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET**=*numeric-value*
 - specifies an amount to offset all bars from the category midpoints.

- **DISPLAYBASELINE**=AUTO | ON | OFF
 - specifies whether the baseline is displayed.

- **FILL**
 - specifies whether the bars are filled.

- **NOFILL**
 - specifies whether the bars are filled.

- **FILLATTRS**=*style-element* <*(options)> | *(options)*
 - specifies the fill color and transparency.

- **FILLENDCOLOR**=*color*
 - specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
 - enables the display of line fill patterns for the plot.

- **FILLPATTERNAATTRS**=*style-element* <*(options)> | *(options)*
 - specifies the line-fill color and pattern.

- **FILLTYPE**=SOLID | GRADIENT | ALPHAGRADIENT
 - specifies the fill type that is applied to the chart.

- **NOZEROBARS**
 - suppresses zero-length bars.

- **OUTLINE**
 - specifies whether the bars have outlines.

- **NOOUTLINE**
 - specifies whether the bars have outlines.

- **OUTLINEATTRS**=*style-element* <*(options)> | *(options)*
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.
Plot options

MISSING
accepts a missing value as a valid category value.

RESPONSE= ***response-variable***
specifies a numeric response variable for the plot.

URL= ***character-variable***
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME= ***"text-string"***
specifies a name for the plot.

Statistics options

COLORSTAT= ***FREQ | PCT | SUM | MEAN***
specifies the statistic to use for computing the response colors.

STAT= ***FREQ | PCT | SUM | MEAN | PROPORTION***
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

ATTRID= ***character-value***
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH= ***numeric-value***
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Default: .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER
Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.
Tip To suppress the baseline, set the line thickness to 0 as follows:

 baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

 specifies the name of a style element. The style element should contain these style attributes:

 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

 colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example

 colormodel=(blue yellow green)

Default
The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.
Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 259
“Using Gradient Color Legends” on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

Alias PERCENT can be used in place of PCT.

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL
displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default No label is shown

Tip The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default: GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interaction: This option has no effect unless the DATALABEL option is also specified.

Examples:

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default: Show the labels unless they collide.

Interaction: This option has no effect unless DATALABEL is also specified.

DATALABELFORMAT= *format*

specifies the text format used to display the bar label.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 8.45 *DATASKIN Options for Filled Areas*

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE
Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

DISCRETEOFFSET= numeric-value
- Specifies an amount to offset all bars from the category midpoints.
 - **Default** 0.0 (no offset)
 - **Range** -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.
 - **Interaction** If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE= AUTO | ON | OFF
- Specifies whether the baseline is displayed.
 - **Note:** This feature applies to SAS 9.4M5 and later releases.
 - Specify one of the following values:
 - **AUTO**
 - Displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.
 - **ON**
 - Always displays the baseline.
 - **OFF**
 - Hides the baseline.
 - **Default** ON
 - **Tip** To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL
- Specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.
 - **Default** FILL
Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element (options> | (options)
 specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interaction This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=color
 specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN
 enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

 ods graphics / attrpriority=none;

Accessibility note This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.
Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=<ref>style-element <options> | (options)</ref>

specifies the line-fill color and pattern.

Note: This feature applies to **SAS 9.4M5** and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=<ref>style-reference | color</ref>

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=<ref>style-reference | line-pattern</ref>

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value,
specify \texttt{ATTRPRIORITY=NONE} in an ODS GRAPHICS statement. See \texttt{"ATTRPRIORITY=COLOR | NONE"} on page 99.

For this option to take effect, the \texttt{FILLPATTERN} option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

Prior to \texttt{SAS 9.4M5}, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with \texttt{SAS 9.4M5}, \texttt{FILLTYPE=GRADIENT} displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

Interactions
To change the color of the wall, use the \texttt{FILLENDCOLOR=} option.

Data skin SHEEN cannot be used when \texttt{FILLTYPE=GRADIENT} is in effect. You can use one of the other data skins in that case.

Tip
(Prior to \texttt{SAS 9.4M5}) Use the \texttt{TRANSPARENCY=} chart option, or the \texttt{TRANSPARENCY=} suboption in \texttt{FILLATTRS=}, to set the initial transparency in the gradients.

ALPHAGRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to \texttt{SAS 9.4M5} and later releases.

Interaction
Data skin SHEEN cannot be used when \texttt{FILLTYPE=ALPHAGRADIENT} is in effect. You can use one of the other data skins in that case.

Tips
If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the \texttt{TRANSPARENCY=} chart option, or the \texttt{TRANSPARENCY=} suboption in \texttt{FILLATTRS=}, to set the initial transparency in the gradients.

Default
\texttt{SOLID}
Interaction This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, "Using Attribute Maps to Control Visual Attributes," on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See "Using Fill Patterns and Gradient-Color Fills" on page 1701.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is "Frequency".

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.
Note The *text-string* is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.
Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID= character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

RESPONSE= response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

```
<table>
<thead>
<tr>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.04</td>
<td>27.115</td>
<td>25.13</td>
</tr>
<tr>
<td>18.7</td>
<td>29.968</td>
<td>26.647</td>
</tr>
</tbody>
</table>
```

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
SEGLABELATTRS=<style-element><(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction This option has no effect unless SEGLABEL is also specified.

Note When a segment-label format is specified with this option, the segment labels are formatted as specified by format. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ
frequency count

PCT | PERCENT
percentages between 0 and 100
Alias

PROPORTION
proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM
sum values for the response

MEAN
mean values for the response

Defaults
SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Interaction
When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The roles for TIP are CATEGORY, GROUP, and RESPONSE. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(category response)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using
the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL option to assign labels to the list of roles.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of roles.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

URL=character-variable
Specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
Specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example
Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

VBAR Parm Statement

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirements:

Parameterized bar charts require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. This is the key distinction between VBARParm and VBAR.

The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction:

The VBARParm statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628.

Note:

The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the VBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip:

The VBARParm statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

Example:

“About Bar Charts” on page 51

Syntax

```sas
VBAR Parm CATEGORY=category-variable RESPONSE=numeric-variable <options>;
```
Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

DISPLAYBASELINE=AUTO | ON | OFF
 specifies whether the baseline is displayed.

FILL
 NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

FILLENDCOLOR=color
 specifies a fill color that is applied to the chart at the baseline.

FILLPATTERN
 enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
 specifies the line-fill color and pattern.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT
 specifies the fill type that is applied to the chart.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE
 NOOUTLINE
 specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
 specifies the response axis intercept for the baseline.
Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element<(options) | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options) | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Limit options

LIMITATTRS=style-element<(options) | (options)
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

\texttt{LIMITLOWER=numeric-variable}
specifies values for the lower endpoints on the limit lines.

\texttt{LIMITUPPER=numeric-variable}
specifies values for the upper endpoints on the limit lines.

\textbf{Plot options}

\texttt{MISSING}
accepts a missing value as a valid category value.

\texttt{URL=character-variable}
specifies an HTML page to be displayed when parts of the plot are selected.

\textbf{Plot reference options}

\texttt{NAME="text-string"}
specifies a name for the plot.

\section*{Required Arguments}

\textbf{CATEGORY=category-variable}
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values.

The \texttt{CATEGORY} axis is always discrete.

\textbf{RESPONSE=numeric-variable}
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

\section*{Optional Arguments}

\textbf{ATTRID=character-value}
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\texttt{BARWIDTH=numeric-value}
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.
Defaults

.8

1.0 when the GROUP option is specified and
GROUPDISPLAY=CLUSTER

Range

0.0 (narrowest) to 1.0 (widest)

Interaction

When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip

When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default

0

Interaction

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.
Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

Color-list specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 259

“Using Gradient Color Legends” on page 1637

DATALABEL <=variable> displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

 If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove
DATALABELPOS= from the plot statement, the data labels are offset.

This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.

If you also specify LIMITLOWER or LIMITUPPER, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.
Select one of the following values:

NONE
does not rotate the bar labels. Labels that are too long overlap.

ROTA TED
rotates the text 90 degrees, but only if collisions occur.

SPLIT
splits the labels at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Tips Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
SPLITALWAYS
always splits the values at the character or characters specified in the
SPLITCHAR= option. If the value does not contain any of the specified split
characters, a split does not occur.

Default The default split character is a space.

Tips Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by
default. If you want the split characters to appear in the values, then
also specify SPLITCHARNODROP.

Defaults ROTATE if the column is numeric.

SPLIT if the column is character.

Interaction This option has no effect unless DATALABEL= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on
page 1643

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled
bars. The effect that a data skin has on a filled area depends on the skin type,
the graph style, and the color of the skinned element. Most of the skins work
best with lighter colors over a medium to large filled area. Specify one of the
following:

Table 8.47 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the
maximum number of graphics elements that are skinned in a plot
statement. In SAS 9.4M1 and later releases, the maximum number
is 200 by default. When this limit is exceeded for a plot, the
specified data skin is not applied. Use the DATASKINMAX= option
to increase or decrease the maximum limit.

Interactions This option has no effect if the applied style uses a fill pattern and
FILL is disabled for the style. If the style enables both FILL and
FILLPATTERN, data skins work. For more information about fill
patterns, see “Using Fill Patterns to Distinguish Categories of
Data” on page 1698. For instructions about viewing the contents of
If you also specify NOFILL, then the data skin is applied to the outlines.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF

specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO

displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON

always displays the baseline.

OFF

hides the baseline.

Default **ON**

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default **FILL**

Interactions Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions

This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=color

specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions

This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**Tips**

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.
Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=** style-element *(options)* | *(options)*

specifies the line-fill color and pattern.

---

**Note:** This feature applies to **SAS 9.4M5** and later releases.

---

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=** style-reference | color

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the **COLOR=** setting has the effect of holding the fill color constant across all group values.

**PATTERN=** style-reference | line-pattern

specifies the type of line pattern to use for the fill.

**line-pattern** is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.48  Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1" alt="Example" /></td>
<td>R1</td>
<td><img src="image2" alt="Example" /></td>
<td>X1</td>
<td><img src="image3" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4" alt="Example" /></td>
<td>R2</td>
<td><img src="image5" alt="Example" /></td>
<td>X2</td>
<td><img src="image6" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image7" alt="Example" /></td>
<td>R3</td>
<td><img src="image8" alt="Example" /></td>
<td>X3</td>
<td><img src="image9" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image10" alt="Example" /></td>
<td>R4</td>
<td><img src="image11" alt="Example" /></td>
<td>X4</td>
<td><img src="image12" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image13" alt="Example" /></td>
<td>R5</td>
<td><img src="image14" alt="Example" /></td>
<td>X5</td>
<td><img src="image15" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the **PATTERN=** setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value,
specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**

specifies the fill type that is applied to the chart.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

**Interactions**
To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**
(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**ALPHAGRADIENT**

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**
Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

**Tips**
If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default: SOLID

Interaction: This option has no effect if NOFILL is also specified.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction: When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

**Note:** When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

**Tips:**

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.

**STACK**

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

**CLUSTER**

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

**Note:** CLUSTER is supported only when the category axis is discrete.

**Default:** STACK

**Interaction:** This option is ignored unless GROUP= is specified.

**Tip:** The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: DATA

Interactions: The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=, The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note: The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip: The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element(options) | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction For this option to have any effect, either LIMITLOWER= or LIMITUPPER= must be specified.

Tip The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITLOWER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)
Interactions

If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITUPPER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

Tip

To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.

Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Default" /></td>
<td><img src="image" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

Interaction

This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes

If BASELINE= is specified, a zero-length bar value equals the baseline.
When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip
This option is useful when the bar chart baseline is suppressed.

**OUTLINE | NOOUTLINE**
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

**Interactions**
Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**OUTLINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**
This option has no effect if NOOUTLINE is also specified.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

**SEGLABEL**
displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that
bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATRBS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATRBS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.
NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default

THIN

Interaction

This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\textit{format}

specifies the text format used to display the bar segment labels.

\textbf{Note}: This feature applies to SAS 9.4M2 and later releases.

Default

The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction

This option has no effect unless SEGLABEL is also specified.

\textbf{Note}

When a segment-label format is specified with this option, the segment labels are formatted as specified by \textit{format}. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

SPLITCHAR=\textit{character-list}

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

\textit{character-list} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR="abc"}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

The default split character is a space.

Interaction

This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tiipformat=(auto F5.2)

TIPLABEL= (label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiiplabel=(auto "Class Weight")

TRANSPARENCY= value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL= character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.
VBOX Statement

Creates a vertical box plot that shows the distribution of your data.

Restriction: This plot has compatibility restrictions when used with other plots. See Table 13.2 on page 1630.

See: “Visual Description of Box Plot Percentile Boundaries” on page 684

Example: “About Box Plots” on page 46

Syntax

VBOX numeric-analysis-variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
  specifies the width of the box.

CAPSCALE=numeric-value
  specifies a positive number to use as a multiplier for changing the default width of the whisker caps.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
  specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

**CONNECTATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the lines that connect multiple boxes.

**DATASKIN=** {NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot.

**DISCRETEOFFSET=** *numeric-value*

specifies an amount to offset all boxes from the discrete tick marks.

**EXTREME**

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

**FILL**

**NOFILL**

specifies whether the boxes are filled with color.

**FILLATTRS=** *style-element* *(<options>) | (options)*

specifies the fill color and transparency.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

**FILLPATTERNNATTRS=** *style-element* *(<options>) | (options)*

specifies the line-fill color and pattern.

**INTBOXWIDTH=** *numeric-value*

specifies the box width when an interval category (X) variable is specified.

**LINEATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the box outlines.

**MEANATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the marker that represents the mean in the box.

**MEDIANATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the line that represents the median.

**NOCAPS**

hides the cap lines for the whiskers.

**NOMEAN**

hides the mean marker.

**NOMEDIAN**

hides the median line.

**NOOUTLIERS**

hides the outliers from the plot.

**NOTCHES**

specifies that the boxes be notched.

**OUTLIERATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the marker that represents the outliers.

**TRANSPARENCY=** *value*

specifies the degree of transparency for the plot.

**WHISKERATTRS=** *style-element*(<options>) | (options)

specifies the appearance of the whisker and cap lines.

**WHISKERPCT=** *number*

specifies the whisker length, in percentile units.

**Data tip options**

**TIP=** *(role-list) | NONE*

specifies the information to display when the cursor is positioned over a box or whisker in the box plot.
TIPFORMAT = (format-list)
    applies formats to the list of data tip roles that you specify in the TIP=
    option.

TIPLABEL = (label-list)
    applies labels to the list of data tip roles that you specify in the TIP=
    option.

Group options

CLUSTERWIDTH = numeric-value
    specifies the cluster width as a ratio of the midpoint spacing.

GROUP = variable
    specifies a variable that is used to group the data.

GROUPDISPLAY = CLUSTER | OVERLAY
    specifies how to display grouped boxes.

GROUPORDER = DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.

Label options

DATALABEL = variable
    adds data labels for the outlier markers.

DATALABELATTRS = style-element (options) | (options)
    specifies the appearance of the labels in the plot when you use the
    DATALABEL = option.

LABELFAR
    specifies that only the far outliers have data labels.

LEGENDLABEL = "text-string"
    specifies a label that identifies the box plot in the legend.

SPLITCHAR = "character-list"
    splits the text for data labels at the specified character or characters when
    there is not enough room to display the text normally.

SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.

SPLITJUSTIFY = LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY = category-variable
    specifies the category variable for the plot.

DISPLAYSTATS = ALL | (statistics-list)
    specifies statistics to be displayed for each box.

FREQ = numeric-variable
    specifies a variable for the frequency count for each observation in the
    input data.

MISSING
    accepts a missing value as a valid category value.

PERCENTILE = 1 | 2 | 3 | 4 | 5
    specifies a method for computing the percentiles for the plot.

SPREAD
    relocates outlier points that have identical values to prevent overlapping.

WEIGHT = numeric-variable
    specifies how observations are weighted.
Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the whisker caps. For example, CAPSCALE=2 doubles the default cap width and CAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction This option has no effect if NOCAPS is specified or if CAPSHAPE=None.

Tips The thickness (height) of a SERIF, LINE, or BRACKET cap honors the line thickness specified in the WHISKERATTRS= option. The cap pattern is always solid.

Use the CAPSHAPE= option to specify the line shape of the caps.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.
SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

**CATEGORY=category-variable**
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

The default ordering of the tick values is ascending formatted order of the category-variable. To change this ordering, you can use the DISCRETEORDER=DATA option in the category axis statement.

**CLUSTERWIDTH=numeric-value**
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

**CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX**
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

**CONNECTATTRS=style-element<(options)> | (options)**
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:
CONNECTATTRS=GraphData3

**DATALABEL <=variable>**

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note This option has no effect unless the plot contains outlier points.

**DATALABELATTRS=style-element<(options)> | (options)**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

*Table 8.49  DATASKIN Options for Box Plots*

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

Although the figure shows horizontal boxes, the data skin for vertical boxes is identical.
Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See

“Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default 0.0 (no offset)

DISPLAYSTATS <=ALL | (statistics-list)> specifies statistics to be displayed for each box.

Note: This feature applies to SAS 9.4M5 and later releases.

DISPLAYSTATS

When DISPLAYSTATS is specified without any argument, the plot displays N, MEAN, and STD.

DISPLAYSTATS=ALL

This option displays all available statistics. (See the statistics-list.)

DISPLAYSTATS=(statistics-list)

statistics-list is a space-separated list of one or more of the following statistics, enclosed in parentheses:

DATAMAX maximum data value that includes not only the maximum whisker values but also the maximum outlier values. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

DATAMIN minimum data value that includes not only the minimum whisker values but also the minimum outlier values. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

IQR interquartile range (Q3–Q1).

MAX maximum data value below the box upper fence.

MEAN mean data value for the box.
**MEDIAN**	median data value for the box.
**MIN**	minimum data value above the box lower fence.
**N**	number of observations for the box.
**Q1**	lower quartile (25th percentile) for the box.
**Q3**	upper quartile (75th percentile) for the box.
**RANGE**	range of the data (MAX–MIN).
**STD**	standard deviation of the data for the box.
**SUMWGT**	sum of the weights for the box.

**Example**

displaystats=(mean median)

**Restriction**
This option is ignored if the GROUP= option is also specified.

**Note**
The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.

**EXTREME**
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL | NOFILL**
specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Defaults**
FILL

**FILLATTRS=**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interactions**
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

**Note:** This feature applies to SAS 9.4M5 and later releases.
Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```plaintext
ods graphics / attrpriority=none;
```

Accessibility

note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot's fill color.

**FILLPATTERNATTRS=**<br/>

```
style-element <(options)> | (options)
```

specifies the line-fill color and pattern.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

---

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**options** can be one or both of the following:

**COLOR=**<br/>

```
style-reference | color
```

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=**<br/>

```
style-reference | line-pattern
```

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 8.50 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="example.png" alt="Pattern L1" /></td>
<td>R1</td>
<td><img src="example.png" alt="Pattern R1" /></td>
<td>X1</td>
<td><img src="example.png" alt="Pattern X1" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="example.png" alt="Pattern L2" /></td>
<td>R2</td>
<td><img src="example.png" alt="Pattern R2" /></td>
<td>X2</td>
<td><img src="example.png" alt="Pattern X2" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="example.png" alt="Pattern L3" /></td>
<td>R3</td>
<td><img src="example.png" alt="Pattern R3" /></td>
<td>X3</td>
<td><img src="example.png" alt="Pattern X3" /></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped boxes.
CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1… GraphData\textsubscript{n} style elements in the current style.

Defaults
CLUSTER for a discrete category axis
OVERLAY for a linear axis

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
**INTBOXWIDTH=numeric-value**  
Specifies the box width when an interval category (X) variable is specified.

*Restriction*  
The axis type for the category axis must be LINEAR, and the variable must be numeric.

*Example*  
```plaintext
proc sgpanel data=sashelp.class;
 panelby sex;
 vbox weight / category=height intboxwidth=50;
 colaxis type=linear;
run;
```

**LABELFAR**  
Specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

*Note*  
This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

**LEGENDLABEL="text-string"**  
Specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

**LINEATTRS=style-element<(options)> | (options)**  
Specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

*Default*  
GraphDataDefault style element in the current style for ungrouped data.  
GraphData1 ... GraphData*n* style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**MEANATTRS=style-element<(options)> | (options)**  
Specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

*Default*  
GraphBoxMean style element in the current style for ungrouped data.  
GraphData1 ... GraphData*n* style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**MEDIANATTRS=style-element<(options)> | (options)**  
Specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
Default: GraphBoxMedian style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction: This option is ignored if the NOMEDIAN option is also specified.

MISSING: accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string": specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS: hides the cap lines for the whiskers.

Interaction: Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN: hides the mean marker.

NOMEDIAN: hides the median line.

NOOOUTLIERS: hides the outliers from the plot.

NOTCHES: specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \left( \frac{IQR}{\sqrt{N}} \right)
\]

For a visual description of the parts of a box plot, see “Details” on page 683.

OUTLIERATTRS=style-element<options>) | (options): specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default: GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.
PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

Default  5 (empirical distribution function with averaging)

See  “Calculating Percentiles” on page 684

SPLITCHAR=“character-list”
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction  This option has no effect unless you specify the SPLITCHAR= option.
See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPREAD**
relocates outlier points that have identical values to prevent overlapping.

**Note**  This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

**TIP=**(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The roles for TIP are CATEGORY, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

**NONE**
suppresses the data tips from this plot.

**Note**: This feature applies to SAS 9.4M1 and later releases.

**Requirement**  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

**Interaction**  This option replaces all of the information that is displayed by default.

**Tip**  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  tip=(mean median)

**TIPFORMAT=**(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

**Default**  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  This option has no effect unless TIP= is also specified.
Note A syntax error might be generated if you specify the format using the \texttt{w.d} SAS format. To avoid this error condition, insert an \texttt{F} in front of the format name. Example: \texttt{F2.0}

Tip Use the \texttt{TIPLABEL} option to assign labels to the list of roles.

See \textit{SAS Formats and Informs: Reference}

Example \texttt{tipformat=(auto F5.2)}

\textbf{TIPLABEL=(label-list)}

applies labels to the list of data tip roles that you specify in the \texttt{TIP=} option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the \texttt{label-list} and the \texttt{role-list} that is specified for the \texttt{TIP=} option. A label must be provided for each role, using the same order as the \texttt{role-list}. If you do not want to apply a custom label to a role, use the \texttt{AUTO} keyword instead.

Requirement A label or the keyword \texttt{AUTO} must be provided for each role that is listed in the \texttt{TIP=} option. When \texttt{AUTO} is used, the label is obtained from the variable.

Interaction This option has no effect unless \texttt{TIP=} is also specified.

Tip Use the \texttt{TIPFORMAT} option to assign formats to the list of roles.

Example \texttt{tiplabel=(auto "Class Weight")}

\textbf{TRANSPARENCY=value}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

\textbf{WEIGHT=numeric-variable}

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

\begin{itemize}
  \item \textbf{Note:} This feature applies to \texttt{SAS 9.4M1} and later releases.
  \item Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
\end{itemize}

\textbf{WHISKERATTRS=style-element<(options)> | (options)}

specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
Default

GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData\_n style elements in the current style for grouped data. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Interaction
This option is ignored if the NOMEDIAN option is also specified.

**WHISKERPCT=number**

specifies the whisker length, in percentile units.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10th percentile low and the 90th percentile high
25 specifies the 25th percentile low and the 75th percentile high

Default
The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes
When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

---

Details

**Statement Summary**

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.
Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

**Figure 8.11  Parts of a Box Plot**

In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences \((\pm 1.5 \text{ IQR})\). Outliers that are beyond upper and lower far fences \((\pm 3 \text{ IQR})\) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let \(n\) be the number of nonmissing values for a variable, and let \(X_1, X_2, ..., X_n\) represent the ordered values of the variable. \(X_1\) is the smallest value, \(X_2\) is the next smallest, and \(X_n\) is the largest value. Let the \(r\)th percentile be \(y\), set:
\[ p = \frac{1}{100} \]

and let:

\[ np = j + g \]

when PERCENTILE=1, 2, 3, or 5, or let:

\[(n + 1)p = j + g\]

when PERCENTILE=4, where \( j \) is the integer part of \( np \), and \( g \) is the fractional part of \( np \). Then the PERCENTILE= option defines the \( t \)th percentile, \( y \), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at ( X_{np} )</td>
<td>[ y = (1 - g)x_j + gx_j + 1 ]</td>
<td>( x_0 ) is taken to be ( x_1 )</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to ( np )</td>
<td>[ y = x_j ]</td>
<td>Used when ( g &lt; \frac{1}{2} ) or ( g = \frac{1}{2} ) and ( j ) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>( y = x_j + 1 )</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>[ y = x_j ]</td>
<td>Used when ( g = 0 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>( y = x_j + 1 )</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at ( x_{(n+1)p} )</td>
<td>[ y = (1 - g)x_j + gx_j + 1 ]</td>
<td>( x_{n+1} ) is taken to be ( x_n )</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>[ y = \frac{1}{2}(x_j + x_j + 1) ]</td>
<td>Used when ( g = 0 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>( y = x_j + 1 )</td>
</tr>
</tbody>
</table>

**VECTOR Statement**

Creates a vector plot that draws arrows from a point of origin to each data point.

See:  
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:  
“About Vector Plots” on page 39
Syntax

VECTOR X=numeric-variable Y=numeric-variable <options>;

Summary of Optional Arguments

Appearance options

- ARROWDIRECTION=IN | OUT | BOTH
  - specifies the location of the arrowheads for the vectors.

- ARROWHEADSHAPE=shape
  - specifies the shape of the arrowheads for the vectors.

- ATTRID=character-value
  - specifies the value of the ID variable in a discrete attribute map data set.

- COLORMODEL=style-element | (color-list)
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- COLORRESPONSE=numeric-column
  - specifies the numeric column that is used to map colors to a gradient legend.

- DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  - specifies a special effect to be used on the plot.

- LINEATTRS=style-element (<options>) | (options)
  - specifies the appearance of the vector line.

- NOARROWHEADS
  - removes the arrowheads from the vectors.

- RATTRID=character-value
  - specifies the value of the ID variable in a range attribute map data set.

- THICKMAX=dimension
  - specifies the maximum line thickness when a response variable is used to determine the line thickness.

- THICKMAXRESP=numeric-value
  - specifies the response value that corresponds to the maximum line thickness.

- THICKRESP=numeric-variable
  - specifies a response variable that is used to map a line thickness to each group value.

- TRANSPARENCY=value
  - specifies the degree of transparency for the plot.

Data tip options

- TIP=(variable-list) | NONE
  - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- TIPFORMAT=(format-list)
  - applies formats to the list of data tip variables that you specify in the TIP= option.

- TIPLABEL=(label-list)
  - applies labels to the list of data tip variables that you specify in the TIP= option.
Group options

**GROUP=variable**
specifies a variable that is used to group the data.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

Label options

**DATALABEL<variable>**
displays a label for each data point.

**DATALABELATTRS=style-element<(options)| (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL="text-string"**
specifies a label that identifies the vector plot in the legend.

**SPLITCHAR="character-list"**
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

Plot options

**XORIGIN=numeric-value | numeric-variable**
specifies the X coordinate of the origin for the vectors.

**YORIGIN=numeric-value | numeric-variable**
specifies the Y coordinate of the origin for the vectors.

Plot reference options

**NAME="text-string"**
specifies a name for the plot.

Required Arguments

**X=numeric-variable**
specifies a numeric variable for the X axis.

**Y=numeric-variable**
specifies numeric variable for the Y axis.

Optional Arguments

**ARROWDIRECTION=IN | OUT | BOTH**
specifies the location of the arrowheads for the vectors. Specify one of the following:

**IN**
places the arrowheads at the origin of the vector.
OUT
places the arrowheads at the ending point of the vector.

BOTH
places arrowheads at both the origin and ending point of the vector.

Default OUT

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors. Specify one of the following:

OPEN
resembles the letter "V".

CLOSED
an outline of a triangle.

FILLED
a solid triangle.

BARBED
a solid triangle with an indent at the base.

Default OPEN

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See "GRADLEGEND Statement" on page 259
"Using Gradient Color Legends" on page 1637

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.
Examples

DATALABELATRBS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATRBS=GraphLabelText

DATALABELPOS=position

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATALABELPOS specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to exceed the maximum limit while other cells still have room for skinning.
to reach the maximum threshold, but the plot in a different cell does not.

See  "Using Data Skins” on page 1685

**GROUP=**`variable`

specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

*Note*  When `GROUP=` is used with `COLORRESPONSE=`, only a gradient color legend is generated automatically. In that case, include a `KEYLEGEND` statement and a `GRADLEGEND` statement in the procedure step to add a discrete legend and a gradient color legend.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the vector plot in the legend. By default, the label of the Y variable or the group value for each plot element is used.

**Interaction**  The `LEGENDLABEL=` option has no effect if you also specify the `GROUP=` option in the same plot statement.

**LINEATTRS=**`style-element <(options)>` | `(options)`

specifies the appearance of the vector line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns” on page 1651.

**Default**  `GraphDataDefault` style element in the current style for ungrouped data. `GraphData1` ... `GraphDataN` style elements in the current style for grouped data. The effective attributes are: `ContrastColor`, `LineStyle`, and `LineThickness`.

**NAME=**"text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

*Note*  The `text-string` is case-sensitive and must define a unique name within the procedure.

**Tip**  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOARROWHEADS**

removes the arrowheads from the vectors.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**RATTRID=**`character-value`

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

*Note:*  This feature applies to `SAS 9.4M3` and later releases.
SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
THICKMAX=\textit{dimension}

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

\begin{itemize}
  \item \textbf{Note:} This feature applies to SAS 9.4M3 and later releases.
\end{itemize}

\begin{itemize}
  \item \textbf{Default} \hspace{1cm} Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.
  \item \textbf{Interactions} \hspace{1cm} The THICKRESP= option must be specified for this option to have any effect.

  The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

  If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.
\end{itemize}

\begin{itemize}
  \item \textbf{See} \hspace{1cm} "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1544 for an example of how to use this option.
\end{itemize}

THICKMAXRESP=\textit{numeric-value}

specifies the response value that corresponds to the maximum line thickness.

\begin{itemize}
  \item \textbf{Note:} This feature applies to SAS 9.4M3 and later releases.
\end{itemize}

\begin{itemize}
  \item \textbf{Default} \hspace{1cm} The maximum value in the response column that is specified in the THICKRESP= option.
  \item \textbf{Interactions} \hspace{1cm} The THICKRESP= option must be specified for this option to have any effect.

  The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

  If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.
\end{itemize}

THICKRESP=\textit{numeric-variable}

specifies a response variable that is used to map a line thickness to each group value.

\begin{itemize}
  \item \textbf{Note:} This feature applies to SAS 9.4M3 and later releases.
\end{itemize}

\begin{itemize}
  \item \textbf{Default} \hspace{1cm} The GraphDataDefault style element LineThickness attribute.
  \item \textbf{Restriction} \hspace{1cm} The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a
single GROUP value, only one of the THICKRESP= values is used for that group.

**Requirement**
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

**Interactions**
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

**See**
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

### **TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **(variable-list)**
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

- **NONE**
suppresses the data tips from this plot.

---

**Note:** This feature applies to SAS 9.4M1 and later releases.

**Requirement**
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.
Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the \texttt{w.d} SAS format. To avoid this error condition, insert an \texttt{F} in front of the format name. Example: \texttt{F2.0}

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: \textit{SAS Formats and Informats: Reference}

Example: \texttt{tipformat=(auto F5.2)}

\texttt{TIPLABEL=(label-list)}

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the \texttt{label-list} and the \texttt{variable-list} that is specified for the TIP= option. A label must be provided for each variable, using the same order as the \texttt{variable-list}. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: \texttt{tplabel=(auto "Class Weight")}

\texttt{TRANSPARENCY=value}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

Restriction: The specified transparency is not applied to missing values. Missing values are always opaque.

\texttt{XORIGIN=numeric-value | numeric-variable}

specifies the X coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default: 0

\texttt{YORIGIN=numeric-value | numeric-variable}

specifies the Y coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.
VLINE Statement

Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR statement to create a bar-line chart.

Restrictions: The VLINE statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1628.

When category plots are overlaid, all of the plots must use the same category variable.

See:
“Marker Fills and Outlines” on page 1645

Examples:
“About Line Charts” on page 60
“Example 4: Creating a Panel of Line Charts” on page 784

Syntax

VLINE category-variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete category values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

- **CLUSTERWIDTH=numeric-value**
 specifies the width of the group clusters as a fraction of the midpoint spacing.

- **GROUP=variable**
 specifies a variable that is used to group the data.

- **GROUPDISPLAY=CLUSTER | OVERLAY**
 specifies how to display grouped lines.

- **GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
 specifies the ordering of the groups within a category.

Label options

- **CURVELABEL <"text-string">**
 adds a label for the line plot.

- **CURVELABELATTRS=style-element<(options)> | (options)**
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

- **CURVELABELPOS=MIN | MAX | START | END**
 specifies the location of the curve label.

- **DATALABEL <=variable>**
 displays a label for each data point.

- **DATALABELATTRS=style-element<(options)> | (options)**
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=position**
 specifies the location of the data label with respect to the plot.

- **LEGENDLABEL="text-string"**
 specifies the label that identifies the line plot in the legend.

- **SPLITCHAR="character-list"**
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

- **SPLITCHARNODROP**
 specifies that the split characters are included in the displayed value.

- **SPLITJUSTIFY=LEFT | CENTER | RIGHT**
 specifies the horizontal alignment of the value text that is being split.

- **STATLABEL NOSTATLABEL**
 specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

- **LIMITATTRS=style-element<(options)> | (options)**
 specifies the appearance of the limit lines in the plot.

- **LIMITCAPSCALE=positive-number**
 specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

- **LIMITS=BOTH | LOWER | UPPER**
 adds limit lines to the plot.
LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

NUMSTD=\textit{n}
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=\textit{style-element} <\textit{options}> | (\textit{options})
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=\textit{style-element}<(COLOR=\textit{color})> | (COLOR=\textit{color})
specifies the color of the marker fill.

MARKEROUTLINEATTRS=\textit{style-element} <\textit{options}> | (\textit{options})
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the plot.

Plot options

ALPHA=\textit{numeric-value}
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=\textit{numeric-variable}
specifies a variable for the frequency count for each observation in the input data.

MISSING
accepts a missing value as a valid category value.

MISSING
for group data, processes missing values as a valid category value and creates a line for it.

RESPONSE=\textit{response-variable}
specifies a numeric response variable for the plot.

URL=\textit{character-variable}
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=\textit{numeric-variable}
specifies how observations are weighted.

Plot reference options

NAME="\textit{text-string}"
specifies a name for the plot.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BREAK

breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.

Note The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

RESPASC

sorts by the response values in ascending order.

RESPDESC

sorts by the response values in descending order.

Default The plot is sorted in ascending order based on the category values.

Restriction This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the
axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement

This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH= *numeric-value*

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default

0.8

Interaction

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

CURVELABEL <="*text-string*"

adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS= *style-element*<*(options)*> | *(options)*

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style
element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData$n style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X-axis value.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <variable>
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

 If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions

When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.
If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:
Table 8.52 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th></th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 8.53 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th></th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled”
suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\(n \) style elements in the current style.
Default OVERLAY

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency".
Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction Limit lines are displayed only when you specify STAT= MEAN.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits
STDDEV
standard deviation

STDERR
standard error

Default
If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interaction
If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

Tip
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LINEATTRS=style-element (options)
specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction
This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.
This option overrides any color that is specified with the
MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.

See For usage information and an example, see “Marker Fills and
Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1651.

Default GraphOutlines style element in the current style for ungrouped
data. GraphData1 ... GraphDataN style elements in the current
style for grouped data. The affected attributes are ContrastColor
and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

You can also use the MARKERFILLATTRS= option to specify
attributes for the fill.

See For usage information and an example, see “Marker Fills and
Outlines” on page 1645.

MARKERS adds data point markers to the plot.

MISSING accepts a missing value as a valid category value. By default, observations with
missing values are ignored. If more than one chart is specified in the procedure,
the MISSING option affects the calculations for all of the charts.

Interaction This option has no effect when FREQ= is specified.

MISSING for group data, processes missing values as a valid category value and creates a
line for it. If more than one chart is specified in the procedure, the MISSING
option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive and must define a unique name within the
procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

Note: This feature applies to SAS Viya 3.5 and later releases.

Interaction The appearance of the limit lines is controlled by the LIMITATTRS= option.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN

the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN

the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of
these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SG PANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Inforamts: Reference

Example
tipformat=(auto F5.2)
TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.
 Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

 A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

 Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

 Interaction This option has no effect unless TIP= is also specified.

 Tip Use the TIPFORMAT option to assign formats to the list of variables.

 Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
 specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

 Default 0.0

 Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

 character-variable
 specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

 Default By default, no HTML links are created.

 Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

 This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

 ODS GRAPHICS / IMAGEMAP;

 For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

 Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.
Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

COLAXIS Statement

Specifies the axis options for each X axis in the panel. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
COLAXIS options;
```

Summary of Optional Arguments

Appearance options

- **ALTERNATE**
 adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

- **COLORBANDS=NONE | EVEN | ODD**
 specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- **COLORBANDSATTRS=style-element<options> | (options)**
 specifies the fill appearance of the color band.

- **DISPLAY=ALL | NONE | (options)**
 specifies which features of the axis are displayed.

- **GRID**
 creates grid lines at each tick on the axis.

- **GRIDATTRS=style-element<options> | (options)**
 specifies the appearance of the grid lines.

- **MINORGRID**
 creates grid lines at each minor tick on the axis.

- **MINORGRIDATTRS=style-element<options> | (options)**
 specifies the appearance of the grid lines at each minor tick on the axis.
specifies the appearance of the minor grid lines.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
 specifies the order in which discrete tick values are placed on the axis.
 This option affects any plot with a discrete axis.

INTEGER
 specifies that only integers are used for tick mark values.

INTERVAL=interval-value
 specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
 specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
 specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
 specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MIN=numeric-value
 specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MAX=numeric-value
 specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
 adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
 specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
 specifies the time interval between minor ticks.

NOTIMESPLIT
 prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
 specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
 specifies an offset that precedes the lowest data value on the axis.

REFTICKS <=(options)>**
 adds tick marks to the side of the panel that is opposite from the specified axis.

REVERSE
 specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
 Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
 Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
 specifies the type of axis.

Text options
FITPOLICY=\textit{policy-value}
\hspace{1em} specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

LABEL=\textit{"text-string"}
 specifies a label for the axis.

LABELATTR=\textit{style-element}\texttt{(options)}\texttt{|(options)}
 specifies the appearance of the axis labels.

LABELPOS=\texttt{CENTER | DATACENTER | LEFT | RIGHT}
 specifies the position of the axis label.

SPLITCHAR=\textit{"character-list"}
 splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=\texttt{LEFT | CENTER | RIGHT}
 specifies the horizontal alignment of the value text that is being split.

VALUEATTR=\textit{style-element}\texttt{(options)}\texttt{|(options)}
 specifies the appearance of the axis tick value labels.

VALUES=\texttt{(values-list)}\texttt{|("string-list")}
 specifies the values for the ticks on an axis.

VALUESDISPLAY=
 specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=\texttt{DATA | SAS-format}
 specifies how to format the values for major tick marks.

VALUESHINT
 specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE=\texttt{DIAGONAL | DIAGONAL2 | VERTICAL}
 specifies how the tick values are rotated on the axis.

Optional Arguments

\texttt{ALTERNATE}
 adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

\texttt{COLORBANDS=}\texttt{NONE | EVEN | ODD}
 specifies the display of alternating wall-color bands corresponding to the discrete axis bins. The following images show the results of ODD and EVEN settings:

\begin{table}[h]
\centering
\caption{Odd and Even COLORBANDS Settings}
\begin{tabular}{|c|c|}
\hline
\texttt{COLORBANDS=ODD} & \texttt{COLORBANDS=EVEN} \\
\hline
\begin{tabular}{c|c|c|}
\texttt{Thomas} & \texttt{Alice} & \texttt{James} \\
\end{tabular} & \begin{tabular}{c|c|c|}
\texttt{Thomas} & \texttt{Alice} & \texttt{James} \\
\end{tabular} \\
\hline
\begin{tabular}{|c|c|c|}
\texttt{Joyce} & \texttt{Alice} & \texttt{James} \\
\end{tabular} & \begin{tabular}{|c|c|c|}
\texttt{Joyce} & \texttt{Alice} & \texttt{James} \\
\end{tabular} \\
\hline
\end{tabular}
\end{table}
Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDSATTRS= option to customize the color bands.

COLORBANDSATTRS=<style-element><(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

Note: This value is not supported with CAS data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED

DISPLAY=ALL | NONE | (options)

specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. **Options** can be any of the following:

NOLABEL
hide the axis label

NOLINE
hide the axis line
Tips This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the border, specify NOBORDER in the PANELBY statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS hides the tick marks on the axis

NOVALUES hides the tick mark values on the axis

Default ALL

Interaction If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=\textit{policy-value} specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

\textbf{NONE}
\textit{does not split the values.}

\textbf{ROTATE}
rotates the value text 45 degrees.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{axis_example}
\caption{Example of axis with values rotated 45 degrees.}
\end{figure}

\textbf{TIP} Use VALUESROTATE= to specify how the tick values are rotated on the axis.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{time_axis_example}
\caption{Example of time axis with values not split.}
\end{figure}

\textbf{ROTATEALWAYS}
always rotates the value text, even when there is enough room to draw them normally.

\textbf{Note} This feature applies to \textbf{SAS 9.4M7} and later releases.

\textbf{ROTATETHIN}
 attempts to use ROTATE, and then THIN to fit the values.
Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Interaction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

Example “Fit Policies for Axes” on page 1644

SPLITROTATE
Attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

STACKEDALWAYS
stacks the values vertically regardless of tick value collision.

Interaction This option works only with a discrete axis.

Note This feature applies to SAS 9.4M5 and later releases.

STACKEDALWAYSTHIN
stacks the values vertically regardless of tick value collision. If a collision is detected after stacking, then THIN as needed.
Interaction: This option works only with a discrete axis.

Note: This feature applies to SAS 9.4M5 and later releases.

STAGGER
shifts the values up and down.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERROTATE
attempts to use STAGGER, and then ROTATE to fit the values.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults: SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction: This option does not affect logarithmic axes.

See: “Fit Policies for Axes” on page 1644

GRID
creates grid lines at each tick on the axis.

Interaction: Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip: You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

**GRIDATTRS=style-element *(options)* | *(options)*
specifies the appearance of the grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default: GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interaction: This option has no effect unless GRID is also specified.

Examples: GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

GRIDATTRS=GraphAxisLines

INTEGER

specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=interval-value

specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 8.55 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

Tip If unwanted thinning of tick marks occurs when you specify INTERVAL=, try using minor intervals instead. For example, you might specify MINOR MINORINTERVAL=MONTH instead of INTERVAL=MONTH. As a result, in the example monthly tick marks are displayed even though the major values are thinned.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element<options> | (options)
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

LABELPOS=

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
</table>

specifies the position of the axis label.

CENTER

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values.
DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values.

LEFT
positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT
positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X-axis label "Weight (Mean)." An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the LEFT and RIGHT positions for the same axis labels.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

Default 10
Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 8.14 on page 724.

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 8.15 on page 724.

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 8.16 on page 724.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).
EXPONENT

the values are interpreted as integer exponents of the base.

Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
rowaxis type=log logbase=10 logstyle=logexpand
  logvtype=exponent
  min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
colaxis type=log logbase=10 logstyle=logexponent
  logvtype=expanded
  values=(10 100 1000 10000 100000);
```

MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.
This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction This option has no effect on discrete axes.

Interaction This option has no effect if you specify the VALUES= option.

Tip Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction This option applies to linear and log axes only.

Note Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines
MINORINTERVAL=\textit{time-interval}

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select \textit{AUTO}, \textit{SECOND}, \textit{MINUTE}, or \textit{HOUR}.

For information about the intervals that you can select, see Table 8.70 on page 721.

Default \textit{AUTO}

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

\textbf{NOTIMESPLIT}

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

\textbf{OFFSETMAX} = \textit{numeric-value}

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

\textbf{OFFSETMIN} = \textit{numeric-value}

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

\textbf{REFTICKS} <=(\textit{options})>

adds tick marks to the side of the panel that is opposite from the specified axis. You can also specify \textit{options}:

\begin{itemize}
 \item \textbf{LABEL} in addition to the tick marks, displays the axis label.
 \item \textbf{VALUES} in addition to the tick marks, displays the values that are represented by the tick marks.
 \item \textbf{REVERSE} specifies that the tick values are displayed in reverse (descending) order.
\end{itemize}
SPLITCHAR="character-list"

splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.

Interactions This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default CENTER

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
THRESHOLDMAX=\texttt{numeric-value}

Specifies a threshold for displaying one more tick mark at the high end of the axis.

- **Default**: 0.30
- **Range**: 0 to 1
- **Restriction**: This option applies to linear axes only.
- **Tips**: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

THRESHOLDMIN=\texttt{numeric-value}

Specifies a threshold for displaying one more tick mark at the low end of the axis.

- **Default**: 0.30
- **Range**: 0 to 1
- **Restriction**: This option applies to linear axes only.
- **Tips**: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

TYPE=\texttt{DISCRETE | LINEAR | LOG | TIME}

specifies the type of axis. Specify one of the following values:

DISCRETE

specifies an axis with discrete values. If a character variable is assigned to an axis, then that the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with **SAS 9.4M3**, bar charts support a linear category axis.

LINEAR

specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.
LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=(options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphData

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | ("string-list"")
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

VALUES= (values-list) specifies tick values for linear, time, and logarithmic axes.

VALUES=("string-list"") specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)
For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.
value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

<value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>
creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.

For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple n values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
- values=(2 to 10 by 2)
- values=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

values=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=("25MAY08" d "04JUL08" d "23AUG08" d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=("01JAN08" d to "01MAY08" d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.
Interactions
For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents. If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tips
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")
For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks. Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Note: For an example that is used in the SGPLOT procedure, see Table 10.136 on page 1431.

Restrictions
This option has no effect on linear, time, or logarithmic axes. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

Tip
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```
TIP Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction This option applies only to discrete and linear axes.

Interaction This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=("14" "15") valuesdisplay=("fourteen" "fifteen")

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note: Starting with SAS 9.4M3, this option supports discrete and logarithmic axes.

DATA uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format specifies a format to apply to the major tick values.

Restriction This option currently honors most, but not every, SAS format. For more information, see “Format Support in ODS Graphics” in SAS Graph Template Language: Reference.

Notes If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F5.1

Restriction For discrete axes, only character formats are supported.

Interactions This option is ignored when LOGSTYLE=LOGEXPONENT.
When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. Tick values specified by the VALUES= option are treated as suggestions for the tick values that actually appear, so that the actual data range of the axis is preserved. If the values-list contains values that are less than the data minimum, or greater than the data maximum, those values are ignored.

Interaction This option has no effect unless you also specify the VALUES= option.

VALUESROTATE= DIAGONAL | DIAGONAL2 | VERTICAL specifies how the tick values are rotated on the axis.

Note: This feature applies to SAS 9.4M3 and later releases.

DIAGONAL rotates the tick values diagonally.

DIAGONAL2 rotates the tick values to a reverse diagonal angle.

Note: This feature applies to SAS 9.4M5 and later releases.

VERTICAL rotates the tick values vertically. The values are always drawn from bottom to top.

<table>
<thead>
<tr>
<th>DIAGONAL</th>
<th>DIAGONAL2</th>
<th>VERTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default DIAGONAL

Interactions This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.
COLAXISTABLE Statement

Creates a basic plot that displays data values at specific locations along the horizontal axis.

Requirements: At least one other plot statement must be used in the procedure. This other plot becomes the primary plot. The primary plot provides the default placement of values along the axis table’s horizontal axis.

For the axis table, you must specify at least one variable. This variable determines which values are displayed in the axis table.

Interactions: You can specify a variable for the X= option to identify the locations along the axis where the values are displayed. If you do not specify X=, the locations are determined by the X variable in the primary plot. When the primary plot is a categorical chart (bar, line, or dot), the category variable from the chart is used. With the exception of that X (or category) variable and any group variable that might be specified, axis tables are separate plots and are unaware of the options specified in the accompanying plots.

When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with a COLAXISTABLE statement, the COLAXISTABLE statement is rejected with a message.

Axis tables cannot be used when the primary plot is one of the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. The axis table requires at least one other plot statement that is not one of these types. Otherwise, the axis table is not created and an error is written to the log.

Notes: This feature applies to SAS 9.4M3 and later releases.

You can include multiple COLAXISTABLE statements in an SGPANEL procedure step.

Syntax

COLAXISTABLE variable <…variable-n> <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
 specifies a variable that is used to determine the color of the table values.

DROPONMISSING
 specifies that the entire axis table is dropped when all of the values are missing.

NOMISSINGCHAR
 suppresses the display of the MISSING character (.) for missing numeric values.
PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border relative to the axis.

POSITION=BOTTOM | TOP
specifies the position of the axis table at the bottom or top of the graph.

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element<(options)> | (options)
specifies the appearance of the axis table values.

Class options

CLASS=variable
creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Label options

LABELATTRS=style-element<(options)> | (options)
specifies the color and font attributes of the axis table label.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden.

LABELPOS=LEFT | RIGHT
specifies the position of the labels at the left or right side of the axis table.

STATLABEL

NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table.

X=variable
Specifies the X variable to use to align the table values to the X axis.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Title options

TITLE="text-string"
specifies a title for the axis table.
TITLEATTRS=\texttt{style-element}(\texttt{options})\ | \ (\texttt{options})

specifies the appearance of the title for the axis table.

Required Argument

\texttt{variable \ <\ldots\texttt{variable-n}\>}

specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are stacked one on the other. Any options that you add to the statement apply to all the variables that are specified in that statement.

\textbf{Note} When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the \texttt{STAT=} option.

Optional Arguments

\texttt{ATTRID=\texttt{character-value}}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\textbf{See} Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps” on page 1733

\texttt{CLASS=\texttt{variable}}

creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

\textbf{Restriction} The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

\textbf{Interaction} If NOLABEL is also specified, then the class labels are removed.

\textbf{Tips} Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

\texttt{CLASSDISPLAY=\texttt{STACK} | \texttt{CLUSTER}}

specifies how the class values are displayed.

\texttt{STACK}

displays the class values vertically at each midpoint value on the X axis.

\texttt{CLUSTER}

displays the class values horizontally at each midpoint value on the X axis.

\textbf{Restriction} The CLASSDISPLAY=CLUSTER option applies only when the axis table is on a discrete axis.
Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

DATA displays the class values in the order in which they occur in the data.

REVERSEDATA displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING displays the class values in ascending order.

DESCENDING displays the class values in descending order.

Default DATA

Interactions This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphDataN style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Restriction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless variable is used in the accompanying chart.

Note This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Note: The ability to specify a text string applies to SAS 9.4M3 and to later releases.
Defaults LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the labels.

Tip Use the LABELATRGS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATRGS=<style-element><(options)> | (options)

specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELPOS=LEFT | RIGHT

specifies the position of the labels at the left or right side of the axis table.

Default LEFT

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR

suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

Note: This feature applies to SAS 9.4M3 and later releases.

NOMISSINGCLASS

specifies that missing values of the class variable are not included in the table.
Interaction: For this option to have any effect, the CLASS= option must be specified.

PAD=`dimension` **| (pad-options)**

specifies the amount of extra space that is added inside the table border relative to the axis.

`dimension`

specifies a dimension to use for the extra space at the table border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

`TOP=**dimension**`

specifies the amount of extra space added to the top.

Default: 0 px

`BOTTOM=**dimension**`

specifies the amount of extra space added to the bottom.

Default: 0 px

Note: Sides that are not assigned padding are padded with the default amount of space.

Tip: Use *pad-options* to create non-uniform padding.

Note: The default units for `dimension` are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

POSITION=`BOTTOM` **| TOP**

specifies the position of the axis table at the bottom or top of the graph.

Default: BOTTOM

SEPARATOR

creates a separating line between the axis table or axis tables and the plot.

STAT=`FREQ` **| MEAN** **| MEDIAN** **| PERCENT** **| SUM**

specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ

the frequency of the axis table variable.

Interactions: For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the FREQ value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of a response (analysis) variable when computing the
frequency. The FREQ value is the frequency of the categorical variable.

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

SUM
the sum of the axis table variable.

Defaults

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, FREQ is the default.

Restrictions
The STAT= option is applied only to numeric variables.
Only SUM and MEAN are supported for non-categorical plots.

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, only FREQ and PERCENT are supported.

Interaction Any STAT= value specified in the primary plot has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.
STATLABEL forces the statistic to be displayed in the label. NOSTATLABEL removes the statistic from the label.

Defaults The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.

Requirement The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction When this option is specified, the COLORGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TITLE="text-string"
specifies a title for the axis table. If the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip Use the TITLEATTRS= option to modify the title text attributes.
TITLEATTRS=
\(<\text{style-element}(\text{options})>|\text{}(\text{options})\>\)
speifies the appearance of the title for the axis table. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the text options, see **"Text Attributes" on page 1658.**

Defaults
GraphDataText style element in the current style. The affected
attributes are Color, FontFamily, FontSize, FontStyle, and
FontWeight.

For grouped data, the color changes to match the group color
derived from the ContrastColor attribute of the
GraphData1...GraphData_n style elements.

Interactions
This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all
the font properties such as color, family, size, weight, and style,
then the properties that are not specified are derived from the
GraphDataText style element.

Examples
TITLEATTRS=\(<\text{Color}=\text{Green}\text{ Family}=\text{Arial}\text{ Size}=8\text{ Style}=\text{Italic}\text{ Weight}=\text{Bold})\>\)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

VALUEATTRS=
\(<\text{style-element}(\text{options})>|\text{}(\text{options})\>\)
speifies the appearance of the axis table values. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the text options, see **"Text Attributes" on page 1658.**

Defaults
GraphDataText style element in the current style. The affected
attributes are Color, FontFamily, FontSize, FontStyle, and
FontWeight.

For grouped data, the color changes to match the group color
derived from the ContrastColor attribute of the
GraphData1...GraphData_n style elements.

Interactions
If one or more text options are specified and they do not include all
the font properties such as color, family, size, weight, and style,
then the properties that are not specified are derived from the
GraphDataText style element.

Examples
VALUEATTRS=\(<\text{Color}=\text{Green}\text{ Family}=\text{Arial}\text{ Size}=8\text{ Style}=\text{Italic}\text{ Weight}=\text{Bold})\>\)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

X=variable
Specifies the X variable to use to align the table values to the X axis.
Default When this option is not specified, the X variable of the primary plot is used by default.

Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Example: COLAXISTABLE Statements

This example shows axis tables along the X axis of a scatter plot that plots student height.

Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student above the X axis. The ages appear on different rows because the CLASS= on page 766 AGE option is used.
- The second axis table statement specifies two variables, height and weight.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=5in;
proc sgpanel data=sashelp.class (where=(age < 13));
  panelby sex / uniscale=row;
  scatter x=name y=height;
  colaxistable age / class=age title="Student Age"
    valueattrs=(color=red)
    labelattrs=(color=red)
    titleattrs=(color=red);
  colaxistable weight height / valueattrs=(color=blue);
run;
```
ROWAXIS Statement

Specifies the axis options for each Y axis in the panel. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

ROWAXIS options;

Summary of Optional Arguments

Appearance options

- ALTERNATE
 - adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.
- COLORBANDS=NONE | EVEN | ODD
 - specifies the display of alternating wall-color bands corresponding to the discrete axis bins.
- COLORBANDSATTRS=style-element<(options)> | (options)
 - specifies the fill appearance of the color band.
- DISPLAY=ALL | NONE | (options)
 - specifies which features of the axis are displayed.
- GRID
 - creates grid lines at each tick on the axis.
- GRIDATTRS=style-element<(options)> | (options)
 - specifies the appearance of the grid lines.
- MINORGRID
 - creates grid lines at each minor tick on the axis.
- MINORGRIDATTRS=style-element<(options)> | (options)
 - specifies the appearance of the minor grid lines.

Axis options

- DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
 - specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.
- INTEGER
 - specifies that only integers are used for tick mark values.
- INTERVAL=interval-value
 - specifies the tick interval for a time axis.
- LOGBASE=2 | 10 | e
 - specifies the base value for the logarithmic scale.
LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.

REFTICKS <=(options)>
adds tick marks to the side of the panel that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the axis labels.

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element<(options)> | (options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) | ("string-list")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

Optional Arguments

ALTERNATE
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins. The following images show the results of ODD and EVEN settings:

Table 8.56 Odd and Even COLORBANDS Settings

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>Joyce</td>
<td>James</td>
</tr>
</tbody>
</table>

Default NONE

Restriction This option applies to discrete axes only.

Interaction Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the
midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip Use the COLORBANDSATTRS= option to customize the color bands.

COLORBANDSATTRS=style-element<(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interaction This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA places the values in the order in which they appear in the data.

Note: This value is not supported with CAS data.

FORMATTED sorts the formatted values in ascending character order.

UNFORMATTED sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. Options can be any of the following:

NOLABEL hides the axis label

NOLINE hides the axis line

Tips This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the border, specify NOBORDER in the PANELBY statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS hides the tick marks on the axis
NOVALUES
hides the tick mark values on the axis

Default ALL

Interaction If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

Example “Fit Policies for Axes” on page 1644

THIN
removes some of the values from the axis.

Default THIN

See “Fit Policies for Axes” on page 1644

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.
Tip
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=<style-element> <{options}> | ({options})

specifies the appearance of the grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=interval-value

specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 8.57 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
</tbody>
</table>
INTERVAL | Unit | Tick interval | Default tick value format |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default: AUTO

Tip: If unwanted thinning of tick marks occurs when you specify INTERVAL=, try using minor intervals instead. For example, you might specify MINOR MINORINTERVAL=MONTH instead of INTERVAL=MONTH. As a result, in the example monthly tick marks are displayed even though the major values are thinned.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults: GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataan style elements.

Examples: LABELATTRS=(Color=Green Family=Arial Size=8)
Here is an example that specifies a style element:

\[\text{LABELATTRS=GraphTitleText}\]

LABEL_POS specifies the position of the axis label.

BOTTOM
positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.

CENTER
centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

TOP
positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.

The following figure shows the CENTER and DATACENTER positions for the red Y-axis label "Age Group." An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next figure shows the TOP and BOTTOM positions for the same axis labels.
Default CENTER

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXponent
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified **LOGBASE=2**, the tick marks might be at 1, 2, 4, 8, 16. See *Figure 8.17 on page 753*.

Figure 8.15 Graph Axes with LOGEXPAND

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LOGBASE = 10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[LOGBASE = 2]</td>
</tr>
<tr>
<td>[LOGBASE = E]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[LOGBASE = 10]</td>
</tr>
</tbody>
</table>

LOGEXponent
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified **LOGBASE=10**, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See *Figure 8.18 on page 753*.

Figure 8.16 An Axis with LOGEXponent

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LOGBASE = 10]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.
For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 8.19 on page 754.

Figure 8.17 An Axis with LINEAR

![Figure 8.17 An Axis with LINEAR](image)

Default: LOGEXPAND

Interaction: This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

- **EXPANDED**
 the values are interpreted as integer powers of the base (decimal numbers).

- **EXPONENT**
 the values are interpreted as integer exponents of the base.

Default: EXPANDED

Interaction: This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip: This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples: The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
rowaxis type=log logbase=10 logstyle=logexpand
  logvtype=exponent
  min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
colaxis type=log logbase=10 logstyle=logexponent
  logvtype=expanded
  values=(10 100 1000 10000 100000);
```

MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction: This option affects linear, log, and time axes only.

Interactions: This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.
This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.
MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page
1651.

Default
GraphMinorGridLines style element in the current style for
ungrouped data. GraphData1 ... GraphData\(n\) style elements in the
current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major
grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must
be consistent with the axis data duration units such as TIME, DATE, or
DATETIME. For example, if the axis data is in TIME units, you must select
AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 8.72 on page
750.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis.
Use the MINOR option to add tick marks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two
rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis. Specify a value
between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For
a continuous axis, the offset follows the highest data value or highest tick value,
whichever is greater. For a discrete axis, the offset is applied to the end of the
axis farther from the origin.

Default The offset space is determined automatically based on the data
values, tick mark values, markers, and labels that are inside of the plot area.
interaction for hbox, hbar, hline, and dot plot statements, the y axis is reversed by default, so the axis origin is at the top. for these plots, offsetmax= creates an offset at the end of the y axis nearer to the origin.

offsetmin= numeric-value
specifies an offset that precedes the lowest data value on the axis. specify a value between 0 and 1.
the value represents the offset as a proportion to the total length of the axis. for a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. for a discrete axis, the offset is applied to the end of the axis nearer to the origin.

default the offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

interaction for hbox, hbar, hline, and dot plot statements, the y axis is reversed by default, so the axis origin is at the top. for these plots, offsetmin= creates an offset at the end of the y axis farther from the origin.

refticks <=(options)>
adds tick marks to the side of the panel that is opposite from the specified axis. you can also specify options:

label
in addition to the tick marks, displays the axis label.

values
in addition to the tick marks, displays the values that are represented by the tick marks.

reverse
specifies that the tick values are displayed in reverse (descending) order.

splitchar="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. the text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.
"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. for example, to specify the split characters a, b, and c, use the following option:

splitchar="abc"

when multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. in that case, all of the specified split characters together are treated as a single split character.
if the value does not contain any of the specified split characters, a split does not occur.

default values are not split.

restriction this option has no effect unless the axis is discrete.
This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default RIGHT

"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

THRESHOLDMAX=numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value

Specifies a threshold for displaying one more tick mark at the low end of the axis.
Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed.
If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then that the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element<options> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textit{n} style elements.

Examples

```
VALUESATR=\{\text{Color=}\text{Green Family=}\text{Arial Size=}8
                        Style=}\text{Italic Weight=}\text{Bold}\}
```

Here is an example that specifies a style element:

```
VALUESATR=\text{GraphTitleText}
```

VALUES=(\text{values-list}) \mid (\text{“string-list”})

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- **VALUES=(\text{values-list})** specifies tick values for linear, time, and logarithmic axes.
- **VALUES=\text{“string-list”)** specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(\text{values-list})

For values on a linear axis, the values list can be one of the following:

- **\text{value} <\ldots\text{value-n}>**
 - creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

- **\text{value-1 TO value-2 BY increment-value}**
 - creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

 Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

- **<value \ldots value-n> value-1 TO value-2 BY increment-value <value \ldots value-n>**
 - creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.

 For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple \textit{n} values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
VALUES=(2 to 10 by 2)
VALUES=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:
VALUES=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

- `value <...value-n>` creates ticks for specific values. For example, VALUES=("25MAY08"d
 "04JUL08"d "23AUG08"d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

- `value-1 TO value-2 BY increment-value` creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks. For example, VALUES=("01JAN08"d to "01MAY08"d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

 For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions

This option has no effect on discrete axes.

- If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions

For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

- If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tips

- Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

 - For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

- Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Note: For an example that is used in the SGPLOT procedure, see Table 10.136 on page 1431.
Restrictions This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

Tip Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

values=('Sedan' 'Sports' 'Wagon' 'SUV')

The following example specifies the axis tick values 10, 20, 30, and 40:

values=('10' '20' '30' '40')

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

TIP Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction This option applies only to discrete and linear axes.

Interaction This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

VALUESFORMAT=DATA | SAS-format

specifies how to format the values for major tick marks.
Note: Starting with SAS 9.4M3, this option supports discrete and logarithmic axes.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format

specifies a format to apply to the major tick values.

Restriction

This option currently honors most, but not every, SAS format. For more information, see “Format Support in ODS Graphics” in SAS Graph Template Language: Reference.

Notes

If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

A syntax error might be generated if you specify the format using the \texttt{w.d} SAS format. To avoid this error condition, insert an \texttt{F} in front of the format name. Example: \texttt{F5.1}

Restriction

For discrete axes, only character formats are supported.

Interactions

This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHALIGN=LEFT | CENTER | RIGHT

specifies the horizontal alignment for all of the tick values that are displayed on the axis.

Note: This feature applies to SAS 9.4M3 and later releases.

Default

RIGHT

Interaction

This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

VALUESHINT

specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. Tick values specified by the VALUES= option are treated as suggestions for the tick values that actually appear, so that the actual data range of the axis is preserved. If the \texttt{values-list} contains values that are less than the data minimum, or greater than the data maximum, those values are ignored.
Interaction This option has no effect unless you also specify the VALUES= option.

ROWAXISTABLE Statement

Creates a basic plot that displays data values at specific locations along the vertical axis.

Requirements: At least one other plot statement must be used in the procedure. This other plot becomes the primary plot. The primary plot provides the default placement of values along the axis table’s vertical axis.

For the axis table, you must specify at least one variable. This variable determines which values are displayed in the axis table.

Interactions: You can specify a variable for the Y= option to identify the locations along the axis where the values are displayed. If you do not specify Y=, the locations are determined by the Y variable in the primary plot. When the primary plot is a categorical chart (bar, line, or dot), the category variable from the chart is used. With the exception of that Y (or category) variable and any group variable that might be specified, axis tables are separate plots and are unaware of the options specified in the accompanying plots.

When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has a VBAR statement along with a ROWAXISTABLE statement, the ROWAXISTABLE is rejected with a message.

Axis tables cannot be used when the primary plot is one of the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. The axis table requires at least one other plot statement that is not one of these types. Otherwise, the axis table is not created and an error is written to the log.

Notes: This feature applies to SAS 9.4M3 and later releases.

You can include multiple ROWAXISTABLE statements in an SGPANEL procedure step.

Syntax

ROWAXISTABLE variable <…variable-n> <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing.
NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric
values.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border
relative to the axis.

POSITION=LEFT | RIGHT
specifies the position of the axis table at the left or right side of the graph
cell.

SEPARATOR
creates a separating line between the axis table or axis tables and the
plot.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data
set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element | (options)
specifies the appearance of the axis table values.

VALUEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column values relative to the
column width in the axis table.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column values relative to the column width
in the axis table.

Class options
CLASS=variable
creates a separate axis table for each unique value of the specified
variable.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the
table.

Label options
LABELATTRS=style-element | (options)
specifies the color and font attributes of the axis table label.

LABELALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels.

LABELJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the labels, when displayed.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden.

LABELPOS=BOTTOM | TOP
specifies the position of the labels at the bottom or top of the axis table.

STATLABEL
NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.
Plot options

STAT=\texttt{FREQ | MEAN | MEDIAN | PERCENT | SUM}

specifies the statistic for the axis table.

\texttt{Y=variable}

Specifies the Y variable to use to align the table values to the Y axis.

Plot reference options

\texttt{NAME=\texttt{"text-string"}}

specifies a name for the plot.

Title options

\texttt{TITLE=\texttt{"text-string"}}

specifies a title for the axis table.

\texttt{TITLEATTRS=\texttt{style-element\langle(options)\rangle | (options)}}

specifies the appearance of the title for the axis table.

\texttt{TITLEALIGN=LEFT | CENTER | RIGHT}

specifies the horizontal alignment of the axis table title bounding box relative to the axis table width.

\texttt{TITLEJUSTIFY=LEFT | CENTER | RIGHT}

specifies the justification of the lines of a multiline title in the title bounding box. The justification is relative to the axis table width.

Required Argument

\texttt{variable <...variable-n>}

specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.

\texttt{Note} When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the \texttt{STAT=} option.

Optional Arguments

\texttt{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\texttt{CLASS=variable}

creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.
The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

If NOLABEL is also specified, then the class labels are removed.

Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER

specifies how the class values are displayed.

- **STACK**
 - displays the class values horizontally at each midpoint value on the Y axis.

- **CLUSTER**
 - displays the class values vertically at each midpoint value on the Y axis.

The CLASSDISPLAY=CLUSTER option applies only when the axis table is on a discrete axis.

The CLASSDISPLAY=CLUSTER option applies only when the axis table is on a discrete axis.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the order in which the class values are displayed.

- **DATA**
 - displays the class values in the order in which they occur in the data.

- **REVERSEDATA**
 - displays the class values in the reverse order from which they occur in the data.

 This option is useful when the plot axis is reversed.

- **ASCENDING**
 - displays the class values in ascending order.

- **DESCENDING**
 - displays the class values in descending order.

The CLASSORDER= option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=

specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ...
GraphData style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Restriction
When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless variable is used in the accompanying chart.

Note
This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Note: The ability to specify a text string applies to SAS 9.4M3 and to later releases.

Defaults
If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the labels.

Tip
Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATTRS=style-element<options> | (options)
specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Restriction
Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions
This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.
LABELHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels.

Default Uses the effective value of the LABELJUSTIFY= option.

Interaction This option has no effect if NOLABEL is also specified.

LABELJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the labels, when displayed.

Default Uses LEFT for text values or RIGHT for numeric values.

LABELPOS=BOTTOM | TOP
specifies the position of the labels at the bottom or top of the axis table.

Default BOTTOM

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

Note: This feature applies to SAS 9.4M3 and later releases.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Interaction For this option to have any effect, the CLASS= option must be specified.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border relative to the axis.

dimension
specifies a dimension to use for the extra space at the table border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

LEFT=dimension
specifies the amount of extra space added to the left side.

Default 4 px

RIGHT=dimension
specifies the amount of extra space added to the right side.

Default 4 px
Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

POSITION=LEFT | RIGHT specifies the position of the axis table at the left or right side of the graph cell.

Default RIGHT

SEPARATOR creates a separating line between the axis table or axis tables and the plot.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ the frequency of the axis table variable.

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the FREQ value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of a response (analysis) variable when computing the frequency. The FREQ value is the frequency of the categorical variable.

MEAN the mean of the axis table variable.

MEDIAN the median of the axis table variable.

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, this value is ignored when the axis table variable is the same as the categorical variable of the primary plot. In that case, the FREQ statistic is used and a message is written to the SAS log.

PERCENT the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.
Alias

PCT

Interactions

For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the **SAS 9.4M5** release, the PERCENT value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of as a response (analysis) variable when computing the percentage. Therefore, the PERCENT value is calculated as a percentage of frequency instead of a percentage of the sum.

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the **PCTLEVEL**= option in the PROC SGPANEL statement.

You can use the **PCTNDEC**= option in the PROC SGPANEL statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM

the sum of the axis table variable.

Defaults

SUM

Starting with the **SAS 9.4M5** release, when used with a categorical plot and the axis table variable is the same as the categorical variable, **FREQ** is the default.

Restrictions

The **STAT**= option is applied only to numeric variables.

Only **SUM** and **MEAN** are supported for non-categorical plots.

Starting with the **SAS 9.4M5** release, when used with a categorical plot and the axis table variable is the same as the categorical variable, only **FREQ** and **PERCENT** are supported.

Interaction

Any **STAT**= value specified in the primary plot has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL

specifies whether the variable statistic is displayed in the table’s label. **STATLABEL** forces the statistic to be displayed in the label. **NOSTATLABEL** removes the statistic from the label.

Defaults

The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction

This option has no effect unless the **STAT**= option is also specified in the axis table statement.
TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.

Requirement The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction When this option is specified, the COLORGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TITLE="text-string"
specifies a title for the axis table. If the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData

Interactions This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

TITLEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the axis table title bounding box relative to the axis table width.

Note: This feature applies to SAS 9.4M3 and later releases.

This option applies only to row (Y) axis tables.

Default: LEFT

Interaction: This option takes effect only when TITLE= is also specified.

Tip: For a multiline title, use TITLEJUSTIFY= to justify the title text lines in the title bounding box.

TITLEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the lines of a multiline title in the title bounding box. The justification is relative to the axis table width.

Note: This feature applies to SAS 9.4M3 and later releases.

This option applies only to row (Y) axis tables.

Default: LEFT

Restriction: The title must wrap to multiple lines for this option to have any effect.

Interaction: This option takes effect only when TITLE= is also specified.

Tip: Use TITLEHALIGN= to align the title bounding box.

VALUEATTRS=style-element<options> | (options)
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults: GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction: If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.
Examples
VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column values relative to the column width in the axis table. This option aligns the text within the column based on the longest string.

Default: Uses the effective value of the VALUEJUSTIFY= option.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column values relative to the column width in the axis table. This option horizontally aligns the table values center, left, or right relative to the column width.

Default: LEFT for text values or RIGHT for numeric values.

Y=variable
Specifies the Y variable to use to align the table values to the Y axis.

Default: When this option is not specified, the Y variable of the primary plot is used by default.

Interaction: This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Example: ROWAXISTABLE Statements

This example shows two axis tables along the Y axis of a bar chart that charts student height.
Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student.
- The second axis table statement specifies the weight. Both axis tables are located to the right of the Y axis by default.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in height=3.5in;
proc sgpanel data=sashelp.class (where=(age > 13));
  panelby sex / layout=rowlattice uniscale=column;
  hbar name / response=height stat=mean;
  rowaxistable age / stat=mean
    valueattrs=(color=red)
    labelattrs=(color=red);
  rowaxistable weight / valueattrs=(color=blue)
    stat=mean
    labelattrs=(color=blue);
run;
```

For an example that shows horizontal axis tables along the X axis, see “Example: COLAXISTABLE Statements” on page 744.
Examples: SGPANEL Procedure

About the SGPANEL Procedure Examples

Examples in This Section

This section provides basic examples of how to use the SGPANEL procedure. The following examples are provided:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” (p. 779)</td>
<td>Shows how to use the HISTOGRAM and DENSITY statements to create a panel of graph cells with histograms and density plots.</td>
</tr>
<tr>
<td>“Example 2: Creating a Panel of Regression Curves” (p. 780)</td>
<td>Shows how to use the PANELBY and REG statements to create a three-column panel of regression curves.</td>
</tr>
<tr>
<td>“Example 3: Creating a Panel of Bar Charts” (p. 782)</td>
<td>Shows how to use the PANELBY and HBAR statements to create a one-column panel of bar charts.</td>
</tr>
<tr>
<td>“Example 4: Creating a Panel of Line Charts” (p. 784)</td>
<td>Shows how to use the PANELBY and VLINE statements to create a panel of line plots with grouped data.</td>
</tr>
</tbody>
</table>

Additional Examples in This Book

Additional examples exist elsewhere in this book for most of the SGPANEL procedure statements. The following table lists these examples by statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>“About Band Plots” (p. 17)</td>
</tr>
<tr>
<td>Statement</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>BLOCK</td>
<td>“About Block Plots” (p. 18)</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>“About Bubble Plots” (p. 19)</td>
</tr>
<tr>
<td>COLAXISTABLE</td>
<td>“Example” (p. 744)</td>
</tr>
<tr>
<td>DENSITY</td>
<td>“About Density Plots” (p. 48)</td>
</tr>
<tr>
<td>DOT</td>
<td>“About Dot Plots” (p. 58)</td>
</tr>
<tr>
<td>DROLINE</td>
<td>“About Drop Lines” on page 26</td>
</tr>
<tr>
<td></td>
<td>“Example” on page 242</td>
</tr>
<tr>
<td>ELLIPSE</td>
<td>“About Ellipse Plots” (p. 41)</td>
</tr>
<tr>
<td>FRINGE</td>
<td>“About Fringe Plots” (p. 20)</td>
</tr>
<tr>
<td>GRADLEGEND</td>
<td>“Example” (p. 263)</td>
</tr>
<tr>
<td>HBAR</td>
<td>“About Bar Charts” (p. 51)</td>
</tr>
<tr>
<td>HBARBASIC</td>
<td></td>
</tr>
<tr>
<td>HBARPARM</td>
<td></td>
</tr>
<tr>
<td>HBOX</td>
<td>“About Box Plots” (p. 46)</td>
</tr>
<tr>
<td>HEATMAP</td>
<td>“About Heat Maps” (p. 21)</td>
</tr>
<tr>
<td>HEATMAPPARM</td>
<td></td>
</tr>
<tr>
<td>HIGHLOW</td>
<td>“About High-Low Plots” (p. 23)</td>
</tr>
<tr>
<td>HISTOGRAM</td>
<td>“About Histograms” (p. 50)</td>
</tr>
<tr>
<td>HLINE</td>
<td>“About Line Charts” (p. 60)</td>
</tr>
<tr>
<td>INSET</td>
<td>“About Text Insets” on page 37</td>
</tr>
<tr>
<td></td>
<td>“Example” on page 410</td>
</tr>
<tr>
<td>KEYLEGEND</td>
<td>“Example” (p. 418)</td>
</tr>
<tr>
<td>LEGENDITEM</td>
<td>“Example” (p. 423)</td>
</tr>
<tr>
<td>LINEPARM</td>
<td>“About Parameterized Lines” (p. 27)</td>
</tr>
<tr>
<td>LOESS</td>
<td>“LOESS Statement” (p. 429)</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>“About Needle Plots” (p. 29)</td>
</tr>
<tr>
<td>Statement</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>PBSPLINE</td>
<td>“About Penalized B-Spline Plots” (p. 43)</td>
</tr>
<tr>
<td>POLYGON</td>
<td>“Example” (p. 485)</td>
</tr>
<tr>
<td>REFLINE</td>
<td>“About Reference Lines” (p. 25)</td>
</tr>
<tr>
<td>REG</td>
<td>“About Regression Plots” (p. 44)</td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>“Example” (p. 774)</td>
</tr>
<tr>
<td>SCATTER</td>
<td>“About Scatter Plots” (p. 30)</td>
</tr>
<tr>
<td>SERIES</td>
<td>“About Series Plots” (p. 32)</td>
</tr>
<tr>
<td>SPLINE</td>
<td>“About Spline Plots” (p. 33)</td>
</tr>
<tr>
<td>STEP</td>
<td>“About Step Plots” (p. 34)</td>
</tr>
<tr>
<td>STYLEATTRS</td>
<td>“Example” (p. 182)</td>
</tr>
<tr>
<td>SYMBOLCHAR</td>
<td>“Example 1: Simple SYMBOLCHAR Example” on page 577</td>
</tr>
<tr>
<td></td>
<td>“Example 2: SYMBOLCHAR Used with an SG Attribute Map” on page 577</td>
</tr>
<tr>
<td>SYMBOLIMAGE</td>
<td>“Example 1: Simple SYMBOLIMAGE Example” on page 581</td>
</tr>
<tr>
<td></td>
<td>“Example 2: SYMBOLIMAGE Used with an SG Attribute Map” on page 582</td>
</tr>
<tr>
<td>TEXT</td>
<td>“About Text Plots” (p. 36)</td>
</tr>
<tr>
<td>VBAR</td>
<td>“About Bar Charts” (p. 51)</td>
</tr>
<tr>
<td>VBARBASIC</td>
<td></td>
</tr>
<tr>
<td>VBARPARAM</td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>“About Box Plots” (p. 46)</td>
</tr>
<tr>
<td>VECTOR</td>
<td>“About Vector Plots” (p. 39)</td>
</tr>
<tr>
<td>VLINE</td>
<td>“About Line Charts” (p. 60)</td>
</tr>
</tbody>
</table>
Examples Available Online

You can find more examples on the Graphically Speaking blog. On the blog page, search for SGPANEL in the Search Graphically Speaking search box to find the SGPANEL procedure examples.

You can also find examples on support.sas.com at the following URL: https://support.sas.com/sassamples/graphgallery/PROC_SGPANEL.html.

Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots

Features: HISTOGRAM statement
DENSITY statement

Sample library member: SGPNHST

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a panel of graph cells with histograms and density plots.

Output

![Cholesterol Distribution in Heart Study](image)
Program

proc sgpanel data=sashelp.heart noautolegend;
 title "Cholesterol Distribution in Heart Study";
 panelby sex;
 histogram cholesterol;
 density cholesterol;
run;
title;

Program Description

Create the panel and specify the title.

proc sgpanel data=sashelp.heart noautolegend;
 title "Cholesterol Distribution in Heart Study";

Specify the classification variable for the panel.

panelby sex;

Create the histogram and density plots.

histogram cholesterol;
 density cholesterol;
run;

Cancel the title.

title;

Example 2: Creating a Panel of Regression Curves

Features:
- REG statement
- Sample library member: SGPNREG

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a panel of regression curves. The COLUMNS= option in the PANELBY statement specifies that the panel has three columns of graph cells.
Output

```
proc sgpanel data=sashelp.iris;
  title "Scatter plot for Fisher iris data";
  panelby species / columns=3;
  reg x=sepallength y=sepalwidth / cli clm;
run;
```

Program Description

Create the panel and specify the title.
```
proc sgpanel data=sashelp.iris;
  title "Scatter plot for Fisher iris data";
run;
```

Specify the classification variable for the panel. The `COLUMNS=` option specifies the number of columns in the panel.
```
panelby species / columns=3;
```

Create the regression curve. The `CLI` option creates individual predicted value confidence limits. The `CLM` option creates mean value confidence limits.
```
reg x=sepallength y=sepalwidth / cli clm;
```
Example 3: Creating a Panel of Bar Charts

Features:
- HBAR statement

Sample library member:
SGPNBAR

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a panel of bar charts. The COLUMNS= on page 168 option in the PANELBY statement specifies that the panel contains a single column of cells.
Output

```
proc sgpanel data=sashelp.prdsale;
  title "Yearly Sales by Product";
  panelby year / novarname columns=1;
  hbar product / response=actual;
run;
```

Program Description

Create the panel and set the title.
proc sgpanel data=sashelp.prdsale;
title "Yearly Sales by Product";

Specify the classification variable for the panel. The NOVARNAME on page 169 option specifies that the variable name is not shown in the heading for each cell. The COLUMNS= on page 168 option specifies the number of columns in the panel.

panelby year / novarname columns=1;

Create the horizontal bar chart. The RESPONSE= on page 283 option specifies the response variable for the chart.

hbar product / response=actual;
run;

Cancel the title.

title;

Example 4: Creating a Panel of Line Charts

Features: VLINE statement
Sample library member: SGPNLIN

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a panel of line plots with grouped data.

Output

![Yearly Sales by Product](image-url)
Program

```sas
proc sgpanel data=sashelp.prdsale;
  where product in ("CHAIR" "SOFA");
  title "Yearly Sales by Product";
  panelby year / spacing=5 novarname;
    vline month / response=actual group=product;
run;

title;
```

Program Description

Create the panel and specify a title.

```sas
proc sgpanel data=sashelp.prdsale;
  where product in ("CHAIR" "SOFA");
  title "Yearly Sales by Product";
```

Specify the classification variable for the panel. The `SPACING=` option specifies the number of pixels between the panels in the plot. The `NOVARNAME` option specifies that the classification variable name is not shown in the headings for each cell.

```sas
panelby year / spacing=5 novarname;
```

Create the vertical line plot. The `RESPONSE=` option specifies the response variable. The `GROUP=` option specifies the group variable.

```sas
vline month / response=actual group=product;
run;
```

Cancel the title.

```sas
title;
```
The SGPIE procedure produces pie charts and donut charts. The angles of pie and donut slices are used to graphically represent the value of a statistic for a data range. The charts are useful for examining how the values of a variable contribute to the whole and for quickly comparing the values of several variables.
Note: The SGPIE procedure is a preproduction feature in the SAS 9.4M6 release, which means that it has not been fully developed, tested, or documented.

Here is an example pie chart:

Figure 9.1 Pie Chart

See the code for the pie chart example.

Here is a donut chart.

Figure 9.2 Donut Chart

See the code for the donut example.
Syntax: SGPIE Procedure: Preproduction

Restrictions: This procedure is preproduction. See Overview: SGPIE Procedure on page 787. The SGPIE procedure is supported only on 64-bit Windows systems and on 64-bit Linux systems.

Requirement: At least one plot statement is required.

Supported Statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE

Notes: This feature applies to SAS 9.4M6 and later releases. Output from the SGPIE procedure is not supported by the ODS Graphics Editor.

PROC SGPIE <options>;
 DONUT category-variable <options> ;
 KEYLEGEND <options> ;
 PIE category-variable </options>
 STYLEATTRS </options>

PROC SGPIE Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, control automatic legends, and specify whether the chart background is opaque or transparent.

Requirement: An input data set is required. If no data set is specified, the procedure uses the most recently created SAS data set.

Syntax

PROC SGPIE <options> ;

Summary of Optional Arguments

DATA= input-data-set
 specifies the SAS data set that contains the variables to process.

DATATRMAP= discrete-attribute-map-data-set
 specifies the discrete attribute map data set that you want to use with the procedure.

DESCRIPTION= "text-string"
 specifies a description for the output image.

NOAUTOLEGEND
disables automatic legends from being generated.

OPAQUE
NOOPAQUE
specifies whether the graph background is opaque or transparent.

Optional Arguments

DATA= *input-data-set*
specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATTRMAP= *discrete-attribute-map-data-set*
specifies the discrete attribute map data set that you want to use with the procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Restriction
The procedures do not support attribute maps that reside in CAS in-memory tables. Only standard SAS data sets are supported for attribute map data.

Requirement
The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See
Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Example: Use a Discrete Attribute Map with the SGPIE Procedure” on page 1753

“Overview of Attribute Maps” on page 1733

DESCRIPTION= "**text-string**"
specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPIE Procedure”.

Alias
DES

Notes
The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

You can disable the alternate text in HTML output by specifying an empty string. That is, **DESCRIPTION=""**.

NOAUTOLEGEND
disables automatic legends from being generated. By default, legends are created automatically when the CATEGORY labels are not displayed on the slices. This option has no effect if you specify a KEYLEGEND statement.

OPAQUE | NOOPAQUE
specifies whether the graph background is opaque or transparent.
DONUT Statement

Creates a donut chart with slices representing counts or percents of unique category values. If a RESPONSE variable is specified, the chart summarizes the category values over corresponding values of the RESPONSE variable.

Examples:

“Example 1: Simple Donut Chart” on page 812
“Example 2: Donut Chart with a Response Variable” on page 812

Syntax

DONUT category-variable < /options >;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled donut slices.

DIRECTION=COUNTERCLOCKWISE | CLOCKWISE
specifies whether to display the donut slices in counterclockwise or clockwise sequence.

OTHERFILLATTRS=style-element < (options) > | (options)
specifies the fill color and transparency of the Other slice.

RINGSIZE
specifies the proportion of the donut radius to be occupied by the donut ring.

STARTANGLE=degrees
specifies which degree between 0 and 360 serves as the starting position for the first slice.

STARTPOS=CENTER | EDGE
specifies whether the center or the edge of the slice is positioned at the start angle.
Label options

DATALABELATTRS= *(options)*
specifies the color and font attributes of the slice labels.

DATALABELDISPLAY= *(options)*
specifies the information to display in the slice labels.

DATALABELLOC= *(options)*
specifies whether to display the slice labels within the slices or outside of the donut circumference.

HOLELABEL= *(options)*
displays a label for the donut hole.

HOLELABELATTRS= *(options)*
specifies text attributes for the label text in the donut hole.

HOLEVALUE= *(options)*
displays a numeric value inside the donut hole.

HOLEVALUEATTRS= *(options)*
specifies text attributes for the value text in the donut hole.

OTHERLABEL= *(options)*
specifies a label for the Other slice.

STATFMT= *(options)*
specifies the format of the displayed statistical value.

Plot options

MAXSLICES= *(positive integer)*
specifies the maximum number of slices in the donut. Any remaining slices are consolidated into the Other slice.

MISSING
shows the data for missing category values.

OTHERPERCENT= *(percent-of-total)*
collects all category values with response values less than or equal to percent-of-total into the Other slice.

RESPONSE= *(numeric-variable)*
specifies a numeric variable for the response values.

SLICEORDER= *(DATA | FORMATTED | UNFORMATTED | RESPASC | RESPDESC)*
specifies the order of the donut slices.

URL= *(character-variable)*
specifies an HTML page to be displayed when parts of the plot are selected.

Required Argument

category-variable
specifies the column for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.

Optional Arguments

ATTRID= *(character-value)*
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual
attributes of the graph. Provide the character-value variable without quotation marks.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

Example “Example: Use a Discrete Attribute Map with the SGPIE Procedure” on page 1753

DATALABELATTRS=style-element<(options)> | (options)
specifies the color and font attributes of the slice labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Note If data label settings result in labels that do not fit within the slices, the labels are not displayed.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELDISPLAY=ALL | NONE | (content-options)
specifies the information to display in the slice labels.

ALL displays all available information

NONE does not display slice labels

(content-options)
a space-separated list of one or more of the following options enclosed in parentheses:

CATEGORY displays the category value.

RESPONSE displays the sum of the response value for each category. If no response variable is specified, displays the category value.

PERCENT displays either of the following:

- when a response variable is specified, displays the response sum as a percentage.
- when no response variable is specified, displays the category frequency as a percentage.

Defaults When a response variable is specified, the default display is the category value and the response sum.
When no response variable is specified, the default display is the category value and frequency.

Notes

If the category label is suppressed through this option, an automatic legend is generated with the category values.

The position of the labels is adjusted to prevent the labels from overlapping.

If data label settings result in labels that do not fit within the slices, the labels are not displayed.

DATALABELLOC= **INSIDE** | **OUTSIDE** | **CALLOUT**

specifies whether to display the slice labels within the slices or outside of the donut circumference.

INSIDE

locates the slice labels inside the slices.

Note

If there is not sufficient space to fit all of the labels, some labels might encroach on adjacent slices and overlap with other labels.

OUTSIDE

locates the slice labels outside of the donut circumference.

Note

The diameter of the donut is reduced in order to fit the labels. In some cases, labels might overlap.

CALLOUT

locates the slice labels outside of the donut circumference and draws a line from the label to its slice.

Notes

In **SAS 9.4M7** and prior releases, the diameter of the donut is reduced in order to fit the labels. In some cases, labels might overlap.

Starting with **SAS 9.4M8**, the diameter of the donut is reduced in order to fit the labels. The minimum donut size is 25 percent of the available space. If labels do not fit at the minimum size, they are truncated or dropped. In some cases, labels might overlap.

Figure 9.3 Donut Chart Label Location Examples

DATASKIN= **NONE** | **CRISP** | **GLOSS** | **MATTE** | **PRESSED** | **SHEEN**

enhances the visual appearance of the filled donut slices.
Restriction
The maximum number of skinned graphical elements is limited to 200 per plot. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

DIRECTION=COUNTERCLOCKWISE | CLOCKWISE
specifies whether to display the donut slices in counterclockwise or clockwise sequence.

Default **COUNTERCLOCKWISE**

Interaction The STARTANGLE= option controls the starting angle for the first donut slice.

HOLELABEL <="string"
displays a label for the donut hole. If you specify a label, then that label is used for the donut hole. If you do not specify a label, then the RESPONSE variable label is used for the donut hole.

HOLELABELATTRS=<style-element>(options)> | (options)
specifies text attributes for the label text in the donut hole. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Note: You cannot specify the SIZE text option. The size of the text is determined internally. If the hole value is displayed, the hole label is 60% of the font size of the value that is displayed in the donut hole. Otherwise, the hole size determines the font size used.

Default **GraphValueText** style element in the current style. The affected attributes are Color, FontFamily, FontStyle, and FontWeight.

Interaction This option has no effect unless HOLELABEL is also specified.

Examples

```
HOLELABELATTRS=(Color=Green Family="Arial"
                      Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
HOLELABELATTRS=GraphLabelText
```

HOLEVALUE <=number
displays a numeric value inside the donut hole. If you specify a number, then that number is displayed inside the donut hole. If you do not specify a number, then the sum of the donut slices is displayed inside the donut hole.

Tip The label for large values uses a condensed business format to abbreviate numerical values. For example, 1,100,000,000 is displayed as 1.1B. This format can cause you to lose precision, as it rounds values to improve the display within the hole area.
HOLEVALUEATTRS=style-element<(options)> | (options)
specifies text attributes for the value text in the donut hole. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Note: You cannot specify the SIZE text option. The size of the text is determined internally based on the hole size.

Default
GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Interaction
This option has no effect unless HOLEVALUE is also specified.

Examples

HOLEVALUEATTRS=(Color=Green Family="Arial"
Style=Italic Weight=Bold)

Here is an example that specifies a style element:

HOLEVALUEATTRS=GraphLabelText

MAXSLICES=positive integer
specifies the maximum number of slices in the donut. Any remaining slices are consolidated into the Other slice. The Other slice is included in this count.

In the resulting chart, the largest $N-1$ slices are displayed, where N equals your specified positive integer. The remaining smaller slices are consolidated into the Other slice.

Default
No maximum is set

Interaction
This option does not control the drawing order of the slices. Slices are drawn as specified by the SLICEORDER= option.

MISSING
shows the data for missing category values.

Default
Missing data is not shown.

OTHERFILLATTRS=style-element<(options)> | (options)
specifies the fill color and transparency of the Other slice. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Default
The GraphOther:Color style reference in the current style. Transparency is the same as the plot's transparency.

OTHERLABEL=string
specifies a label for the Other slice.

Default
"OTHER"
OTHERPERCENT=percent-of-total collects all category values with response values less than or equal to percent-of-total into the Other slice.

Default: Not set
Range: 0 to 100
Interaction: This option is ignored if MAXSLICES= is specified.

RESPONSE=numeric-variable specifies a numeric variable for the response values.

RINGSIZE specifies the proportion of the donut radius to be occupied by the donut ring. In the following figures, the first figure shows a ring that is half the diameter of the donut. The second figure shows a much narrower ring.

Table 9.1 Sample Ring Sizes

<table>
<thead>
<tr>
<th>RINGSIZE=0.5</th>
<th>RINGSIZE=0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: 0.3
Range: 0.0 to 1.0
Interaction: The donut hole cannot be sized below a minimum proportionate value of 0.15. If changing the ring size results in a smaller donut hole than that minimum, the ring size is automatically adjusted to honor the minimum size for the donut hole.

SLICEORDER=DATA | FORMATTED | UNFORMATTED | RESPASC | RESPDESC specifies the order of the donut slices.

DATA draws the slices in data order.

FORMATTED draws the slices in ascending order of the formatted category variable. This option takes effect when a format has been applied to the category variable.

UNFORMATTED draws the slices in ascending order of the unformatted category variable.

RESPASC draws the slices in ascending summed order of the response variable.

RESPDESC draws the slices in descending summed order of the response variable.

Default: UNFORMATTED order
Tip By default, slices are drawn in a counterclockwise direction. You can change this using the DIRECTION= option.

STARTANGLE=degrees
specifies which degree between 0 and 360 serves as the starting position for the first slice. A value of 0 degrees corresponds to the three o’clock position. The degrees value specified moves the starting position counterclockwise beginning with the first quadrant of the donut.

Default 0

Range 0 to 360

Interaction By default, the center, rather than the edge, of the first slice starts at the specified position. You can change this by specifying STARTPOS=EDGE.

Tips To start the first slice in the fourth quadrant of the donut, specify degrees to be greater than 270.

From the starting point specified by this option, the slices are drawn in the direction specified by the DIRECTION= option.

STARTPOS= CENTER | EDGE
specifies whether the center or the edge of the slice is positioned at the start angle.

Default CENTER

Tips Use the DIRECTION= option to specify the category direction. By default, the direction is counterclockwise.

Use the STARTANGLE= option to specify the start angle. By default, the start angle is zero degrees.

STATFMT= format-specification
specifies the format of the displayed statistical value.

Note: This feature applies to SAS Viya 3.5 and later releases.

format-specification can be a SAS format or a user-defined format created with the FORMAT procedure. This format is applied to the calculated column. When no response variable is specified, the format is applied to the category frequency.

Restriction The format must be a numeric format.

Tip Use this option to change the default format that might contain decimal points, percentages, or commas.

See *SAS Formats and Informats: Reference*

Examples

```plaintext
statfmt=f8.2
statfmt=comma10.2
```

URL= character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

KEYLEGEND Statement

Creates a legend based on information from pie and donut statements. This statement is used to control the automated legend when it is displayed.

Interaction: Legends appear only when the category data label is not displayed and the NOAUTOLEGEND option is not specified in the PROC SGPIE statement. The category display is controlled by the DATALABELDISPLAY= option in the PIE and DONUT statements.

Syntax

```
KEYLEGEND </options>;
```

Summary of Optional Arguments

Appearance options

- **ACROSS=n** specifies the number of columns in the legend.
- **BORDER**
- **NOBORDER** specifies whether a border is displayed around the legend.
- **DOWN=n** specifies the number of rows in the legend.
- **FILLASPECT=GOLDEN | positive-number** specifies an aspect ratio for the fill swatches based on their height.
FILLHEIGHT= *dimension*
 specifies the height of the fill swatches.

POSITION= *position-value*
 specifies the position of the legend within the graph.

TITLE="*text-string"
 specifies a title for the legend.

TITLEATTRS= *style-element*(options)> | *(options)*
 specifies the appearance of the title.

VALUEATTRS= *style-element*(options)> | *(options)*
 specifies the appearance of the legend value labels.

Legend options

AUTOITEMSIZE
 specifies that all swatches in the legend are sized in proportion to the font size used for the legend value labels.

SCALE= *positive-number*
 specifies a scale factor that is to be applied to the fill swatch height.

SORTORDER= ASCENDING | DESCENDING
 specifies the sort order to use for the legend entry labels.

Optional Arguments

ACROSS= *n*
 specifies the number of columns in the legend.

Default Determined automatically

Note Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the ACROSS= option.

Tip The DOWN= option specifies the number of rows in the legend.

AUTOITEMSIZE
 specifies that all swatches in the legend are sized in proportion to the font size used for the legend value labels. These proportional sizes take effect regardless of the attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the color swatches are small compared to the labels. The second figure uses AUTOITEMSIZE to size the color swatches in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Swatch Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Asia</td>
</tr>
</tbody>
</table>

Tip Use the VALUEATTRS= option to control the font size for the legend value labels.
BORDER | NOBORDER

specifies whether a border is displayed around the legend. The BORDER option shows the border. The NOBORDER option hides the border.

Default: BORDER

DOWN=\(n\)

specifies the number of rows in the legend.

Note: Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the DOWN= option.

Default: Determined automatically

Tip: The ACROSS= option specifies the number of columns in the legend.

FILLASPECT=GOLDEN | positive-number

specifies an aspect ratio for the fill swatches based on their height.

- **GOLDEN**
 - specifies the golden ratio of 1.618 (width = 1.618 * height).

- **positive-number**
 - specifies a custom aspect ratio.

Default: The system determines the aspect.

Interaction: This option is ignored when AUTOITEMSIZE is specified.

Tip: Use FILLHEIGHT= to specify the height.

FILLHEIGHT= dimension

specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

Default: The system determines the height.

Interaction: This option is ignored when AUTOITEMSIZE is specified.

Tip: Use FILLASPECT= to specify the aspect ratio.

POSITION=position-value

specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
 - places the legend at the bottom of the graph.

- **BOTTOMLEFT**
 - places the legend at the bottom left corner of the graph.

- **BOTTOMRIGHT**
 - places the legend at the bottom right corner of the graph.

- **LEFT**
 - places the legend at the left side of the graph.
RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

TOPLEFT
places the legend at the top left corner of the graph.

TOPRIGHT
places the legend at the top right corner of the graph.

Default BOTTOM

Notes
By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then all of your legends are placed at that position.

SCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

Default 1

Interaction
This option is ignored when AUTOITEMSIZE is specified.

Tips
Use FILLHEIGHT= to change the base height.

Use FILLASPECT= to specify the width.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TITLE="text-string"
specifies a title for the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Default The category variable label, if one is assigned. If a label is not assigned, the category variable name is displayed by default.

Requirement text-string must be enclosed in quotation marks.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
Examples

TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TITLEATTRS=GraphTitleText

VALUEATTRS=style-element<options>> | (options)

specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default

GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples

VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

VALUEATTRS=GraphTitleText

PIE Statement

Creates a pie chart with slices representing counts or percents of unique category values. If a RESPONSE variable is specified, the chart summarizes the category values over corresponding values of the RESPONSE variable.

Examples:

“Example 3: Simple Pie Chart” on page 813

“Example 4: Pie Chart with a Response Variable” on page 814

“Example 5: Pie Chart That Combines Categories into the Other Slice” on page 814

Syntax

```
PIE category-variable <options>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 - specifies the value of the ID variable in a discrete attribute map data set.
- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 - enhances the visual appearance of the filled pie slices.
- **DIRECTION=COUNTERCLOCKWISE | CLOCKWISE**
specifies whether to display the pie slices in counterclockwise or clockwise sequence.

OTHERFILLATTRS=\texttt{style-element} \langle\texttt{options}\rangle | \langle\texttt{options}\rangle
specifies the fill color and transparency of the Other slice.

\texttt{STARTANGLE=degrees}
specifies which degree between 0 and 360 serves as the starting position for the first slice.

\texttt{STARTPOS=\texttt{CENTER} | \texttt{EDGE}}
specifies whether the center or the edge of the slice is positioned at the start angle.

\textbf{Label options}

\texttt{DATALABELATTRS=\texttt{style-element} \langle\texttt{options}\rangle | \langle\texttt{options}\rangle}
specifies the color and font attributes of the slice labels.

\texttt{DATALABELDISPLAY=\texttt{ALL} | \texttt{NONE} | \langle\texttt{content-options}\rangle}
specifies the information to display in the slice labels.

\texttt{DATALABELLOC=\texttt{INSIDE} | \texttt{OUTSIDE} | \texttt{CALLOUT}}
specifies whether to display the slice labels within the pie slices or outside of the pie circumference.

\texttt{OTHERLABEL=\textquote{string}}
specifies a label for the Other slice.

\texttt{STATFMT=\texttt{format-specification}}
specifies the format of the displayed statistical value.

\textbf{Plot options}

\texttt{MAXSLICES=\texttt{positive integer}}
specifies the maximum number of slices in the pie. Any remaining slices are consolidated into the Other slice.

\texttt{MISSING}
shows the data for missing category values.

\texttt{OTHERPERCENT=\texttt{percent-of-total}}
collects all category values with response values less than or equal to \texttt{percent-of-total} into the Other slice.

\texttt{RESPONSE=\texttt{numeric-variable}}
specifies a numeric variable for the response values.

\texttt{SLICEORDER=\texttt{DATA} | \texttt{FORMATTED} | \texttt{UNFORMATTED} | \texttt{RESPASC} | \texttt{RESPDESC}}
specifies the order of the pie slices.

\texttt{URL=\texttt{character-variable}}
specifies an HTML page to be displayed when parts of the plot are selected.

\textbf{Required Argument}

\texttt{category-variable}
specifies the column for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. Provide the `character-value` variable without quotation marks.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

Example “Example: Use a Discrete Attribute Map with the SGPIE Procedure” on page 1753

DATALABELATTRS=style-element<options> | (options)
specifies the color and font attributes of the slice labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Note If data label settings result in labels that do not fit within the slices, the labels are not displayed.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8
 Style=Italic Weight=Bold)

 Here is an example that specifies a style element:
 DATALABELATTRS=GraphLabelText

DATALABELDISPLAY=ALL | NONE | (content-options)
specifies the information to display in the slice labels.

ALL
displays all available information

NONE
does not display slice labels

(content-options)
a space-separated list of one or more of the following options enclosed in parentheses:

CATEGORY
displays the category value.

RESPONSE
displays the sum of the response value for each category. If no response variable is specified, displays the category value.

PERCENT
displays either of the following:

- when a response variable is specified, displays the response sum as a percentage.
when no response variable is specified, displays the category frequency as a percentage.

Defaults

When a response variable is specified, the default display is the category value and the response sum.

When no response variable is specified, the default display is the category value and frequency.

Notes

If the category label is suppressed through this option, an automatic legend is generated with the category values.

The position of the labels is adjusted to prevent the labels from overlapping.

If data label settings result in labels that do not fit within the slices, the labels are not displayed.

DATALABELLOC=INSIDE | OUTSIDE | CALLOUT

specifies whether to display the slice labels within the pie slices or outside of the pie circumference.

INSIDE

locates the slice labels inside the pie slices.

Note

If there is not sufficient space to fit all of the labels, some labels might encroach on adjacent slices and overlap with other labels.

OUTSIDE

locates the slice labels outside of the pie circumference.

Note

The diameter of the pie is reduced in order to fit the labels. In some cases, labels might overlap.

CALLOUT

locates the slice labels outside of the pie circumference and draws a line from the label to its slice.

Notes

In SAS 9.4M7 and prior releases, the diameter of the pie is reduced in order to fit the labels. In some cases, labels might overlap.

Starting with SAS 9.4M8, the diameter of the pie is reduced in order to fit the labels. The minimum pie size is 25 percent of the available space. If labels do not fit at the minimum size, they are truncated or dropped. In some cases, labels might overlap.
Default Automatically determined

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the filled pie slices.

Default NONE

Restriction
The maximum number of skinned graphical elements is limited to 200 per plot. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the **DATASKINMAX=** option in your ODS GRAPHICS statement to increase the maximum limit.

DIRECTION=COUNTERCLOCKWISE | CLOCKWISE
specifies whether to display the pie slices in counterclockwise or clockwise sequence.

Default COUNTERCLOCKWISE

Interaction
The STARTANGLE= option controls the starting angle for the first pie slice.

MAXSLICES= *positive integer*
specifies the maximum number of slices in the pie. Any remaining slices are consolidated into the Other slice. The Other slice is included in this count.

In the resulting chart, the largest \(N-1 \) slices are displayed, where \(N \) equals your specified **positive integer**. The remaining smaller slices are consolidated into the Other slice.

Default No maximum is set

Interaction
This option does not control the drawing order of the slices. Slices are drawn as specified by the SLICEORDER= option.

MISSING
shows the data for missing category values.

Default Missing data is not shown.

OTHERFILLATTRS= *style-element <(options)> | (options)*
specifies the fill color and transparency of the Other slice. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Default The GraphOther:Color style reference in the current style. Transparency is the same as the plot's transparency.

OTHERLABEL= *"string"*
specifies a label for the Other slice.

Default "OTHER"

OTHERPERCENT= *percent-of-total*
collects all category values with response values less than or equal to **percent-of-total** into the Other slice.
RESPONSE=\textit{numeric-variable}

specifies a numeric variable for the response values.

\textbf{SLICEORDER=}\texttt{DATA} | \texttt{FORMATTED} | \texttt{UNFORMATTED} | \texttt{RESPASC} | \texttt{RESPDESC}

specifies the order of the pie slices.

- \texttt{DATA} draws the slices in data order.
- \texttt{FORMATTED} draws the slices in ascending order of the formatted category variable. This option takes effect when a format has been applied to the category variable.
- \texttt{UNFORMATTED} draws the slices in ascending order of the unformatted category variable.
- \texttt{RESPASC} draws the slices in ascending summed order of the response variable.
- \texttt{RESPDESC} draws the slices in descending summed order of the response variable.

Default UNFORMATTED order

Tip By default, slices are drawn in a counterclockwise direction. You can change this using the \texttt{DIRECTION=} option.

\textbf{STARTANGLE=}\texttt{degrees}

specifies which degree between 0 and 360 serves as the starting position for the first slice. A value of 0 degrees corresponds to the three o'clock position. The \texttt{degrees} value specified moves the starting position counterclockwise beginning with the first quadrant of the pie.

Default 0

Range 0 to 360

Interaction By default, the center, rather than the edge, of the first slice starts at the specified position. You can change this by specifying \texttt{STARTPOS=}\texttt{EDGE}.

Tips To start the first slice in the fourth quadrant of the pie, specify \texttt{degrees} to be greater than 270.

From the starting point specified by this option, the slices are drawn in the direction specified by the \texttt{DIRECTION=} option.

\textbf{STARTPOS=}\texttt{CENTER} | \texttt{EDGE}

specifies whether the center or the edge of the slice is positioned at the start angle.

Default CENTER

Tips Use the \texttt{DIRECTION=} option to specify the category direction. By default, the direction is counterclockwise.
Use the STARTANGLE= option to specify the start angle. By default, the start angle is zero degrees.

STATFMT= *format-specification*

specifies the format of the displayed statistical value.

format-specification can be a SAS format or a user-defined format created with the FORMAT procedure. This format is applied to the calculated column. When no response variable is specified, the format is applied to the category frequency.

Restriction The format must be a numeric format.

Tip Use this option to change the default format that might contain decimal points, percentages, or commas.

See [SAS Formats and Informats: Reference](#)

Examples

\[
\text{statfmt=f8.2} \\
\text{statfmt=comma10.2}
\]

URL= *character-variable*

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

\[
\text{ODS GRAPHICS ON / IMAGEMAP=ON;}
\]

For more information, see "Using the ODS GRAPHICS Statement" on page 1722.

STYLEATTRS Statement

Specifies attributes for a graph. The statement enables you to change the appearance of some graphics elements within the procedure.

Requirement: The procedure must include at least one chart statement.
Syntax

STYLEATTRS <options>;

Summary of Optional Arguments

BACKCOLOR=color
 specifies the background color of the graph area.

DATACOLORS=(color-list)
 specifies the fill colors for the graphics elements.

Optional Arguments

BACKCOLOR=color
 specifies the background color of the graph area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

 Default The Color attribute of the GraphBackground style element

 Examples backcolor=CXFF0000
 backcolor=light_blue

DATACOLORS=(color-list)
 specifies the fill colors for the graphics elements. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

 Default The colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

 Interaction Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

 Note When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphData n style elements. When the colors in color-list are exhausted, the colors repeat.

 Example datacolors=(CXFF0000 green blue)
Examples: SGPIE Procedure: Preproduction

About the SGPIE Procedure Examples

Examples in This Section

This section provides basic examples of how to use the SGPIE procedure. The following examples are provided:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Example 1: Simple Donut Chart” (p. 812)</td>
<td>Shows how to use the DONUT statement to create a simple donut chart.</td>
</tr>
<tr>
<td>“Example 2: Donut Chart with a Response Variable” (p. 812)</td>
<td>Shows how to use the DONUT statement and the RESPONSE= and DATALABELDISPLAY= options to create a donut chart with a response variable.</td>
</tr>
<tr>
<td>“Example 3: Simple Pie Chart” (p. 813)</td>
<td>Shows how to use the PIE statement to create a simple pie chart.</td>
</tr>
<tr>
<td>“Example 4: Pie Chart with a Response Variable” (p. 814)</td>
<td>Shows how to use the PIE statement and the RESPONSE= option to create a pie chart with a response variable.</td>
</tr>
<tr>
<td>“Example 5: Pie Chart That Combines Categories into the Other Slice” (p. 814)</td>
<td>Shows how to create a pie chart that consolidates some category values into the other slice.</td>
</tr>
<tr>
<td>“Example 6: Pie Chart with Specified Background Color and Data Colors” (p. 815)</td>
<td>Shows how to create a pie chart with a specific background color and data colors.</td>
</tr>
</tbody>
</table>
Examples Available Online

You can find more examples on the Graphically Speaking blog. On the blog page, search for SGPIE in the Search Graphically Speaking search box to find the SGPIE procedure examples.

Example 1: Simple Donut Chart

This example shows the category value and frequency numbers for cars.

Output 9.1

Example Code 9.1

```sas
title "Car Models by Origin";
proc sgpie data=sashelp.cars;
  donut origin / datalabelloc=outside;
run;
title;
```

Example 2: Donut Chart with a Response Variable

This example displays the sum of a response variable for each value of the category variable. The DATALABELDISPLAY= on page 793 option displays only the response variable in the donut slices. The category values are displayed in the legend.
Example 3: Simple Pie Chart

This example shows the category value and frequency numbers for cars.

Example Code 9.2 Program

```plaintext
title "Student Weight by Age";
proc sgpie data=sashelp.class;
    donut age / response=weight datalabeldisplay=(response);
run;
title;
```

Example Code 9.3 Program

```plaintext
title "Car Models by Origin";
proc sgpie data=sashelp.cars;
    pie origin / datalabelloc=outside;
```
Example 4: Pie Chart with a Response Variable

This example shows the sum of the manufacturer’s suggested retail price (MSRP) for each value of the category variable. The `DATALABELDISPLAY=` option displays only the response variable in the pie slices. The category values are displayed in the legend.

Output 9.4 Output

Example Code 9.4 Program

```sql
title "MSRP by Origin";
proc sgpie data=sashelp.cars;
    pie origin / response=msrp datalabelloc=outside;
run;
title;
```

Example 5: Pie Chart That Combines Categories into the Other Slice

This example produces a pie chart with only two categories of vehicles: Sedan and Other. Pie charts with only two slices are more symmetric and easier to comprehend at a glance. To accomplish this, the example defines a format that uses the Other keyword to group all vehicle types that are not sedans.
Here is the SAS code that defines the format and generates the SGPIE procedure output.

Example Code 9.5 Program

```sas
proc format;
  value $type
    'Sedan'='Sedan'
    other='Other';
run;

title "Sedans Compared with Other Vehicle Types";
proc sgpie data=sashelp.cars;
  format type $type.;
  pie type / startangle=90;
run;
title;
```

Example 6: Pie Chart with Specified Background Color and Data Colors

The following example shows a pie chart with the background color and the data colors specified.
Example Code 9.6 Program

 title "Number of Male and Female Students";
 proc sgpie data=sashelp.class;
 styleattrs backcolor=lightblue datacolors=(orange blue);
 pie sex ;
 run;
 title;
Chapter 10

SGPLOT Procedure

Overview: SGPLOT Procedure ... 817
What Does the SGPLOT Procedure Do? .. 818

Concepts: SGPLOT Procedure ... 820
Overview of the SGPLOT Procedure .. 820
Concepts in Common with the SGPANEL Procedure 821

Syntax: SGPLOT Procedure .. 822
PROC SGPLOT Statement ... 823
STYLEATTRS Statement ... 831
BAND Statement ... 839
BLOCK Statement ... 850
BUBBLE Statement ... 860
DENSITY Statement .. 875
DOT Statement ... 883
DROPLINE Statement ... 901
ELLIPSE Statement .. 906
ELLIPSEPARM Statement .. 911
FRINGE Statement ... 920
GRADLEGEND Statement .. 925
HBAR Statement .. 929
HBARBASIC Statement ... 955
HBARPARM Statement ... 974
HBOX Statement .. 996
HEATMAP Statement ... 1015
HEATMAPPARM Statement .. 1026
HIGHLOW Statement ... 1034
HISTOGRAM Statement ... 1050
HLINE Statement ... 1060
INSET Statement ... 1078
KEYLEGEND Statement ... 1083
LEGENDITEM Statement .. 1093
LINEPARM Statement ... 1099
LOESS Statement ... 1105
NEEDLE Statement ... 1118
PBSPLINE Statement ... 1129
POLYGON Statement ... 1144
REFLINE Statement ... 1164
REG Statement ... 1170
SCATTER Statement ... 1185
Overview: SGPLOT Procedure

What Does the SGPLOT Procedure Do?

The SGPLOT procedure creates one or more plots and overlays them on a single set of axes. You can use the SGPLOT procedure to create statistical graphics such as histograms and regression plots, in addition to simple graphics such as scatter plots and line plots. Statements and options enable you to control the appearance of your graph and add additional features such as legends and reference lines.

The SGPLOT procedure can create a wide variety of plot types, and can overlay plots together to produce many different types of graphs.

Here are some examples of graphs that the SGPLOT procedure can create.
Table 10.1 Examples of Graphs That Can Be Generated by the SGPLOT Procedure

The following code creates an ellipse plot:
```
proc sgplot data=sashelp.class;
scatter x=height y=weight;
ellipse x=height y=weight;
run;
```

The following code creates a horizontal box plot:
```
proc sgplot data=sashelp.cars;
hbox weight / category=origin;
run;
```

The following code creates a graph with two series plots:
```
title "Power Generation (GWh)";
title;
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
xaxis type=discrete;
series x=year y=coal / datalabel;
series x=year y=naturalgas / datalabel y2axis;
run;
title;
```

The following code creates a graph with a histogram, a normal density curve, and a kernel density curve:
```
proc sgplot data=sashelp.class;
histogram height;
density height;
density height / type=kernel;
run;
```
The following code creates a graph with two bar charts:

```sas
proc sgplot data=sashelp.prdsale;
  yaxis label="Sales" min=200000;
  vbar country / response=predict;
  vbar country / response=actual
      barwidth=0.5
      transparency=0.2;
run;
```

Concepts: SGPLOT Procedure

Overview of the SGPLOT Procedure

The SGPLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is assigned to a different vertical axis. Data labels have been added for easy reference.

```sas
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
  xaxis type=discrete;
  series x=year y=coal / datalabel;
  series x=year y=naturalgas / datalabel y2axis;
run;
```

The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```sas
title "Power Generation (GWh)";
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
  xaxis type=discrete;
  series x=year y=coal / datalabel;
  series x=year y=naturalgas / datalabel y2axis;
run;
title;
```
Concepts in Common with the SGPANEL Procedure

The following topics are located in the Chapter 13, “Common Concepts,” on page 1627 section. These topics describe concepts that are similar between the SGPANEL and SGLOT procedures.

Table 10.2 Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1628)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1634)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1635)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1642)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1643)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1645)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.</td>
</tr>
</tbody>
</table>
Syntax: SGPLOT Procedure

Requirement: At least one plot statement is required.

Supported Statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE

Note: Examples can be found in “Examples” on page 1527 and in the plot statement descriptions.

PROC SGPLOT <options>;

STYLEATTRS <options>

BAND X=variable Y=variable
 UPPPER= numeric-value | numeric-variable
 LOWER= numeric-value | numeric-variable <options>;

BLOCK X=category-variable BLOCK=block-variable <options>;

BUBBLE X=variable Y=variable SIZE=numeric-variable <options>;

DENSITY response-variable <options>;

DOT category-variable <options>;

DROPLINE X=variable x-axis-value
 Y=variable | y-axis-value <options>;

ELLIPSE X=numeric-variable Y=numeric-variable <options>;

ELLIPSEPARM SEMIMAJOR= numeric-value | numeric-variable
 SEMIMINOR= numeric-value | numeric-variable <options>;

FRINGE numeric-variable <options>;

GRADLEGEND <"name"> <options>;

HBAR category-variable <options>;

HBARBASIC category-variable <options>;

HBARPARM CATEGORY= category-variable RESPONSE= numeric-variable <options>;

HBOX analysis-variable <options>;

HEATMAP X=variable Y=variable <options>;

HEATMAPPARM X=variable Y=variable
 COLORGROUP=variable | COLORRESPONSE=numeric-variable <options>;

HIGHLOW X=variable | Y=variable
 HIGH=numeric-variable LOW=numeric-variable <option(s)>;

HISTOGRAM response-variable <options>;

HLINE category-variable <options>;

INSET "text-string-1" ..."text-string-n" | (label-list) <options>;

KEYLEGEND <"name-1" ... "name-n"> <options>;

LEGENDITEM TYPE=type NAME="text-string" <options>;

LINEPARM X=numeric-variable | numeric-variable
 Y=numeric-value | numeric-variable
 SLOPE=numeric-value | numeric-variable <option(s)>;

LOESS X=numeric-variable Y=numeric-variable <options>;
PROC SGPLOT Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, write template code to a file, control the uniformity of axes, and control automatic legends and automatic attributes.

Requirement: An input data set is required.

Syntax

PROC SGPLOT <options> ;
Summary of Optional Arguments

ASPECT=positive-number
 specifies the aspect ratio of the plot’s wall area.

CYCLEATTRS
NOCYCLEATTRS
 specifies whether plots are drawn with unique attributes in the graph.

DATA=input-data-set
 specifies the SAS data set that contains the variables to process.

DATATTRMAP=discrete-attribute-map-data-set
 specifies the discrete attribute map data set that you want to use with the procedure.

DESCRIPTION="text-string"
 specifies a description for the output image.

NOAUTOLEGEND
 disables automatic legends from being generated.

NOBORDER
 turns off the display of the graph wall border.

NOSUBPIXEL
SUBPIXEL
 specifies whether subpixel rendering should be used for rendering plots and charts.

NOWALL
 turns off the display of the graph wall’s fill.

OPAQUE
NOOPAQUE
 specifies whether the graph background is opaque or transparent.

PAD=dimension<units> | (pad-options)
 specifies the amount of extra space to add to the left, right, top, and bottom of the graph.

PCTLEVEL=BY | GRAPH | GROUP
 specifies the scope of graph data that is calculated in percentages.

PCTNDEC=numeric-value
 specifies the number of decimal spaces to be used to calculate the percent values.

RATTRMAP=range-attribute-map-data-set
 specifies the range attribute map data set that you want to use with the procedure.

SGANNO=annotation-data-set
 specifies the SG annotation data set that you want to use.

TMPLOUT="filename"
 writes the Graph Template Language code for your graph to a file.

UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP
 specifies how to control axis scaling and legends when you use a BY statement.
Optional Arguments

ASPECT= *positive-number*

specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall-height divided by wall-width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default The wall area is sized to the maximum area that can fill the available space.

CYCLEATTRS | NOCYCLEATTRS

specifies whether plots are drawn with unique attributes in the graph. By default, the SGPLOT procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots will have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

DATA= *input-data-set*

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATTRMAP= *discrete-attribute-map-data-set*

specifies the discrete attribute map data set that you want to use with the procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Restriction The procedures do not support attribute maps that reside in CAS in-memory tables. Only standard SAS data sets are supported for attribute map data.

Requirement The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

DESCRIPTION= "*text-string*

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPLOT Procedure”.

Alias DES
Notes The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

NOAUTOLEGEND

disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a KEYLEGEND statement.

NOBORDER
turns off the display of the graph wall border.

Tips To turn off the display of the wall’s fill, use the NOWALL option.

To turn off the display of the graph’s border, use the NOBORDER option in the ODS GRAPHICS statement.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering plots and charts. Subpixel rendering produces smoother curves and more precise bar spacing.

NOSUBPIXEL
never uses subpixel rendering to render curved lines.

SUBPIXEL
always uses subpixel rendering, when applicable, for rendering lines and bars.

Defaults When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Starting with SAS 9.4M3, subpixel rendering is always enabled for vector-graphics output.

Restriction In SAS 9.4M2 and in earlier releases, this option affects line-based plots and bar charts. The affected line-based plots are BAND, DENSITY, SERIES, LOESS, REG, and PBSPLINE. The affected bar charts are HBAR, HBARPARM, VBAR, and VBARPARM. Starting with SAS 9.4M3, subpixel rendering is available for all plots and charts.

Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Interaction Starting with SAS 9.4M3, if the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1690
“ODS GRAPHICS Statement” on page 96 for information about the ANTIALIAS= and ANTIALIASMAX= options.

NOWALL

turns off the display of the graph wall’s fill. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

Also, for many styles, the wall fill color is the same as the graph background. However, if that is not the case with the style that you use for a graph, then you might want to use this option.

Tip To turn off the display of the wall’s border, use the NOBORDER option.

OPAQUE | NOOPAQUE

specifies whether the graph background is opaque or transparent.

Note: This feature applies to SAS 9.4M3 and later releases.

Default OPAQUE

Restriction The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

Interaction When NOOPAQUE is specified, the background color is not used.

PAD=dimension<units> | (pad-options)

specifies the amount of extra space to add to the left, right, top, and bottom of the graph. The extra space can help make the spacing more aesthetic, or provide blank space for custom annotations.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, “Annotating ODS Graphics,” on page 1767.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

LEFT= dimension<units>

specifies the amount of extra space to add to the left edge.

RIGHT= dimension<units>

specifies the amount of extra space to add to the right edge.

TOP= dimension<units>

specifies the amount of extra space to add to the top edge.

BOTTOM= dimension<units>

specifies the amount of extra space to add to the bottom edge.
PCTLEVEL=BY | GRAPH | GROUP
specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the **STAT=PERCENT** option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

BY
the percentages within each BY-group round up to 100%

Interaction: For this value to take effect, a BY-group must be specified in the procedure.

GRAPH
the percentages across the entire graph round up to 100%

GROUP
the percentages across groups within a category round up to 100%.

Interaction: For this value to take effect, the **GROUP=** option must be specified in the plot statement.

In the following examples, the first example specifies a value of **GRAPH** (the default), and the second example specifies a value of **GROUP**:

```plaintext
ods graphics on / reset=all;
odc graphics on / width=4.5in;

PCTLEVEL=GRAPH
proc sgplot data=sashelp.class pctlevel=graph;
vbar age / response=height stat=percent
  group=sex;
run;

PCTLEVEL=GROUP
proc sgplot data=sashelp.class pctlevel=group;
vbar age / response=height stat=percent
  group=sex;
run;
```

In the graph that specifies **PCTLEVEL=GRAPH**, the bars collectively add up to 100%. Each bar represents a fraction of the total.

In the graph that specifies **PCTLEVEL=GROUP**, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.
GRAPH

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

PCTNDEC=numeric-value

specifies the number of decimal spaces to be used to calculate the percent values.

Default: The default number of decimals is based on the magnitude of the largest percentage value.

10% to 100% = 1
0.1% to < 1% = 3
1% to < 10% = 2
< 0.1% = 4

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

You can use the PCTLEVEL= option in the PROC SGPLOT statement to control the scope of the percent calculations.

RATTRMAP=range-attribute-map-data-set

specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

The procedures do not support attribute maps that reside in CAS in-memory tables. Only SAS data sets are supported for attribute map data.

The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

Chapter 19, "Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

SGANNO=annotation-data-set

specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, “Annotating ODS Graphics,” on page 1767.

The procedures do not support annotation data that resides in a CAS in-memory table. Only standard SAS data sets are supported for annotation data.

Note: The procedures do not support annotation data that resides in a CAS in-memory table. Only standard SAS data sets are supported for annotation data.

TMPLOUT="filename"

writes the Graph Template Language code for your graph to a file. Writing your template code to a file can be useful for building larger Graph Template Language definitions.

Graphs that contain summarized data (for example, bar, line, and dot) do not generate a useable template. For summarized data, the procedure sets internal values for one or more variables, and these
internal values do not exist in the data set that is used with the procedure.

UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP

specifies how to control axis scaling and legends when you use a BY statement.

Specify one of the following values:

ALL

specifies that both the legend group values and the axis scaling are common among all of the levels of the BY variable or variables.

GROUP

specifies that each group value in the legend uses the same visual attributes across all levels of the BY variable or variables. This option is applicable only when the GROUP= option is specified for the plot.

SCALE

specifies that the axis scaling is shared among all of the levels of the BY variable or variables.

XSCALE

specifies that the X-axis scaling is shared among all of the levels of the BY variable or variables. The Y axes are unaffected.

YSCALE

specifies that the Y-axis scaling is shared among all of the levels of the BY variable or variables. The X axes are unaffected.

XSCALEGROUP

specifies that both the legend group values and the X-axis scaling are shared among all of the levels of the BY variable or variables. The Y axes are unaffected. This option is applicable only when the GROUP= option is specified for the plot.

YSCALEGROUP

specifies that both the legend group values and the Y-axis scaling are shared among all of the levels of the BY variable or variables. The X axes are unaffected. This option is applicable only when the GROUP= option is specified for the plot.

Default

ALL

Restriction

Basic bar charts (HBARBASIC and VBARBASIC) do not support uniform axis scaling. However, they do support group uniformity.

Interactions

This option has no effect if you do not use a BY statement.

This option has no effect when the CATEGORYORDER= option is specified in the plot statement.

Uniform axis scaling does not apply to the gradient legend that is displayed when the COLORRESPONSE= option is specified in the plot statement. For a workaround that involves defining a range attribute map, see SAS Note SN-055810.

Note

The options that affect legend group values do not fully populate every legend with all possible legend values. See the following tip.

Tip

You can fully populate a legend by using a discrete attribute map. In the attribute map, specify the SHOW reserved attribute map
variable. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737 and “Reserved Discrete Attribute Map Variables” on page 1741.

STYLEATTRS Statement

Specifies attributes for a graph. The statement enables you to change colors, markers, and so on, within the procedure, without having to change the ODS style template.

Requirement: The procedure must include at least one plot statement.

Interaction: The following options apply only when the GraphData1 ... GraphData n style elements are used: DATACOLORS=, DATACONTRASTCOLORS=, DATAFILLPATTERNS=, DATALINEPATTERNS=, and DATASYMBOLS=. For more information, see “When the Style Options Take Effect” on page 836.

Tip: When specifying data attributes such as colors, symbols, and line patterns for multiple plots, the attributes might not be assigned consistently in some cases. To ensure consistent attribute assignments, specify option NOCYCLEATTRS on page 825 in the SGPLOT procedure statement.

Syntax

```plaintext
STYLEATTRS <options>;
```

Summary of Optional Arguments

Axis options

- **AXISBREAK=**
BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
specifies a symbol to use on the axis lines to indicate a break in the axis.
- **AXISEXTENT=**
FULL | DATA
specifies the extent of the axis line for all axes.

Background and wall options

- **BACKCOLOR=**
color
specifies the background color of the graph area.
- **WALLCOLOR=**
color
specifies the color of the plot wall area.

Style options

- **DATACOLORS=**
(color-list)
specifies the fill colors for the graphics elements.
- **DATACONTRASTCOLORS=**
(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers.
- **DATAFILLPATTERNS=**
(fill-pattern-list)
specifies the list of graph fill patterns.

\texttt{DATALINEPATTERNS=(line-pattern-list)}

specifies the list of line patterns for the graph data lines.

\texttt{DATASYMBOLS=(marker-symbol-list)}

specifies the list of marker symbols for the graph data.

Optional Arguments

\texttt{AXISBREAK=} \texttt{BRACKET} | \texttt{NOTCH} | \texttt{SLANTEDLEFT} | \texttt{SLANTEDRIGHT} | \texttt{SQUIGGLE} | \texttt{SPARK} | \texttt{Z}

specifies a symbol to use on the axis lines to indicate a break in the axis.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M3} and later releases.

The following figure shows an example of each symbol on a horizontal linear axis for ranges 1–4 and 6–10.

\textit{Figure 10.1 Axis Break Symbols}

\begin{tabular}{|c|c|c|c|}
 \hline
 \textbf{BRACKET} & \textbf{NOTCH} & \textbf{SLANTEDLEFT} & \textbf{SLANTEDRIGHT} \\
 \hline
 \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 8 \\
 10
 \end{tabular} & \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 6 \\
 10
 \end{tabular} & \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 8 \\
 10
 \end{tabular} & \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 8 \\
 10
 \end{tabular} \\
 \hline
 \textbf{SPARK} & \textbf{SQUIGGLE} & \textbf{Z} \\
 \hline
 \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 8 \\
 10
 \end{tabular} & \begin{tabular}{c}
 1 \\
 3 \\
 6 \\
 8 \\
 10
 \end{tabular} & \begin{tabular}{c}
 1 \\
 3 \\
 5 \\
 8 \\
 10
 \end{tabular}
 \hline
\end{tabular}

\textbf{Default} When this option is not specified, the default break is a sine wave across the plot area.

\textbf{Restriction} This option applies to linear and time axes only.

\textbf{Requirements} For this option to have any effect, the \texttt{DISPLAY=} option for the axis must include the axis line.

For this option to have any effect, the \texttt{RANGES=} option for the axis must be used to specify ranges for a broken axis.

\texttt{AXISEXTENT=} \texttt{FULL} | \texttt{DATA}

specifies the extent of the axis line for all axes.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M3} and later releases.

This option also turns off the wall border so that the axis lines can be clearly seen.

\texttt{FULL} the axis lines extend along the entire length of the axis.

\texttt{DATA} the axis lines extend through the data range from the minimum offset to the maximum offset.

The following figure shows a simple example of each value for the X- and Y-axis lines. Both axes specify a small minimum offset. For the \texttt{DATA} value, the axis
lines extend through the data range from the minimum offset. No maximum offset was used in the example.

![Graph Example](image)

Default
FULL

Tips
Use the OFFSETMIN and OFFSETMAX axis options to specify the offsets.

Use the THRESHOLDMIN and THRESHOLDMAX axis options to specify a threshold for displaying one more tick mark at the low or high end of the axis.

BACKCOLOR=color
specifies the background color of the graph area.

Note: This feature applies to SAS 9.4M3 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
The Color attribute of the GraphBackground style element

Examples
backcolor=CXFF0000

backcolor=light_blue

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
The colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

Requirement
For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction
Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

Note
When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ...
GraphData\textit{n} style elements. When the colors in \textit{color-list} are exhausted, the colors repeat.

Example \texttt{datacolors=(CXFF0000 green blue)}

\textbf{DATACONTRASTCOLORS=} \texttt{(color-list)}
specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default The contrast colors that are defined in the GraphData1 ... GraphData\textit{n} style elements in the current style are used.

Requirement For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note When this option is specified, the colors cycle through \textit{color-list} rather than the contrast colors that are defined in the GraphData1 ... GraphData\textit{n} style elements. When the colors in \textit{color-list} are exhausted, the colors repeat.

Example \texttt{datacontrastcolors=(orange cyan CXFF0000)}

\textbf{DATAFILLPATTERNS=} \texttt{(fill-pattern-list)}
specifies the list of graph fill patterns.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M5} and later releases.

\textit{fill-pattern-list}
a space-separated list of fill patterns, enclosed in parentheses. You can use a \textit{style attribute reference} such as GraphData3:fillpattern or a two-character fill-pattern name such as L1, X5, and so on, to specify a fill pattern. The list can contain a mix of style attribute references and pattern names.

To specify a two-character fill-pattern name, specify a line-direction prefix (R for right, L for left, and X for crosshatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

\begin{table}[h]
\centering
\caption{Fill Patterns}
\begin{tabular}{|c|c|c|c|c|}
\hline
Pattern Name & Example & Pattern Name & Example & Pattern Name & Example \\
\hline
L1 & & R1 & & X1 & \\
L2 & & R2 & & X2 & \\
\hline
\end{tabular}
\end{table}
When this option is specified, the fill patterns rotate through this fill-pattern list rather than through the fill patterns that are defined in the GraphData1 ... GraphData2 style elements. For information about the attribute rotation patterns, see "How the Attributes Are Cycled" on page 837.

Default

The fill patterns that are defined in the GraphData1 ... GraphData2 style elements in the current style are used.

Requirement

The list of fill patterns must be enclosed in parentheses.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Example

```
datafillpatterns=(graphdata4:fillpattern L5 X2)
```

DATALINEPATTERNS=(line-pattern-list)

specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default

The line patterns that are defined in the GraphData1 ... GraphData2 style elements in the current style are used.

Requirement

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction

Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

Note

When this option is specified, the line patterns cycle through line-pattern-list rather than the line patterns that are defined in the GraphData1 ... GraphData2 style elements. When the patterns in line-pattern-list are exhausted, the patterns repeat.

Example

```
datalinepatterns=(dot solid longdash 26)
```

DATASYMBOLS=(marker-symbol-list)

specifies the list of marker symbols for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See marker symbols on page 1656.
The symbols that are defined in the GraphData1 ... GraphData\(n\) style elements in the current style are used.

Requirement
For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction
Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

Note
When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphData\(n\) style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

Example
datasyncysymbols=(circle square triangle star)

WALLCOLOR=color
specifies the color of the plot wall area.

Note: This feature applies to **SAS 9.4M3** and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

The following figure shows a light blue wall color.

![Light Blue Wall Color](image)

Default
The Color attribute of the GraphWalls style element

Examples

```
wallcolor=CXFF0000
wallcolor=light_blue
```

Details

When the Style Options Take Effect

The following style options apply only when the GraphData1 ... GraphData\(n\) style elements are used: DATACOLORS=, DATACONTRASTCOLORS=, DATAFILLPATTERNS=, DATALINEPATTERNS=, and DATASYMBOLS=.

The corresponding attributes for the style options take effect when any one of the following is true:
a GROUP= option is specified in at least one plot statement.

- the procedure contains at least two plot statements that cycle the respective attribute.
- a plot specifies a GraphData style reference for the respective attribute.

Example:

```
proc sgplot data=sashelp.class;
  styleattrs datacolors=(orange);
  vbar age / fillattrs=GraphData1;
run;
```

For more information, see the following blogs:

- Getting Started with SGPLOT: Style Attributes
- Attrs, attrs, everywhere: The interaction between ATTRPRIORITY, CYCLEATTRS, and STYLEATTRS in ODS Graphics

How the Attributes Are Cycled

The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.

```
datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)
```

In this example, which uses the HTMLBlue style, the procedure uses a color-priority rotation pattern.

With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

```
ATTRPRIORITY=COLOR | NONE
```
Note: The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, such as LISTING, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the procedure:

```ods graphics / attrpriority=none;```

Now, the following options in the STYLEATTRS statement are applied in alternating order:

```datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)```

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

![Age Grouping with No Priority Rotation](image)

See Also

"ODS GRAPHICS Statement" on page 96

Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
- The ODS style is HTMLBlue. For the HTMLBlue style, ATTRPRIORITY defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
 by age;
run;

/* Generate the graph using the sorted data */
proc sgplot data=class;
 styleattrs
 datacontrastcolors=(red green blue)
 datalinepatterns=(dot solid);
 series x=height y=weight / group=age;
 keylegend;
run;

BAND Statement

Creates a band that highlights part of a plot.

Restrictions: The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.

Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Note: The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Examples: “About Band Plots” on page 17
 “Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1537
Syntax

BAND X=variable | Y=variable
UPPER=numeric-value | numeric-variable
LOWER=numeric-value | numeric-variable
<option(s)> ;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set.

- **FILL**
 NOFILL
specifies whether the area fill is visible.

- **FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency.

- **FILLPATTERN**
 enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <(options)> | (options)**
specifies the line-fill color and pattern.

- **LINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the outlines for the band.

- **NOEXTEND**
specifies that the band does not extend beyond the first and last data points in the plot.

- **OUTLINE**
 NOOUTLINE
specifies whether the outlines of the band are visible.

- **TRANSPARENCY=value**
specifies the degree of transparency for the plot.

- **TYPE=SERIES | STEP**
specifies how the data points for the lower and upper band boundaries are connected.

Axes options

- **X2AXIS**
 assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

- **Y2AXIS**
 assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

- **TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the
plot.

Label options

CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you specify a
curve label.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE)
or outside of the plot axes (OUTSIDE).

CURVELABELLOWER="text-string"
adds a label to the lower edge of the band.

CURVELABELPOS=AUTO | MIN | MAX | START | END
specifies the location of the curve label.

CURVELABELUPPER="text-string"
adds a label to the upper edge of the band.

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the
legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve
labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot reference options

MODELNAME="plot-name"
specifies the name of a plot that is used as a model for the interpolation
for the band.

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable | Y=variable
specifies a variable that is used to plot the band along the X or Y axis.

LOWER=numeric-value | numeric-variable
specifies the lower value for the band. You can specify either a constant numeric
value or a numeric variable.
UPPER=numeric-value | numeric-variable

specifies the upper value for the band. You can specify either a constant numeric value or a numeric variable.

Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

CURVELABELATTRS=style-element<options>| (options)

specifies the appearance of the labels in the plot when you specify a curve label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default The Color, FontFamily, FontSize, FontStyle, and FontWeight attributes of the GraphValueText style element in the current style.

Interaction This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELLOWER="text-string"

adds a label to the lower edge of the band. Specify the label text.

Restriction This option cannot be used with the GROUP= option. When the GROUP= option is in effect, the label specified in the CURVELABELLOWER= option is not drawn.

CURVELABELPOS=AUTO | MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.
MIN
places the label at the part of the curve closest to the minimum X-axis value.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interactions This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

CURVELABELUPPER="text-string"
adds a label to the upper edge of the band. Specify the label text.

Restriction This option cannot be used with the GROUP= option. When the GROUP= option is in effect, the label specified in the CURVELABELUPPER= option is not drawn.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATRIBUTES=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLPATTERN
enables the display of line fill patterns for the plot.
Note: This feature applies to SAS 9.4M5 and later releases.

Interaction
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```sas
ods graphics / attrpriority=none;
```

Accessibility
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

```sas
FILLPATTERNATTRS=style-element <(options)> | (options)
```
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

`options` can be one or both of the following:

COLOR=

```
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.
```

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=

```
specifies the type of line pattern to use for the fill.
```

`line-pattern` is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.4 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP=variable
specifies a variable that is used to group the data. A separate band is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the legend. By default, the label "band" is used for ungrouped data, and the group values are used for grouped data.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle, and LineThickness.

For line thickness, GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style
elements in the current style for grouped data. The affected attribute is LineThickness.

Interaction This option has no effect unless you also specify the OUTLINES option.

MODELNAME="plot-name"
specifies the name of a plot that is used as a model for the interpolation for the band.

Default If you do not specify this option, then the band is interpolated in the same way as a series plot.

Requirement plot-name must be the name that has been assigned with the associated plot's NAME= option.

See “Details” on page 849

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

Interaction This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the band outlines is specified by the DisplayOpts attribute of the GraphBand.

Interactions Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Interactions
This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHAR=*
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Interactions
This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.
Example:
```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=`value`

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

TYPE=`SERIES` | `STEP`

specifies how the data points for the lower and upper band boundaries are connected. You can specify one of the following:

- **SERIES**
 the data points are connected directly using line segments, as in a series plot.

- **STEP**
 the data points are connected using a step function, as in a step plot.

Default: `SERIES`

X2AXIS

assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS

assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Details

The MODELNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```

Figure 10.2 Fitted Band Plot Example
BLOCK Statement

Creates one or more rectangular blocks containing text values. The block widths are determined by a specified block variable.

Notes:
- Each block represents a block variable value and spans the data that has the same block variable value.
- When data labels are used, the axis offsets are extended to accommodate the length of the longest data label. The blocks at each end of the block plot are extended to include the additional axis offset. This behavior is expected.
- The BLOCK statement is typically used with another plot statement, which establishes the axis type for the Y axis. However, the BLOCK statement can be used by itself. In that case, the block plot has no Y axis. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Example:
“About Block Plots” on page 18

Syntax

```
BLOCK X=category-variable BLOCK=block-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ALTfillable=**
 - `style-element<options> | (options)`
 - Specifies the appearance of alternate fills for the blocks.
- **ATTRid=**
 - `character-value`
 - Specifies the value of the ID variable in a discrete attribute map data set.
- **FILL**
- **NOFILL**
 - Specifies whether the blocks are filled.
- **FILLATTRS=**
 - `style-element<options> | (options)`
 - Specifies the appearance of the fill for the blocks.
- **FILLtype=**
 - `MULTICOLOR | ALTERNATE`
 - Specifies how the blocks are filled.
- **LINEATTRS=**
 - `style-element<options> | (options)`
 - Specifies the appearance of the block outlines.
- **OUTLINE**
- **NOOUTLINE**
 - Specifies whether the blocks have outlines.
- **TRANSPARENCY=**
 - `numeric-value`
 - Specifies the degree of transparency for the blocks.

Axis options

- **X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

Block options

`POSITION= BOTTOM | CENTER | TOP`
positions the block plot at the bottom, center, or top of the graph.

Block text options

`BLOCKLABEL=variable`
specifies a column to use for alternative text in the blocks.

`NOVALUES`

`VALUES`
specifies whether the block values are displayed or hidden.

`SPLITCHAR="character-list"`
specifies one or more characters used to split block text values into multiple lines.

`SPLITCHARNODROP`
specifies that the split characters are included in the displayed value.

`VALUEATTRS=style-element<(options)> | (options)`
specifies the appearance of the block text values.

`VALUEFITPOLICY=None | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE`
specifies how text values are adjusted to fit within the containing block.

`VALUEHALIGN=LEFT | CENTER | RIGHT | START`
specifies the horizontal alignment of the value text within the blocks.

`VALUEVALIGN=TOP | CENTER | BOTTOM`
specifies the vertical alignment of the value text within the blocks.

Label options

`LABEL <="text-string">`

`NOLABEL`
specifies an external label for a single block plot.

`LABELATTRS=style-element<(options)> | (options)`
specifies the color and font attributes of the external block label(s).

`LABELPOS=BOTTOM | LEFT | RIGHT | TOP`
specifies the position for the block label for a single block plot.

Plot options

`CLASS=variable`
creates a stack of block plots, with one block plot for each unique value of the specified variable.

`EXTENDMISSING`
extends the previous block value if the current value is missing.

`NOMISSINGCLASS`
suppresses blocks that correspond to missing values of the CLASS= value.

Plot reference options

`NAME="text-string"`
assigns a name to a plot statement.
Required Arguments

X=category-variable
specifies X-axis positions. When the X axis is numeric and the specified variable is numeric, values are expected to be in sorted, ascending order. If the X axis is discrete and the specified column is numeric, values are treated as numeric-discrete.

BLOCK=block-variable
specifies the variable that classifies the observations into distinct subsets.

Optional Arguments

ALTFILLATTRS=style-element/(options)> | (options)
specifies the appearance of alternate fills for the blocks. This option in conjunction with the FILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Requirement
FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction
This option has no effect if you specify the NOFILL option.

Note
The TRANSPARENCY= attribute affects only the alternate fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips
The FILLATTRS= option controls the fill color of non-alternate blocks.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BLOCKLABEL=variable
specifies a column to use for alternative text in the blocks.

Interaction
This option overrides the default text for the blocks.

Tip
The font and color attributes for the alternative text are specified by the VALUEATTRS= option.

CLASS=variable
creates a stack of block plots, with one block plot for each unique value of the specified variable.
To label the blocks by the class values, specify the BLOCKLABEL= option using the same class variable.

Note
For local data, the visual attributes for each class value are assigned in data order. However, if you are using a CAS in-memory table, the visual attributes for each class value are assigned in ascending order of the class variable character values or of unformatted numeric values.

EXTENDMISSING
extends the previous block value if the current value is missing.

FILL | NOFILL
specifies whether the blocks are filled.

Default: FILL

Interaction: The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

FILLATTRS=style-element<(options)> | (options)
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Requirement: FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction: This option has no effect if you specify the NOFILL option.

Note: The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips: The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

MULTICOLOR
Blocks are filled with the COLOR attribute of the GraphData1 ... GraphData style elements.

ALTERNATE
Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.

Default: MULTICOLOR

Interaction: This option has no effect if NOFILL is also specified.
LABEL <="text-string"> | NOLABEL
specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.

Default The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.

Interactions By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

LABELATTRS=style-element<options> | (options)
specifies the color and font attributes of the external block label(s). You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS=BOTTOM | LEFT | RIGHT | TOP
specifies the position for the block label for a single block plot.

Default LEFT

Interaction This option has no effect if NOLABEL is also specified.

LINEATTRS=style-element<options> | (options)
specifies the appearance of the block outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Defaults GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect if the NOOUTLINE option is also specified.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interaction The NOOUTLINE option can be used with the NOFILL option to hide both the outline and the fill.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

Default VALUES

Tip The font and color attributes for the text values are specified by the VALUEATTRS= option.

POSITION=BOTTOM | CENTER | TOP
positions the block plot at the bottom, center, or top of the graph. This option is useful when the graph contains more than one plot.

<table>
<thead>
<tr>
<th>POSITION=CENTER</th>
<th>POSITION=BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default CENTER

SPLITCHAR="character-list"
specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

Default
The default split character is a space.

Interactions
This option has no effect unless VALUEFITPOLICY= specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY= is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

TRANSPARENCY= numeric-value
specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

VALUEATTRS= style-element<options> | (options)
specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default
GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUEFITPOLICY= NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE
specifies how text values are adjusted to fit within the containing block. Select one of the following values:
NONE
No attempt is made to fit values that collide with the text values in adjacent blocks.

SHRINK
All values are reduced in font size until they all fit.

SPLIT
If a value does not fit within the containing block, it is split at a split character. No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

Default The default split character is a space.
Tip Use the SPLITCHAR= option to specify a split character.

SPLITALWAYS
Text values are split at a split character in all blocks.

Default The default split character is a space.
Tip Use the SPLITCHAR= option to specify a split character.

TRUNCATE
Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

Default SPLIT

VALUEALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks. This option changes the text alignment regardless of whether you split values or specify the VALUEFITPOLICY= option.

Select one of the following values:

LEFT
left-aligned within the block

CENTER
center-aligned within the block

RIGHT
right-aligned within the block

START
center-aligned at the starting value of the block

Default CENTER

Interaction This option has no effect if you also specify the NOVALUES option.

VALUEVALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the value text within the blocks.

Default TOP
Interaction
This option has no effect if you also specify the NOVALUES option.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Details

Changing the Appearance of Block Text Values
By default, values for the variable that is specified in the BLOCK= argument appear as text in the blocks. You have several options for changing the text or its appearance.

The following table lists the tasks that you can perform along with the options that are involved in performing the task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>hide or show the values</td>
<td>NOVALUES or VALUES</td>
</tr>
<tr>
<td>use a different variable for alternative text in the blocks</td>
<td>BLOCKLABEL=</td>
</tr>
<tr>
<td>change the font characteristics of the text</td>
<td>VALUEATTRS=</td>
</tr>
<tr>
<td>align the text horizontally</td>
<td>VALUEHALIGN=</td>
</tr>
<tr>
<td>align the text vertically</td>
<td>VALUEVALIGN=</td>
</tr>
<tr>
<td>specify how text values are adjusted to fit within the containing block</td>
<td>VALUEFITPOLICY=</td>
</tr>
<tr>
<td>for text that is split into multiple lines within the block, specify either or both of the following:</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>one or more characters used to split the text value</td>
<td>SPLITCHARNODROP</td>
</tr>
<tr>
<td>that the split characters are included in the displayed value</td>
<td></td>
</tr>
</tbody>
</table>

The following DATA step creates a SPEC column with two values: Teen and Pre-Teen.

data class1;
 set sashelp.class;
 where sex="F";
 length spec $10;
 if age > 12 then spec='Teen';
 else spec='Pre-Teen';
run;
The SPEC column is used for the blocks in the examples below. The value fit policy is specified as VALUEFITPOLICY=SPLIT. Based on this policy, the text values split if they do not fit within their block. The examples split the block text on the "-" character.

In the first example, the split character does not appear in the blocks.

```plaintext
proc sgplot data=class1;
  block x=name block=spec / valuefitpolicy=split
     splitchar="-";
  series x=name y=weight / markers
     markerattrs=(size=10pt);
run;
```

The next example specifies the SPLITCHARNODROP option. This option forces the split character to appear in the graph.

```plaintext
proc sgplot data=class1;
  block x=name block=spec / valuefitpolicy=split
     splitchar="-" splitcharnodrop;
  series x=name y=weight / markers
     markerattrs=(size=10pt);
run;
```

Notice that the series plot does not contrast well against the block plots. There are two simple changes that you can make to improve the graph:

- Position the block plot above or below the series plot. The POSITION= option positions the block plot at the bottom, center, or top of the graph. This option is available only with the SGPLOT procedure.
- Change the display attributes of the block plot or the series plot. The following section provides more information about block plot display attributes.

Changing the Appearance of Block Fills

If you want to change the appearance of the fills, you have several options. The following table lists the tasks that you can perform along with the options that are involved in performing the task:
Table 10.6 Tasks for Changing the Appearance of Block Fills

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>change the transparency of the fills for all blocks</td>
<td>TRANSPARENCY=</td>
</tr>
<tr>
<td>change the color or transparency for the fills when you</td>
<td>FILLTYPE=</td>
</tr>
<tr>
<td>are alternating fill colors</td>
<td>FILLATTRS=</td>
</tr>
<tr>
<td></td>
<td>ALTFILLATTRS=</td>
</tr>
</tbody>
</table>

For example, the previous example in “Changing the Appearance of Block Text Values” on page 858 showed a block plot overlaid on a series plot. For that example, you might want the block fills to provide more contrast with the series plot. The following example builds on the previous plot and specifies colors and transparency for alternating fills.

```sas
proc sgplot data=class1;
block x=name block=spec /
   valuefitpolicy=split
   splitchar=*
   filltype=alternate
   fillattrs=(color=orange)
   altfillattrs=(color=green)
   transparency=.8;
series x=name y=weight / markers
   markerattrs=(size=10pt);
run;
```

The FILLTYPE=ALTERNATE option alternates the block fills. You can then specify a fill color for the primary and alternate fills using the FILLATTRS= option and the ALTFILLATTRS= option, respectively. Finally, the example changes the transparency of the block plot to 80%.

BUBBLE Statement

Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Bubble Plots” on page 19

Syntax

`BUBBLE X=variable Y=variable SIZE=numeric-variable <option(s)>;`
Summary of Optional Arguments

Appearance options

ABSSCALE
- specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.

ATTRID=character-value
- specifies the value of the ID variable in a discrete attribute map data set.

BRADIUSMAX=numeric-value
- specifies the size of the radius of the largest bubble.

BRADIUSMIN=numeric-value
- specifies the size of the radius of the smallest bubble.

COLORMODEL=style-element | (color-list)
- specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
- specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN
- specifies a special effect to be used on the plot.

DRAWORDER=SIZE | DATA
- specifies whether the bubbles are drawn according to bubble size or according to data order.

FILL
- specifies whether the bubbles are filled.

NOFILL
- specifies whether the bubbles are filled.

FILLATTRS=style-element <(options)> | (options)
- specifies the fill color and transparency.

FILLPATTERN
- enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
- specifies the line-fill color and pattern.

LINEATTRS=style-element<(options)> | (options)
- specifies the appearance of the outlines for the bubbles.

OUTLINE
- specifies whether the outlines of the bubbles are visible.

NOOUTLINE
- specifies whether the outlines of the bubbles are visible.

PROPORTIONAL
- specifies that proportional scaling be applied to the SIZE= column values.

RATTRID=character-value
- specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
- specifies the degree of transparency for the plot.

Axis options

X2AXIS
- assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

- **TIP=(variable-list) | NONE**
 - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
 - applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
 - applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

- **GROUP=variable**
 - specifies a variable that is used to group the data.

- **NOMISSINGGROUP**
 - specifies that missing values of the group variable are not included in the plot.

Label options

- **DATALABEL <=variable>**
 - displays a label for each data point.

- **DATALABELATTRS=style-element<(options)> | (options)**
 - specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=position**
 - specifies the location of the data label with respect to the plot.

- **LEGENDLABEL="text-string"**
 - specifies the label that identifies the bubble plot in the legend.

- **SPLITCHAR="character-list"**
 - splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

- **SPLITCHARNODROP**
 - specifies that the split characters are included in the displayed value.

- **SPLITJUSTIFY=LEFT | CENTER | RIGHT**
 - specifies the horizontal alignment of the value text that is being split.

Plot options

- **URL=character-variable**
 - specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

- **NAME="text-string"**
 - assigns a name to a plot statement.

Required Arguments

- **X=variable**
 - specifies the variable for the X axis.
Y=variable
 specifies the variable for the Y axis.

SIZE=numeric-variable
 specifies the variable that controls the size of the bubbles. The minimum and
 maximum values automatically provide the range that is used to determine
 bubble sizes. You can control this range manually by using the BRADIUSMAX
 and BRADIUSMIN options.

Optional Arguments

ABSSCALE
 specifies that the SIZE= column values are interpreted in the same units as the
 axes rather than as relative values.

Note: This feature applies to SAS 9.4M3 and later releases.

By default, the bubble sizes are scaled to represent the value range of the SIZE=
column. For example, if only two bubbles are drawn with sizes of 2 and 4, then
they appear the same as only two bubbles with sizes of 4000 and 8000. By
contrast, when ABSSCALE is specified, the size values are interpreted in the
same units as the axes.

Restriction This option is ignored if the X or Y axis is discrete.

Interaction When this option is used, the BRADIUSMAX= and BRADIUSMIN=
 options are ignored.

Note The bubbles might be drawn as ellipses if the X and Y axes are
 scaled differently.

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You
 specify this option only if you are using an attribute map to control visual
 attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
 “Overview of Attribute Maps” on page 1733

BRADIUSMAX=numeric-value
 specifies the size of the radius of the largest bubble. You can also specify the
 unit of measure. The default unit is pixels. For a list of measurement units that
 are supported, see “Units of Measurement” on page 1659.

Restriction The BRADIUSMAX= value must be greater than the
 BRADIUSMIN= value if one is specified. If BRADIUSMAX is not
 greater, an error is generated and a message is written to the SAS
 log.

Note If you specify the maximum size as a percentage, this is interpreted
 as a percentage of the graph's height.
BRADIUSMIN=numeric-value
specifies the size of the radius of the smallest bubble. You can also specify the
unit of measure. The default unit is pixels. For a list of measurement units that
are supported, see “Units of Measurement” on page 1659.

Restriction The BRADIUSMIN= value must be smaller than the
BRADIUSMAX= value if one is specified. If BRADIUSMIN is not
smaller, an error is generated and a message is written to the SAS
log.

Note If you specify the minimum size as a percentage, this is interpreted
as a percentage of the graph’s height.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain
these style attributes:

STARTCOLOR specifies the color for the smallest data value of the
COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of
the COLORRESPONSE= column. This attribute is
not required when you specify a two-color ramp
model.

ENDCOLOR specifies the color for the highest data value of the
COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can
use style attribute references such as GraphData3:Color. You can specify
colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1660. The list can contain
a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bubbles. The
ThreeColorAltRamp style element for unfilled bubbles.

Interaction For this option to take effect, the COLORRESPONSE= option must
also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.
The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the
COLORRESPONSE= option, the color attributes are controlled by
the COLORRESPONSE= option.
Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
"GRADLEGEND Statement" on page 925
"Using Gradient Color Legends" on page 1637

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin
type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.7 DATASKIN Options for Bubbles

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1685

DRAWORDER=SIZE | DATA

specifies whether the bubbles are drawn according to bubble size or according to data order.

Note: This feature applies to SAS 9.4M3 and later releases.

SIZE
draws the bubbles according to bubble size, from the largest to the smallest.

DATA
draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

Default SIZE
FILL | NOFILL
specifies whether the bubbles are filled. The FILL option shows the fill color. The
NOFILL option hides the fill color.

Default: FILL

Interactions
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options
are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults
Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData_n style
elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s
TRANSPARENCY= option.

Interactions
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for
the fill.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction
If you specify a group, color might be used to distinguish the
group values. To ensure that group values are distinguished by
their fill patterns, use the ATTRPRIORITY option in the ODS
GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility
note
This feature helps support accessibility. Graphs that use this
feature do not rely on color alone to distinguish categories of
data.

Tips
Use the FILLPATTERNATTRS= option to specify the
appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

$options$ can be one or both of the following:

COLOR=

Denotes a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the **COLOR=** setting has the effect of holding the fill color constant across all group values.

PATTERN=

Specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.8 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the **PATTERN=** setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify **ATTRPRIORITY=NONE** in an ODS GRAPHICS statement. See “**ATTRPRIORITY=COLOR | NONE**” on page 99.

For this option to take effect, the **FILLPATTERN** option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.
GROUP= *variable*

specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1... GraphData*n* style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

LEGENDLABEL= "*text-string*"

specifies the label that identifies the bubble plot in the legend.

Default

By default, the label for the Y variable is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS= *style-element*(options)* | (options)

specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect if you also specify the NOOUTLINE option.

NAME= "*text-string*"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The *text-string* is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.
Interaction This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

PROPORTIONAL
specifies that proportional scaling be applied to the SIZE= column values.

Note: This feature applies to SAS 9.4M5 and later releases.

By default, scaling is linear, which increases the size of the bubbles in linear proportion to the range of the SIZE= column values. For example, if only two bubbles are drawn with sizes of 2 and 4, they appear the same as only two bubbles with sizes of 4000 and 8000. When PROPORTIONAL is specified, each bubble is sized in direct proportion to its corresponding SIZE= column value. For example, if only two bubbles are drawn with sizes of 50 and 100, then the SIZE=50 bubble is drawn to half the size of the SIZE=100 bubble.

Default linear

Interactions If all the values for the SIZE= column are negative, then PROPORTIONAL is ignored and the scaling is linear.

When PROPORTIONAL and BRADIUSMIN= are specified, the BRADIUSMIN= option specifies the minimum bubble size. In that case, when a SIZE= column value results in a bubble of a size that is less than the BRADIUSMIN= value, the bubble size for that value is changed to the BRADIUSMIN= value.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

"Overview of Attribute Maps” on page 1733

SPLITCHAR=“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

```
tip=(age weight)
```

TIPFORMAT=(format-list)

Applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Use the TIPLABEL= option to assign labels to the list of variables.

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

See

SAS Formats and Informats: Reference
Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)
Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.
Examples

Example 1: Creating a Basic Bubble Plot

This example creates a simple bubble plot of weight and height where age is represented by bubble size.

```
title "Age by Height and Weight";
proc sgplot data=sashelp.class(where=(sex='F'));
bubble x=height y=weight size=age;
run;
```

Here is the result.

![Age by Height and Weight](image)

Example 2: Enhancing a Bubble Plot

This example enhances the previous basic bubble plot by adding colors, labels, an inset, and other visual features.

```
title 'Age by Height and Weight';
proc sgplot data=sashelp.class(where=(sex='F'))
    noautolegend;/* 1 */
bubble x=height y=weight size=age ;/* 2 */
    group=name
datalabel=name
transparency=0.4
datalabelattrs=(size=9 weight=bold);
inset "Bubble size represents Age" /* 3 */
    position=bottomright
textattrs=(size=11);
yaxis grid; /* 4 */
xaxis grid;
```

run;

1 The **NOAUTOLEGEND on page 826** option in the PROC SGPLOT statement suppresses the automatically generated legend.

2 In the BUBBLE statement:
 - The **GROUP= on page 869** option assigns a color to the bubble for each name.
 - The **DATALABEL= on page 865** option specifies the value of variable Name as the label for each bubble.
 - The **TRANSPARENCY= on page 873** option specifies the transparency for the bubble fill.
 - The **DATALABELATTRS= on page 865** option specifies the attributes for the bubble labels.

3 The **INSET on page 1078** statement defines an inset for the graph. The **POSITION= on page 1081** option specifies the bottom right corner as the position. The **TEXTATTRS= on page 1081** option specifies the size of the inset text.

4 The **YAXIS on page 1469** and **XAXIS on page 1410** statements specify the axis options. The **GRID** option specifies grid lines at the major tick marks on each axis.

Here is the result.

DENSITY Statement

Creates a density curve that shows the distribution of values for a numeric variable.

Restrictions: The DENSITY statement cannot be used with discrete axes.
Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Interaction: The DENSITY statement can be combined only with DENSITY and HISTOGRAM statements in the SGPLOT procedure. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Examples: “About Density Plots” on page 48
“Example 8: Combining Histograms with Density Plots” on page 1540

Syntax

DENSITY response-variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element<(options)> | (options)
 specifies the appearance of the density line.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

TYPE =NORMAL < (normal-opts)> | KERNEL < (kernel-opts)>
 specifies the type of distribution curve that is used for the density plot.

Axis options

SCALE=scaling-type
 specifies the scaling that is used for the response axis.

X2AXIS
 assigns the X variable to the secondary (top) horizontal axis.

Group options

GROUP=variable
 specifies a variable that is used to group the data.

Label options

CURVELABEL="text-string"
 adds a label for the density curve.

CURVELABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
 specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
CURVELABELPOS= AUTO | END | MAX | MIN | START
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend.

SPLITCHAR="character-list"
splits the text for curve labels at the specified character or characters
when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options
FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the
input data.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the
calculations.

Y2AXIS
assigns the calculated result to the secondary (right) vertical axis.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Argument
response-variable
specifies the variable for the X axis. The variable must be numeric.

Optional Arguments
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
"Overview of Attribute Maps” on page 1733

CURVELABEL="text-string"
adds a label for the density curve.

CURVELABELATRKS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the
CURVELABEL= option. You can specify the appearance by using a style
element or by specifying specific options. If you specify a style element, you can
also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default
INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction
This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default
END

Interactions
This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
Note: If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to **SAS 9.4M2** and later releases.

LEGENDLABEL= "text-string"
specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is "Normal." If you specify TYPE=KERNEL, then the default label is "Kernel."

Note: User-specified parameters from the TYPE= option are included in the label by default.

LINEATTRS= style-element<(options)> | (options)
specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphFit style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness

NAME= "text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

SCALE= scaling-type
specifies the scaling that is used for the response axis. Specify one of the following values:

COUNT
the axis displays the frequency count.

DENSITY
the axis displays the density estimate values.

PERCENT
the axis displays values as a percentage of the total.

PROPORTION
the axis displays values in proportion to the total.
Defaults

When the DENSITY statement follows a HISTOGRAM statement, the density plot uses the histogram's response-axis scaling. See the HISTOGRAM statement SCALE= option.

When the DENSITY statement does not follow a HISTOGRAM statement, the density plot uses DENSITY response-axis scaling.

Note

The PROPORTION scale can be used only when you combine a density plot and a histogram.

SPLITCHAR="character-list"

splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless CURVELABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.
This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

TYPE =NORMAL < (normal.opts)> | KERNEL < (kernel.opts)>

specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

NORMAL < (normal.opts)>

specifies a normal density estimate, with a mean and a standard deviation.

normal.opts can be one or more of the following values:

- **MU=numeric-value**

 specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

- **SIGMA=numeric-value**

 specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a positive number. By default, the standard deviation value is calculated from the data.

KERNEL < (kernel.opts)>

specifies a nonparametric kernel density estimate.

kernel.opts can be:

- **C=numeric-value**

 specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

 The value that you specify for the C= suboption affects the value of \(\lambda \) as shown in the following equation:

 \[
 \lambda = cQn^{-\frac{1}{5}}
 \]

 In this equation \(c \) is the standardized bandwidth, \(Q \) is the interquartile range, and \(n \) is the sample size.

 Note

 The kernel density function uses the same estimation that is used by the UNIVARIATE procedure. This estimation minimizes the Asymptotic Mean Integrated Square Error (AMISE) for the kernel density function.

WEIGHT=NORMAL | QUADRATIC | TRIANGULAR

specifies the weight function. You can specify either normal, quadratic, or triangular weight function.

Default NORMAL
Default: NORMAL

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the calculated result to the secondary (right) vertical axis.

Details

Normal Density Function

When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[
p(x) = \frac{100b \%}{c \sqrt{\pi}} \exp\left(-\frac{1}{2}(x-\mu)^2\right) \text{ for } -\infty < x < \infty
\]

In the equation, \(\mu\) is the mean, and \(\sigma\) is the standard deviation. You can specify \(\mu\) by using the MU= suboption and \(\sigma\) by using the SIGMA= suboption.

Kernel Density Function

When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[
\hat{f}_\lambda(x) = \frac{100b \%}{n \lambda} \sum_{i=1}^{n} K_0\left(\frac{x-x_i}{\lambda}\right)
\]

In the equation, \(K_0(\cdot)\) is the weight function, \(\lambda\) is the bandwidth, \(n\) is the sample size, and \(x_i\) is the \(i\)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \(K_0(\cdot)\).

Kernel Density Weight Functions

The formulas for the weight functions are as follows.

NORMAL
\[
K_0(t) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} t^2 \right) \text{ for } -\infty < t < \infty
\]

QUADRATIC

\[
K_0(t) = \frac{3}{4} \left(1 - t^2 \right) \text{ for } |t| \leq 1
\]

TRIANGULAR

\[
K_0(t) = 1 - |t| \text{ for } |t| \leq 1
\]

DOT Statement

Creates a dot plot that summarizes the values of a category variable.

Restriction: The DOT statement can be combined only with other horizontal categorization plot statements. When category plots are overlaid, all of the plots must use the same category variable. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

See: “Marker Fills and Outlines” on page 1645

Examples: “About Dot Plots” on page 58

“Example 7: Adding Statistical Limits to a Dot Plot” on page 1539

Syntax

```
DOT category-variable <options>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `COLORMODEL=style-element | (color-list)` specifies a color ramp that is to be used with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column` specifies the numeric column that is used to map colors to a gradient legend.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value` specifies an amount to offset all dots from discrete category values.
- `RATTRID=character-value` specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options
 TIP=\{variable-list\} | NONE
 specifies the data tip information to be displayed when the cursor is
 positioned over the graphics element.

 TIPFORMAT=\{format-list\}
 applies formats to the list of data tip variables that you specify in the TIP=
 option.

 TIPLABEL=\{label-list\}
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options
 CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint
 spacing.

 GROUP=variable
 specifies a variable that is used to group the data.

 GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped dots.

 GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

Label options
 DATALABEL <=variable>
 displays a label for each data point.

 DATALABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.

 DATALABELPOS=DATA | LEFT | RIGHT
 specifies the location of the data label.

 LEGENDLABEL=“text-string”
 specifies the label that identifies the dot plot in the legend.

 SPLITCHAR="character-list”
 splits the text for data labels at the specified character(s) when there is
 not enough room to display the text normally.

 SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

 SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

 STATLABEL
 NOSTATLABEL
 specifies whether the response variable statistic is displayed in the axis
 and legend labels.

Limit options
 LIMITATTRS=style-element<(options)> | (options)
 specifies the appearance of the limit lines in the plot.

 LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

NUMSTD=n
specifies the number of standard units for the limit lines when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
accepts a missing value as a valid category value.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the dots.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA= value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

RESPASC sorts by the response values in ascending order.

RESPDESC sorts by the response values in descending order.

Default The plot is sorted in ascending order based on the category values.

Restrictions This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the
groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=numeric-value

Specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)

Specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element

Specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list)

Specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 925
“Using Gradient Color Legends” on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.
When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100
Alias PERCENT can be used in place of PCT.
Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.
Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.
When `DISCRETEOFFSET=` and `DATALABELPOS=` are both specified, the `DISCRETEOFFSET=` option has no effect on the data labels. Only the plot is offset. If you remove `DATALABELPOS=` from the plot statement, the data labels are offset.

If you also specify `LIMITS` or `LIMITSTAT`, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use `DATALABEL` or `DATALABEL=variable` with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use `DATALABEL` (without a variable).

DATALABELATTRS=<options> | (options)
specifies the appearance of the labels in the plot when you use the `DATALABEL=` option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
Label font: style element `GraphDataText` attributes `FontFamily`, `FontSize`, `FontStyle`, and `FontWeight`.

Label color: for ungrouped data, style element `GraphDataText` attribute color. For grouped data, style element `GraphData1...GraphData n` attribute `contrastColor` when `DATALABELPOS=DATA`. Otherwise, style element `GraphDataText` attribute color.

Interaction
This option has no effect unless the `DATALABEL` option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label. Specify one of the following values:

- **DATA**
 places the label on the data primitives (at the right edge of the dots).

- **LEFT**
 places the label to the left of the dots.

- **RIGHT**
 places the label to the right of the dots.

Default
DATA

Interactions
This option has no effect unless you also specify the `DATALABEL` option.

This option displays limit information when limits are specified.

This option displays group values for each category when `GROUP=` is also specified.
This option displays response values for each overlaid chart.

When you specify a value of LEFT or RIGHT for this option, the splitting of data labels (using the SPLITCHAR= option) is not supported.

```
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
```
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

Table 10.9 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction You can use the MARKERATTRS= option to specify a filled marker symbol.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all dots from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.
Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS=
options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and
Outlines” on page 1645.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data. Each observation is repeated n times for computational purposes, where n
is the value of the numeric variable.

Restrictions
If the value of FREQ= for a given observation is missing or is less
than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions
If your plot is overlaid with other categorization plots, then the first
FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING
option has no effect.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each
group value are automatically distinguished by different visual attributes.

Restriction
If you specify a group variable in a category chart, and the
procedure contains more than one category chart statement, all of
the charts must specify the same GROUP variable. If you do not
specify the same GROUP= option for all of the category charts,
then an error is generated.

Interaction
When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.

Note
When GROUP= is used with COLORRESPONSE=, only a gradient
color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color
legend.

Tip
ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change
the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped dots.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each
group is represented by unique visual attributes derived from the
GraphData1... GraphData{n} style elements in the current style.
Default: OVERLAY

Interaction: This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions: The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note: The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip: The category order can be changed using the discreteORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
 specifies the label that identifies the dot plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, then the legend label is “Frequency”.

Note: This feature applies to SAS 9.4M3 and later releases.
Interaction The LEGENDLABEL=option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=<i>style-element</i><tiny>(options)</tiny> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITCAPSCALE=<i>positive-number</i>
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to **SAS 9.4M5** and later releases.

Default 1

Interaction For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITS=<i>BOTH | LOWER | UPPER</i>
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction Limit lines are displayed only when you specify STAT=MEAN.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).
LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interactions If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

Tip To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.
MARKEROUTLINEATTRS=\texttt{style-element \langle options\rangle} | (\texttt{options})
specifies the appearance of the marker outlines. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphOutlines style element in the current style for ungrouped data.
GraphData1 \ldots GraphData\textsubscript{n} style elements in the current style for
grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MISSING

accepts a missing value as a valid category value. By default, observations with
missing values are ignored. If more than one chart is specified in the procedure,
the MISSING option affects the calculations for all of the charts.

Interaction

This option has no effect when FREQ= is specified.

NAME=\texttt{"text-string"}

assigns a name to a plot statement. You can use the name to refer to this plot in
other statements.

Note

The \texttt{text-string} is case-sensitive and must define a unique name within the
procedure.

Tip

This option is often used with legend statements in order to coordinate the
use of colors and line patterns between the graph and the legend.

NOLIMITCAPS

suppresses the serif cap on limit lines, if limit lines are displayed.

Note:

This feature applies to SAS Viya 3.5 and later releases.

Interaction

The appearance of the limit lines is controlled by the LIMITATTRS= option.

NUMSTD=\texttt{n}

specifies the number of standard units for the limit lines when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive
number, including decimals.
RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

RESPONSE=response-variable
 specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

SPLITCHAR="character-list"
 splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.
Note: If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to **SAS 9.4M1** and later releases.
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the \(w.d \) SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.
DROPLINE Statement

Creates one or more drop lines from data point(s) to one or both axes. The line(s) can be horizontal, vertical, or both.

Restriction: When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

Note: This feature applies to SAS 9.4M1 and later releases.

See: “About Drop Lines” on page 26
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Syntax

DROPLINE X=variable | x-axis-value
Y=variable | y-axis-value </options>;

Summary of Optional Arguments

Appearance options

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all drop lines from discrete X or Y values.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the drop line.

NOCLIP
extends the plot axes to contain the drop lines.

TRANSPARENCY=value
specifies the degree of transparency for the drop line.

Axis options

DROPTO=BOTH | X | Y
specifies the axis to which the line is dropped.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Label options

LABEL=variable | "text-string"
creates labels for each drop line.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels.
LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable | x-axis-value
specifies the X coordinate of the drop line(s). If you specify an *x-axis-value* that is a text string, enclose the string in quotation marks.

Requirement Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Y=variable | y-axis-value
specifies the Y coordinate of the drop line(s). If you specify a *y-axis-value* that is a text string, enclose the string in quotation marks.

Requirement Values must agree in type with the Y-axis data type.

Optional Arguments

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 10.10 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all drop lines from discrete X or Y values.
Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.

Requirement This option is applicable only when the X or Y axis is discrete.

DROPTO=BOTH | X | Y
specifies the axis to which the line is dropped.

BOTH
draws dropline(s) to both axes.

X
draws dropline(s) to the X axis, or to the X2 axis if specified.

Y
draws dropline(s) to the Y axis, or to the Y2 axis if specified.

Default X

LABEL=variable | "text-string"
creates labels for each drop line.

variable
a variable for the label value.

Requirement In order to use a variable to label your drop lines, you must specify a variable in X=, Y=, or both, in the DROPLINE statement. If you specify scalar values in X= and Y=, the specified label variable is ignored and a message is written to the log.

"text-string"
a text string for the label value.

Requirement In order to use a text string to label your drop line, you must specify scalar values in X= and Y=. If you specify a variable in X=, Y=, or both, in the DROPLINE statement, the specified text string is ignored and a message is written to the log.

Default No label is displayed.

Note Space is reserved at the maximum end of the X axis to accommodate the length of the labels regardless of where the labels appear in the plot.

Tip You can use the OFFSETMAX= axis option to adjust the amount of space that is reserved on the X axis for the labels.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “drop” is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the drop line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP
extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

TRANSPARENCY=value
specifies the degree of transparency for the drop line.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Note This option does not affect the drop-line label.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.
Details

A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

Example

This example shows a DROPLINE statement originating from the point \((X=3, Y=5)\) and dropping to both axes.

```sas
/* Create data set with X and Y variables that plot a parabola.*/
data test;
  do X=0 to 8 by 0.25;
    Y=(x-3)*(x-3) + 5;
    output;
  end;
run;

/* Create the plot and drop lines. Specify a label and line attributes for the drop lines.*/
title "Drop lines at Inflection Point";
proc sgplot data=test;
```

ELLIPSE Statement

Adds a confidence or prediction ellipse to another plot.

Restriction: In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Examples: “About Ellipse Plots” on page 41
“Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1535

Syntax

ELLIPSE X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

FILL
NOFILL
specifies whether the area fill is visible.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLPATTERN
enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the ellipse.

OUTLINE
NOOUTLINE
specifies whether the outlines of the ellipse are visible.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Group options
GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Plot options
ALPHA=numeric-value
specifies the confidence level for the ellipse.

CLIP
specifies that the data for the ellipse is ignored when determining the data ranges for the axes.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

TYPE =MEAN | PREDICTED
specifies the type of ellipse.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-variable
specifies a numeric variable for the X axis.

Y=numeric-variable
specifies a numeric variable for the Y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the ellipse.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

CLIP
specifies that the data for the ellipse is ignored when determining the data ranges for the axes. By default, the data for the ellipse is considered when determining the data ranges for the axes.

Interaction This option is automatically set if you specify UNIFORM=SCALE or UNIFORM=ALL option in the PROC SGPLOT statement.
Note This option is not available in the SGPANEL procedure. Clipping is always true for SGPANEL.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interaction This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

Accessibility note This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=style-element <(options)> | (options)**
specifies the line-fill color and pattern.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**options** can be one or both of the following:

**COLOR=** *style-reference | color*

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=** *style-reference | line-pattern*

specifies the type of line pattern to use for the fill.

*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 10.11** Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="example1.png" alt="Example" /></td>
<td>R1</td>
<td><img src="example2.png" alt="Example" /></td>
<td>X1</td>
<td><img src="example3.png" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="example4.png" alt="Example" /></td>
<td>R2</td>
<td><img src="example5.png" alt="Example" /></td>
<td>X2</td>
<td><img src="example6.png" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="example7.png" alt="Example" /></td>
<td>R3</td>
<td><img src="example8.png" alt="Example" /></td>
<td>X3</td>
<td><img src="example9.png" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="example10.png" alt="Example" /></td>
<td>R4</td>
<td><img src="example11.png" alt="Example" /></td>
<td>X4</td>
<td><img src="example12.png" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="example13.png" alt="Example" /></td>
<td>R5</td>
<td><img src="example14.png" alt="Example" /></td>
<td>X5</td>
<td><img src="example15.png" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions** For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restriction** If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

**Note** If the value is not an integer, only the integer portion is used.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Tips** ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the ellipses, but the PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all ellipse outlines, letting outline color distinguish group values.

**LEGENDLABEL="text-string"**

specifies a label that identifies the ellipse in the legend. By default, the label describes the confidence value of the ellipse and the type of ellipse. For example, "95% Prediction Ellipse."

**LINEATTRS=style-element<(options)> | (options)**

specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**NAME="text-string"**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The text-string is case-sensitive and must define a unique name within the procedure.
Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

Interaction  This option has no effect unless GROUP= is also specified.

**OUTLINE | NOOUTLINE**

specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

Default  The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions  Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**TYPE =MEAN | PREDICTED**

specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume a bivariate normal distribution.

Default  PREDICTED

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the Y variable to the secondary (right) vertical axis.

---

**ELLIPSEPARM Statement**

Adds an ellipse to the primary plot, specified by axis, slope, and origin parameters. The axis parameters are required.

Restriction:  The ELLIPSEPARM statement must be overlaid with another plot that is derived from data values that provide boundaries for the axis area. It is typically overlaid with a scatter plot. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Note:  This feature applies to SAS 9.4M4 and later releases.
Syntax

```
ELLIPSEPARM SEMIMAJOR=numeric-variable | positive-number
 SEMIMINOR=numeric-variable | positive-number <option(s)>;
```

Summary of Optional Arguments

**Appearance options**

- **FILL**
  - NOFILL
    - specifies whether to display a filled ellipse.
- **FILLATTRS=style-element <(options)> | (options)**
  - specifies the fill color and transparency.
- **FILLPATTERN**
  - enables the display of line fill patterns for the plot.
- **FILLPATTERNATTRS=style-element <(options)> | (options)**
  - specifies the line-fill color and pattern.
- **LEGENDLABEL="text-string"**
  - specifies a label that identifies the ellipse in the legend.
- **LINEATTRS=style-element <(options)> | (options)**
  - specifies the appearance of the outlines for the ellipse.
- **OUTLINE**
  - NOOUTLINE
    - specifies whether the outlines of the ellipse are visible.
- **TRANSPARENCY=value**
  - specifies the degree of transparency for the plot.

**Axis options**

- **X2AXIS**
  - assigns the X variable to the secondary (top) horizontal axis.
- **Y2AXIS**
  - assigns the Y variable to the secondary (right) vertical axis.

**Group options**

- **GROUP=variable**
  - specifies a variable that is used to group the data.
- **NOMISSINGGROUP**
  - specifies that missing values of the group variable are not included in the plot.

**Plot options**

- **CLIP**
  - specifies that the data for the ellipse is ignored when determining the data ranges for the axes.
- **SLOPE=numeric-value | numeric-variable**
  - specifies the slope of the major axis for the ellipse.
- **XORIGIN=numeric-value | numeric-variable**
  - specifies the X coordinate of the center of the ellipse.
YORIGIN= numeric-value | numeric-variable
specifies the Y coordinate of the center of the ellipse.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

SEMIMAJOR= numeric-variable | positive-number
specifies half the length of the major axis for the ellipse. Values are in the same units as the data. The SEMIMAJOR value can be greater than, smaller than, or equal to the SEMIMINOR value.

Restrictions
The semimajor value must be positive. If a numeric variable is specified and the variable contains negative values, then no ellipses are drawn.

If the variable contains a missing value, the ellipse for that observation is not drawn. However, the remaining ellipses that have nonmissing values for this argument and for SEMIMINOR= are drawn.

SEMIMINOR= numeric-variable | positive-number
specifies half the length of the minor axis for the ellipse. Values are in the same units as the data. The SEMIMINOR value can be greater than, smaller than, or equal to the SEMIMAJOR value.

Restrictions
The semiminor value must be positive. If a numeric variable is specified and the variable contains negative values, then no ellipses are drawn.

If the variable contains a missing value, the ellipse for that observation is not drawn. However, the remaining ellipses that have nonmissing values for this argument and for SEMIMAJOR= are drawn.

Optional Arguments

CLIP
specifies that the data for the ellipse is ignored when determining the data ranges for the axes. By default, the data for the ellipse is considered when determining the data ranges for the axes.

Interaction
This option is automatically set if you specify UNIFORM=SCALE or UNIFORM=ALL option in the PROC SGPLOT statement.

FILL | NOFILL
specifies whether to display a filled ellipse. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default
The default is specified by the DisplayOpt attribute of the GraphEllipse style element in the current style.

Interactions
Specifying FILL also hides any visible outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interaction**

This suboption overrides the plot's TRANSPARENCY= option for the fill.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN= *style-reference | line-pattern*

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.12 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See "ATTRPRIORITY=COLOR | NONE" on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP= *variable*

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction

The group value can be a character or numeric column. The GROUP= option can be used only when a numeric column or value is specified for the SEMIMAJOR= and SEMIMINOR= arguments, and when used, the SLOPE=, XORIGIN= and YORIGIN= options.
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the ellipses, but the PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all ellipse outlines, letting outline color distinguish group values.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend.

Default EllipseParm

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SLOPE= *numeric-value | numeric-variable*

specifies the slope of the major axis for the ellipse. The slope can be positive or negative.

Default 0

Note The slope value is in the data space and might not always be maintained in the screen space. Thus, setting SLOPE=1 does not always generate a 45-degree line on the screen.

Tips
- SLOPE=0 creates a major axis parallel to the X axis.
- SLOPE= . (missing value) creates a major axis parallel to the Y axis.

TRANSPARENCY= *value*

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

XORIGIN= *numeric-value | numeric-variable*

specifies the X coordinate of the center of the ellipse. Values are in the units of the data.

Default 0

Tips
- By default, if the value specified for the XORIGIN= option is outside of the X-axis data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP option.
- You can use the YORIGIN= option to specify the Y coordinate of the center of the ellipse.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

YORIGIN= *numeric-value | numeric-variable*

specifies the Y coordinate of the center of the ellipse. Values are in the units of the data.

Default 0

Tips
- By default, if the value specified for the YORIGIN= option is outside of the Y-axis data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP option.
- You can use the XORIGIN= option to specify the X coordinate of the center of the ellipse.
Details

The ELLIPSEPARM statement plots an ellipse with specified semimajor and semiminor axis lengths, a specified slope for the major axis, and the ellipse center. The ellipse center is the point of intersection of the semimajor and semiminor axes. The ELLIPSEPARM statement does not perform computations on input data to derive the location and shape of the ellipse. Another plot that is derived from data values that provide boundaries for the axis area must be included in the layout. The ellipse is typically overlaid with a scatter plot. See ELLIPSE Statement for information about computed ellipses.

You can generate a single ellipse by specifying a constant for each of the following arguments: SEMIMAJOR=, SEMIMINOR=, SLOPE=, XORIGIN=, YORIGIN=. The SLOPE=, XORIGIN=, and YORIGIN= arguments are set to a constant by default.

You can generate multiple ellipses by specifying a numeric column for any or all of those arguments. If any of the SEMIMAJOR=, SEMIMINOR=, XORIGIN=, or YORIGIN= constants or columns contains a missing value, then no ellipse is drawn. To request a vertical major axis, specify SLOPE=. (missing value) as a constant or column value.

Example: Simple Correlation Loading Plot

This example resembles a correlation loading plot that is produced using the PLS procedure in the SAS/STAT product. See Spectrometric Calibration in SAS/STAT User’s Guide. The example consists of overlaid scatter plots of the scores of the first two factors, the loadings of the model effects, and the loadings of the dependent variables. The loadings are scaled so that the amount of variation in the variables that is explained by the model is proportional to the distance from the origin; circles indicating various levels of explained variation are also overlaid.

The circles are drawn with ELLIPSEPARM statements by setting the SEMIMAJOR on page 913 and SEMIMINOR on page 913 lengths to be the same. All circles are concentric because they share the same origin (0,0). The input data shown is representative of that computed by the PLS procedure for the Correlation Loadings Plot. For more details, see PLS procedure example Examining Model Details in SAS/STAT User’s Guide.
data corrplot;
infile cards missover dlm="#";
length CorrGroup $ 18 CorrLabel CircleLabel $ 8;
input Corr1 Corr2 CorrGroup CorrLabel xCircleLabel
ycircleLabel CircleLabel;
datalines;
-0.179 # -0.268 # Predictor Loading # S1 # 0 # 0.5 # 25%
0.105 # 0.332 # Predictor Loading # S2 # 0 # -0.5 # 25%
-0.654 # 0.094 # Predictor Loading # S3 # 0 # 0.707 # 50%
-0.653 # 0.685 # Predictor Loading # S4 # 0 # -0.707 # 50%
0.096 # 0.059 # Predictor Loading # S5 # 0 # 0.866 # 75%
0.132 # 0.036 # Predictor Loading # L1 # 0 # -0.866 # 75%
0.087 # 0.156 # Predictor Loading # L2 # 0 # 1 # 100%
0.940 # 0.160 # Predictor Loading # L3 # 0 # -1 # 100%
0.607 # -0.350 # Predictor Loading # L4
0.096 # 0.059 # Predictor Loading # L5
-0.111 # -0.534 # Predictor Loading # P1
0.003 # 0.256 # Predictor Loading # P2
0.293 # 0.551 # Predictor Loading # P3
-0.480 # 0.643 # Predictor Loading # P4
-0.096 # -0.059 # Predictor Loading # P5
0.946 # 0.279 # Response Loading # log_RAI
-0.196 # 0.403 # Observation # 1
0.020 # -0.001 # Observation # 2
-0.195 # 0.324 # Observation # 3
0.021 # -0.079 # Observation # 4
-0.009 # -0.274 # Observation # 5
0.567 # 0.294 # Observation # 6
-0.096 # -0.059 # Observation # 7
0.258 # 0.210 # Observation # 8
-0.104 # -0.309 # Observation # 9
-0.187 # -0.458 # Observation # 10
0.051 # -0.078 # Observation # 11
0.017 # -0.260 # Observation # 12
-0.621 # 0.372 # Observation # 13
0.392 # 0.138 # Observation # 14
0.080 # -0.221 # Observation # 15
Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots). For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

This feature applies to SAS 9.4M1 and later releases.

“About Fringe Plots” on page 20

Syntax

FRINGE numeric-variable /<options>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.
LINEATTRS=style-element<(options)> | (options)
 specifies the appearance of the fringe lines.
TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options
 X2AXIS
 assigns the X variable to the secondary (top) horizontal axis.

Data tip options
 TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
 TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.
 TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
 GROUP=variable
 specifies a variable that is used to group the data.
 HEIGHT=dimension<units>
 specifies the height of the fringe lines.
 NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options
 LEGENDLABEL="text-string"
 specifies a label that identifies the needle plot in the legend.

Plot reference options
 NAME="text-string"
 assigns a name to a plot statement.

Required Argument

numeric-variable
 specifies the variable that provides the X coordinates of the data values.

Optional Arguments

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tips ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

You can use the NOMISSINGGROUP option to omit missing values of the group variable from the plot.

HEIGHT=dimension<units>
specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default 10px

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.
LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fringe lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.
GRADLEGEND Statement

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)

Note: This feature applies to SAS 9.4M2 and later releases.

See: “Using Gradient Color Legends” on page 1637

Syntax

GRADLEGEND <"name"> </options>;

Summary of Optional Arguments

Appearance options

BORDER
NOBORDER
specifies whether a border is visible around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title.

Legend options

"name"
specifies the name of the plot that you want to include in the legend.

Scale options

EXTRACTSCALE=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width.
Optional Arguments

"name"
 specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.

Default If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.

Restriction Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

BORDER | NOBORDER
 specifies whether a border is visible around the legend.

Default NOBORDER

EXTRACTSCALE=DEFAULT | SCIENTIFIC
 extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

 Total Sales (millions)

 For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

 Total Sales for the Fourth Quarter Of ... (millions)

 In extreme cases where the title does not fit even with truncation, the title is dropped.

 You can also specify whether to use a named scale or a scientific-notation scale.

DEFAULT
 extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 (10^{−n}) for values less than 1 trillionth.

SCIENTIFIC
 extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of 1/10 expressed as 10^{−n} for values less than 1.

The following examples show a gradient legend before and after EXTRACTSCALE= is specified:
Default Scale	EXTRACTSCALE Specified

Restriction
The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

INTEGER
specifies that integers are used for the gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

NOTITLE
removes the default title. The default title is the name of the response variable.

Default The default title is displayed.

OUTERPAD=

dimension | *(pad-options)*
specifies the amount of extra space that is added outside the legend border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=**
 specifies the amount of extra space added to the left side.

- **RIGHT=**
 specifies the amount of extra space added to the right side.

- **TOP=**
 specifies the amount of extra space added to the top.

- **BOTTOM=**
 specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use *pad-options* to create non-uniform padding.

Default No padding

Note The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.
Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps a density scale to a color gradient. The OUTERPAD= on page 1087 option adds padding to the top and bottom of the gradient.
HBAR Statement

Creates a horizontal bar chart that summarizes the values of a category variable.

Restrictions: When category plots are overlaid, all of the plots must use the same category variable. The HBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1628.

Tips: The HBAR statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. Starting with SAS 9.4M3, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

Example: “About Bar Charts” on page 51

Syntax

```sas
HBAR category-variable <options>;
```
Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NULL | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all bars from the category midpoints.

- **DISPLAYBASELINE=AUTO | ON | OFF**
 specifies whether the baseline is displayed.

- **FILL | NOFILL**
 specifies whether the bars are filled.

- **FILLATTRS=style-element <(options)> | (options)**
 specifies the fill color and transparency.

- **FILLENDCOLOR=color**
 specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
 enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <(options)> | (options)**
 specifies the line-fill color and pattern.

- **FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
 specifies the fill type that is applied to the chart.

- **NOZEROBARS**
 suppresses zero-length bars.

- **OUTLINE | NOOUTLINE**
 specifies whether the bars have outlines.

- **OUTLINEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the bar outlines.

- **RATTRID=character-value**
 specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.

Axis options

- **BASELINE=numeric-value**
 specifies the response axis intercept for the baseline.
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each bar.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE | INSIDEPREFERRED
specifies the fit policy for the bar labels.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

STATLABEL
NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options
LIMITATTRS=style-element<(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
accepts a missing value as a valid category value.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.
Starting in SAS 9.4M3, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA= value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.
Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

![Graph showing baseline](image)

Default 0

Interactions If GROUPDISPLAY=STACK is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=`style-element <(options)>` | *(options)*

specifies the appearance of the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When `style-element` is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```plaintext
baselineattrs=(thickness=0)
```
CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default
The plot is sorted in ascending order based on the category values.

Restrictions
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis

Interactions
When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default
0.8

Interactions
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.
The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=

```
style-element | (color-list)
```

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

- *style-element*
 - specifies the name of a style element. The style element should contain these style attributes:
 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

 - **Example**
    ```
    colormodel=TwoColorRamp
    ```

- *color-list*
 - specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

 - **Requirement** The list of colors must be enclosed in parentheses.

 - **Example**
    ```
    colormodel=(blue yellow green)
    ```

- **Default** The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

- **Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=

```
numeric-column
```

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

- The fill colors are assigned according to the legend gradient.

- **Interaction** When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.
Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See "GRADLEGEND Statement" on page 925
 "Using Gradient Color Legends" on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN
 specifies the statistic to use for computing the response colors.

Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.
When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100
Alias PERCENT can be used in place of PCT.
Defaults SUM when you also specify the COLORRESPONSE= option.
 FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>
 displays a label for each bar.

 If you specify a variable, then the values of that variable are used for the data labels.

 If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

 If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

 If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL without a variable.

 This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.
By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default:
GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interactions:
This option has no effect unless the DATALABEL option is also specified.

The STYLE= option is ignored when DATALABELPOS= is LEFT or RIGHT.

Examples:
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED
specifies the fit policy for the bar labels. Specify one of the following values:

- **NONE**
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

- **INSIDE PREFERRED**

 Note: This feature applies to SAS 9.4M5 and later releases.

places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is moved outside the bar.
- If the font height for any label exceeds the bar width, then all labels are positioned outside the bars.
- If SEGLABEL is specified, the INSIDE PREFERRED policy is ignored and the labels are positioned outside the bars.

Note: This feature applies to SAS 9.4M5 and later releases.

Default:
Show the labels unless they collide.

Interaction:
This option has no effect unless DATALABEL= is also specified.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label. Specify one of the following values:
DATA
places the label on the data primitives (at the right edge of the bars).

LEFT
places the label to the left of the bars.

RIGHT
places the label to the right of the bars.

Default: DATA

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.14 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see "Using Fill Patterns to Distinguish Categories of Data" on page 1698. For instructions about viewing the contents of
style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE= AUTO | ON | OFF
specifies whether the baseline is displayed.

Note: This feature applies to **SAS 9.4M5** and later releases.

Specify one of the following values:

AUTO
displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON
always displays the baseline.

OFF
hides the baseline.

Default ON

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.
FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL
Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATR ERS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data.

Transparency is the same as the setting for the plot's TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.

This suboption overrides the plot's TRANSPARENCY= option for the fill.

FILLENDCOLOR=color
specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data.

Interactions This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.15 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>L2</td>
<td></td>
<td>L3</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>L3</td>
<td></td>
<td>L4</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>L4</td>
<td></td>
<td>L5</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>L5</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>X2</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>X2</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>X3</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td>X4</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

Note: This feature applies to SAS 9.4M2 and later releases.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

Interactions

To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

ALPHAGRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.
Tips

If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction

If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note

When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
When `GROUP=` is used with `COLORRESPONSE=` and `FILL` is enabled, use `FILLPATTERN` to distinguish the group values. See "Using Fill Patterns and Gradient-Color Fills" on page 1701.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default: STACK

Interaction: This option is ignored unless `GROUP=` is specified.

Tip: The distance between the group elements in a cluster is controlled by `CLUSTERWIDTH=`.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless `GROUP=` is specified.

By default, the groups in the legend are shown in the order that is specified in `GROUPORDER=`. The order in the legend can be changed using the `SORTORDER=` option in the KEYLEGEND statement.
The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip

The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL=“text-string”

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element<(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

LIMITCAPSCALE=positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default

1

Interaction

For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip

The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.
LIMITS=BOOTH | LOWER | UPPER
specifies which limit lines to display. Limits are displayed as heavier line
segments with a serif at the end extending from each bar. Upper limits extend to
the right of the bar and lower limits extend to the left of the bar. Specify one of
the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default
By default, no limits are displayed unless you specify either the
LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT=
option only, then LIMITS=BOOTH is the default.

Interactions
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS=
option has no effect unless you also specify
GROUPDISPLAY=CLUSTER.

Tip
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5,
limit labels are shown when you specify DATALABEL or
DATALABEL=variable. Starting with SAS 9.4M5, limit labels are
shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default
If you specify the LIMITS= option, then the default for LIMITSTAT=
is CLM. Otherwise, there is no default.

Interactions
If you specify the LIMITSTAT= option only, then the default value
for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the
LIMITSTAT=option has no effect unless you also specify
GROUPDISPLAY=CLUSTER.

Tip
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5,
limit labels are shown when you specify DATALABEL or
DATALABEL=variable. Starting with SAS 9.4M5, limit labels are
shown only when you specify DATALABEL (without a variable).
MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction This option has no effect when FREQ= is specified.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip This option is useful when the bar chart baseline is suppressed.
NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.
For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<table>
<thead>
<tr>
<th>Make</th>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.88</td>
<td>29.908</td>
<td>26.647</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>27.115</td>
<td>25.13</td>
</tr>
<tr>
<td></td>
<td>20.04</td>
<td>26.544</td>
<td>24.222</td>
</tr>
</tbody>
</table>

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

- Use the SEGLABELATTRS= option to modify the appearance of the label text.
- Use the SEGLABELFORMAT= option to modify the format of the segment labels.
- Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=

- Specifies the text properties of the bar segment label text.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default
The GraphDataText style element.

Interaction
This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=

- Specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

NONE
No attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
Does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
Drops any bar segment label that does not fit within its segment.
The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT= *format*

specifies the text format used to display the bar segment labels.

Note: This feature applies to SAS 9.4M2 and later releases.

Default The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction This option has no effect unless SEGLABEL is also specified.

Note When a segment-label format is specified with this option, the segment labels are formatted as specified by *format*. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

STAT= FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the horizontal axis. Specify one of the following:

FREQ

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN

the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN

the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.
When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=

Specifies an HTML page to be displayed when parts of the plot are selected.

Default By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.
Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

HBARBASIC Statement

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Notes:

This feature applies to SAS 9.4M3 and later releases.

When using the HBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the HBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip:

The HBARBASIC statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

See:

Basic plot types on page 1629

“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:

“About Bar Charts” on page 51

Syntax

HBARBASIC category-variable <options>;

Summary of Optional Arguments

Appearance options

- **ATTRID=** character-value
 - specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=** numeric-value
 - specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=** style-element | (options)
 - specifies the appearance of the baseline.

- **COLORMODEL=** style-element | (color-list)
 - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=** numeric-column
 - specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=** numeric-value
 - specifies an amount to offset all bars from the category midpoints.

- **DISPLAYBASELINE=** AUTO | ON | OFF
 - specifies whether the baseline is displayed.

- **FILL**
 - NOFILL
 - specifies whether the bars are filled.

- **FILLATTRS=** style-element | (options)
 - specifies the fill color and transparency.

- **FILLENDCOLOR=** color
 - specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
 - enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=** style-element | (options)
 - specifies the line-fill color and pattern.

- **FILLTYPE=** SOLID | GRADIENT | ALPHAGRADIENT
 - specifies the fill type that is applied to the chart.

- **NOZEROBARS**
 - suppresses zero-length bars.

- **OUTLINE**
 - NOOUTLINE
 - specifies whether the bars have outlines.

- **OUTLINEATTRS=** style-element | (options)
 - specifies the appearance of the bar outlines.

- **RATTRID=** character-value
 - specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=** value
 - specifies the degree of transparency for the plot.

Axis options

- **BASELINE=** numeric-value
 - specifies the response axis intercept for the baseline.

- **X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE | INSIDEPREFERRED
specifies the fit policy for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Plot options

MISSING
accepts a missing value as a valid category value.

RESPONSE=response-variable
specifies a numeric response variable for the plot.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the horizontal axis.

Required Argument
category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8
1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.
Tip When the GROUP option is specified and
GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH=
option to control the space between clusters. For example, to
remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always
displayed in the chart, even when this option is not specified. In that case, the
default value is used. When this option is specified, the axis range is adjusted to
include the baseline, and the baseline is placed at the specified value on the
response axis.

![Baseline Example](image)

Default 0

Interaction When a logarithmic response axis is used and BASELINE=
specifies 0 or a negative value, the response axis reverts to a linear
axis. To restore the log axis in that case, set BASELINE= to a
positive value.

Tips The appearance of the baseline is controlled by the
BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or,
use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR,
LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

`baselineattrs=(thickness=0)`

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from
0.0 (narrowest) to 1.0 (widest).
CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLOREMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
- NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.
Interactions

When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 925

“Using Gradient Color Legends” on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors.

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

Alias

PERCENT can be used in place of PCT.

Defaults

SUM when you also specify the COLORRESPONSE= option.

FREQ when do not specify the COLORRESPONSE= option.

Note

This option is independent of the STAT= and RESPONSE= options.

DATALABEL

displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default

No label is shown

Interaction

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Tip

The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element<options>| (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

Default
GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interactions
This option has no effect unless the DATALABEL option is also specified.

The STYLE= option is ignored when DATALABELPOS= is LEFT or RIGHT.

Examples
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED
specifies the fit policy for the bar labels. Specify one of the following values:

NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

INSIDE PREFERRED

Note: This feature applies to SAS 9.4M5 and later releases.

places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is moved outside the bar.
- If the font height for any label exceeds the bar width, then all labels are positioned outside the bars.
- If SEGLABEL is specified, the INSIDE PREFERRED policy is ignored and the labels are positioned outside the bars.

Note: This feature applies to SAS 9.4M5 and later releases.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL is also specified.

DATALABELFORMAT=FORMAT
specifies the text format used to display the bar label.

Default
The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work
best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.16 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF

specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO

displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON

always displays the baseline.
OFF
hides the baseline.

Default	ON

Tip	To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default	FILL

Interactions	Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=
三 Specifying the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults	Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interaction	This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=
specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.
You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions
This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility
note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATRIS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot's fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.
Table 10.17 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FILLTYPE=

SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

SOLID

Each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

Interactions

To change the color of the wall, use the FILLENDCOLOR= option.
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip (Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

ALPHAGRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips

If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction

This option has no effect if NOFILL is also specified.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction

If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, "Using Attribute Maps to Control Visual Attributes," on page 1733.

Note

When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.
Tips

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default

STACK

Interaction

This option is ignored unless GROUP= is specified.

Tip

The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default

DATA

Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.
The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is "Frequency".

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

Interaction This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.
Notes
If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip
This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default
OUTLINE

Interactions
Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <options> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar
segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV</td>
<td>21.88</td>
<td>18.7</td>
</tr>
<tr>
<td>Sedan</td>
<td>29.888</td>
<td>27.115</td>
</tr>
<tr>
<td>Sports</td>
<td>26.647</td>
<td>25.13</td>
</tr>
</tbody>
</table>

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.
The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction
This option has no effect unless SEGLABEL is also specified.

Note
When a segment-label format is specified with this option, the segment labels are formatted as specified by `format`. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

STAT=`FREQ` | `PCT` | `SUM` | `MEAN` | `PROPORTION`
specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

- **FREQ**
 frequency count

- **PCT** | `PERCENT`
 percentages between 0 and 100

 Alias
 PROPORTION
 proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

- **SUM**
 sum values for the response

- **MEAN**
 mean values for the response

Defaults
SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Interaction
When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The roles for TIP are CATEGORY, GROUP, and RESPONSE. Specify one or more of these roles in `role-list`. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.
NONE

suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(category response)`

TIPFORMAT=(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See [SAS Formats and Informats: Reference](#)

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see "Specifying ODS Destinations" on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

 ODS GRAPHICS / IMAGEMAP;

For more information, see "Using the ODS GRAPHICS Statement" on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

HBARPARAM Statement

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirements: Parameterized bar charts require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. This is the key distinction between HBARPARAM and HBAR.
The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction: The HBARPARM statement can be combined only with other basic plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1628.

Note: The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the HBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip: The HBARPARM statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

Example: “About Bar Charts” on page 51

Syntax

HBARPARM CATEGORY=category-variable RESPONSE=numeric-variable < / options >;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element (options) | (options)
 specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

DISPLAYBASELINE=AUTO | ON | OFF
 specifies whether the baseline is displayed.

FILL
 NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element (options) | (options)
 specifies the fill color and transparency.

FILLENDCOLOR=color
 specifies a fill color that is applied to the chart at the baseline.
FILLPATTERN
 enables the display of line fill patterns for the plot.
FILLPATTERNATTRS=style-element <(options)> | (options)
 specifies the line-fill color and pattern.
FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT
 specifies the fill type that is applied to the chart.
LEGENDLABEL="text-string"
 specifies the label that identifies the bar chart in the legend.
NOZEROBARS
 suppresses zero-length bars.
OUTLINE
 specifies whether the bars have outlines.
OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.
RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options
BASELINE=numeric-value
 specifies the response axis intercept for the baseline.
X2AXIS
 assigns the response variable to the secondary (top) horizontal axis.
Y2AXIS
 assigns the category variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
 specifies the cluster width as a ratio of the maximum width.
GROUP=variable
 specifies a variable that is used to group the data.
GROUPDISPLAY=STACK | CLUSTER
 specifies how to display grouped bars.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

Label options
DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS= *(options)*
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY= *NONE | INSIDEPREFERRED*
specifies the fit policy for the bar labels.

DATALABELPOS= *DATA | LEFT | RIGHT*
specifies the location of the data label.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS= *(options)*
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY= *NONE | NOCLIP | THIN*
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT= *format*
specifies the text format used to display the bar segment labels.

Limit options

LIMITATTRS= *(options)*
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE= *positive-number*
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

LIMITLOWER= *numeric-variable*
specifies values for the lower endpoints on the limit lines.

LIMITUPPER= *numeric-variable*
specifies values for the upper endpoints on the limit lines.

Plot options

MISSING
accepts a missing value as a valid category value.

URL= *character-variable*
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME= *"text-string"*
assigns a name to a plot statement.

Required Arguments

CATEGORY= *category-variable*
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Starting in SAS 9.4M3, interval bar charts are supported when the category axis is set to TYPE=LINEAR.
RESPONSE=numeric-variable
 specifies a numeric response variable. The input data is expected to be pre-
 summarized computed values (sum, mean, and so on).

Optional Arguments

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You
 specify this option only if you are using an attribute map to control visual
 attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
 "Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width. The
 maximum width is equal to the distance between the center of each bar and the
 centers of the adjacent bars.

 For example, if you specify a width of 1, then there is no space between the
 bars. If you specify a width of .5, then the width of the bars is equal to the space
 between the bars.

 If this option is not specified, the bar width automatically adjusts based on the
 number of bars to be displayed and the wall width.

Defaults .8

 1.0 when the GROUP option is specified and
 GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined
 by the maximum number of bars in any one group cluster. All bars
 are drawn with the same width. The cluster is positioned
 symmetrically around the midpoint.

Tip When the GROUP option is specified and
 GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH=
 option to control the space between clusters. For example, to
 remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value
 specifies the response axis intercept for the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not
specified. In that case, the default value is used. When this option is specified,
the axis range is adjusted to include the baseline, and the baseline is placed at
the specified value on the response axis.
When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS= `style-element <(options)> | (options)`
specifies the appearance of the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When `style-element` is specified, only the style element's COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH= `numeric-value`
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8
Interactions

This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL= <style-element> | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**
 - specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**
 - specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**
 - specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE= numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.
Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 925

"Using Gradient Color Legends" on page 1637

DATALABEL <=variable>
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.
 - If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.
 - If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

- If you also specify LIMITLOWER or LIMITUPPER, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

 This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.

 By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element<(options)> | (options) specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight
This option has no effect unless the DATALABEL option is also specified.

The STYLE= option is ignored when DATALABELPOS= is LEFT or RIGHT.

Examples

DATALABELATR=\{Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold\}

Here is an example that specifies a style element:

DATALABELATR=GraphLabelText

DATALABELFITPOLICY=NONE | INSIDE PREFERRED

specifies the fit policy for the bar labels. Specify one of the following values:

NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

INSIDE PREFERRED

Note: This feature applies to SAS 9.4M5 and later releases.

places bar labels inside the bars except in the following cases:

- If a label cannot fit within the length of its respective bar, then that label is moved outside the bar.
- If the font height for any label exceeds the bar width, then all labels are positioned outside the bars.
- If SEG LABEL is specified, the INSIDE PREFERRED policy is ignored and the labels are positioned outside the bars.

Note: This feature applies to SAS 9.4M5 and later releases.

Default

Show the labels unless they collide.

Interaction

This option has no effect unless DATALABEL= is also specified.

DATALABELPOS=DATA | LEFT | RIGHT

specifies the location of the data label. Specify one of the following values:

DATA

places the label on the data primitives (at the right edge of the bars).

LEFT

places the label to the left of the bars.

RIGHT

places the label to the right of the bars.

Default DATA

Interaction

This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.
This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 10.18 DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions

This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See

“Using Data Skins” on page 1685

DISCRETEOFFSET= _numeric-value_

specifies an amount to offset all bars from the category midpoints.

Default

0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF
specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO
 displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON
 always displays the baseline.

OFF
 hides the baseline.

Default ON

Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATTRS=style-element (options) | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=color
specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions
This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```ods graphics / attrpriority=none;```

Accessibility
note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.
FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.19  Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.
For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
specifies the fill type that is applied to the chart.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

**SOLID**
each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**
Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

**Interactions**
To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**
(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**ALPHAGRADIENT**
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

---

**Note:** This feature applies to SAS 9.4M5 and later releases.

**Interaction**
Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

**Tips**
If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each
group value are automatically distinguished by different visual attributes.

When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.

Note
When GROUP= is used with COLORRESPONSE=, only a gradient
color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color
legend.

Tips
ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change
the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is
enabled, use FILLPATTERN to distinguish the group values. See
"Using Fill Patterns and Gradient-Color Fills" on page 1701.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given
group value are drawn at the exact coordinate, on top of one another. Each
group is represented by unique visual attributes derived from the
GraphData1... GraphData\n style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single
category bar. Each set of group values is centered at the midpoint tick mark
for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default
STACK

Interaction
This option is ignored unless GROUP= is specified.

Tip
The distance between the group elements in a cluster is controlled
by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip
The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element<options> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.
Default  GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITCAPSCALE=positive-number**
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default  1

Interaction  For this option to have any effect, either LIMITLOWER= or LIMITUPPER= must be specified.

Tip  The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

**LIMITLOWER=numeric-variable**
specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default  The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions  If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITLOWER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

Tip  To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

**LIMITUPPER=numeric-variable**
specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default  The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions  If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITUPPER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.
The appearance of the limit lines can be controlled by the LIMITATTRS= option.

**Tip**
To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

**MISSING**
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

**NAME=“text-string”**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**
The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**
suppresses zero-length bars.

**Note:** This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Bar Chart" /></td>
<td><img src="image2.png" alt="NOZEROBARS Specified Bar Chart" /></td>
</tr>
</tbody>
</table>

**Interaction**
This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

**Notes**
If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

**Tip**
This option is useful when the bar chart baseline is suppressed.
OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the
outlines. The NOOUTLINE option hides the outlines.

Default             OUTLINE
Interactions        Specifying OUTLINE also hides the fill color.
                     If NOOUTLINE and NOFILL are both specified, then both options
                     are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page
1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default             GraphOutlines style element in the current style for ungrouped data.
                     GraphData1 ... GraphDataN style elements in the current style for
                     grouped data. The affected attributes are ContrastColor and
                     LineThickness

Interactions        This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You
specify this option only if you are using a range attribute map to control visual
attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a
label inside each bar segment. Each segment label displays the statistic for that
bar segment, as shown in the following fragment that summarizes miles-per-
gallon for different makes of vehicles.
Tips  For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element<|options|> | (options)
specifies the text properties of the bar segment label text.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default  The GraphDataText style element.

Interaction  This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default  THIN
Interaction  This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\textit{format}

specifies the text format used to display the bar segment labels.

\textbf{Note}: This feature applies to SAS 9.4M2 and later releases.

\textbf{Default}  The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction  This option has no effect unless SEGLABEL is also specified.

\textbf{Note}  When a segment-label format is specified with this option, the segment labels are formatted as specified by \textit{format}. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

\textbf{TIP=}\textit{(variable-list)} \mid \textit{NONE}

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\textit{(variable-list)}

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

\textbf{NONE}

suppresses the data tips from this plot.

\textbf{Note}: This feature applies to SAS 9.4M1 and later releases.

\textbf{Requirement}  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

\texttt{ODS GRAPHICS / IMAGEMAP;}

\textbf{Interaction}  This option replaces all of the information that is displayed by default.

\textbf{Tip}  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

\textbf{Example}  \texttt{tip=(age weight)}

\textbf{TIPFORMAT=\textit{(format-list)}}

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Note**
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**
Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=** `value`
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**URL=** `character-variable`
Specifies an HTML page to be displayed when parts of the plot are selected.

`character-variable`
Specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.
Example: https://www.sas.com/en_us/home.html

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip: Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the category variable to the secondary (right) vertical axis.

---

**HBOX Statement**

Creates a horizontal box plot that shows the distribution of your data.

Restriction: This plot has compatibility restrictions when used with other plots. See Table 13.2 on page 1630.

See: “Visual Description of Box Plot Percentile Boundaries” on page 1013

Examples: “About Box Plots” on page 46
“Example 9: Creating a Horizontal Box Plot” on page 1541

**Syntax**

```
HBOX numeric-analysis-variable </options>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.

- **BOXWIDTH=numeric-value**
  specifies the width of the box.
CAPSCALE=numeric-value
   specifies a positive number to use as a multiplier for changing the default
   width of the whisker caps.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
   specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
   specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element<(options)> | (options)
   specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
   specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
   specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
   specifies that the whiskers can extend to the maximum and minimum
   values for the analysis variable, and that outliers are not identified.

FILL
   NOFILL
   specifies whether the boxes are filled with color.

FILLATTRS=style-element<(options)> | (options)
   specifies the fill color and transparency.

FILLPATTERN
   enables the display of line fill patterns for the plot.

FILLPATTERNATTRS=style-element<(options)> | (options)
   specifies the line-fill color and pattern.

INTBOXWIDTH=numeric-value
   specifies the box width when an interval category (Y) variable is specified.

LINEATTRS=style-element<(options)> | (options)
   specifies the appearance of the box outlines.

MEANATTRS=style-element<(options)> | (options)
   specifies the appearance of the marker that represents the mean in the box.

MEDIANATTRS=style-element<(options)> | (options)
   specifies the appearance of the line that represents the median.

NOCAPS
   hides the cap lines for the whiskers.

NOMEAN
   hides the mean marker.

NOMEDIAN
   hides the median line.

NOOUTLIERS
   hides the outliers from the plot.

NOTCHES
   specifies that the boxes be notched.

OUTLIERATTRS=style-element<(options)> | (options)
   specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
   specifies the degree of transparency for the plot.

WHISKERATTRS=style-element<(options)> | (options)
   specifies the appearance of the whisker and cap lines.
WHISKERPCT=number
    specifies the whisker length, in percentile units.

Axis options

X2AXIS
    assigns the analysis variable to the secondary (top) horizontal axis.

Y2AXIS
    assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(role-list) | NONE
    specifies the information to display when the cursor is positioned over a
    box or whisker in the box plot.

TIPFORMAT=(format-list)
    applies formats to the list of data tip roles that you specify in the TIP=
    option.

TIPLABEL=(label-list)
    applies labels to the list of data tip roles that you specify in the TIP=
    option.

Group options

CLUSTERWIDTH=numeric-value
    specifies the cluster width as a ratio of the midpoint spacing.

GROUP=variable
    specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
    specifies how to display grouped boxes.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
    adds data labels for the outlier markers.

DATALABELATTRS=style-element<(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    DATALABEL= option.

LABELFAR
    specifies that only the far outliers have data labels.

LEGENDLABEL="text-string"
    specifies a label that identifies the box plot in the legend.

SPLITCHAR="character-list"
    splits the text for data labels at the specified character(s) when there is
    not enough room to display the text normally.

SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
    specifies the category variable for the plot.

DISPLAYSTATS <=ALL | (statistics-list)>
specifies statistics to be displayed for each box.

\texttt{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data.

\texttt{MISSING}

accepts a missing value as a valid category value.

\texttt{PERCENTILE=1 | 2 | 3 | 4 | 5}

specifies a method for computing the percentiles for the plot.

\texttt{SPREAD}

relocates outlier points that have identical values to prevent overlapping.

\texttt{WEIGHT=numeric-variable}

specifies a variable that contains values to be used as weights for the calculations.

\textbf{Plot reference options}

\texttt{NAME="text-string"}

assigns a name to a plot statement.

\textbf{Required Argument}

\texttt{numeric-analysis-variable}

specifies the analysis variable for the plot. If you do not specify the \texttt{CATEGORY=} option, then one box is created for the analysis variable.

\textbf{Optional Arguments}

\texttt{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

\texttt{BOXWIDTH=numeric-value}

specifies the width of the box. Specify a value between 0.0 (0\% of the available width) and 1.0 (100\% of the available width).

Defaults 0.4

When \texttt{GROUP} is specified, the default box width is 0.6.

\texttt{CAPSCALE=numeric-value}

specifies a positive number to use as a multiplier for changing the default width of the whisker caps. For example, \texttt{CAPSCALE=2} doubles the default cap width and \texttt{CAPSCALE=0.5} reduces the default cap width by half.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M5} and later releases.

Default 1
This option has no effect if NOCAPS is specified or if CAPSHAPE=NONE.

The thickness (height) of a SERIF, LINE, or BRACKET cap honors the line thickness specified in the WHISKERATTRS= option. The cap pattern is always solid.

Use the CAPSHAPE= option to specify the line shape of the caps.

**CAPSHAPE=BRACKET | LINE | SERIF | NONE**

specifies the shape of the whisker cap lines. Specify one of the following values:

- **BRACKET**: displays a straight line with brackets.
- **LINE**: displays a straight line.
- **SERIF**: displays a short straight line.
- **NONE**: does not display a cap.

Default: **SERIF**

**CATEGORY=category-variable**

specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

The default ordering of the tick values is ascending formatted order of the *category-variable*. To change this ordering, you can use the DISCRETEORDER=DATA option in the category axis statement.

**CLUSTERWIDTH=numeric-value**

specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default: **0.7**

This option is applicable only when a GROUP is in effect and the category axis is discrete.

**CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX**

specifies that a connect line joins a statistic from box to box.

This option applies only when the CATEGORY option is used to generate multiple boxes.

You can use the CONNECTATTRS option to specify attributes for the connect line.

**CONNECTATTRS=style-element<(options)> | (options)**

specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**

GraphConnectLine style element in the current style for ungrouped data. GraphData1 \( \ldots \) GraphData\( n \) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interactions**

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

**Examples**

CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:

CONNECTATTRS=GraphData3

**DATALABEL**

\(<variable>\)

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

**Note**

This option has no effect unless the plot contains outlier points.

**DATALABELATTRS=**

\(<style-element<\(\text{(options)}\)>\) | \(\text{(options)}\)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1\( \ldots \)GraphData\( n \) style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATASKIN=**

NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

**Note**

This feature applies to SAS 9.4M1 and later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned.
element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.20 DATASKIN Options for Box Plots

<table>
<thead>
<tr>
<th>Option</th>
<th>DATASKIN Options for Box Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image" alt="NONE option" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image" alt="CRISP option" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image" alt="GLOSS option" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="MATTE option" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image" alt="PRESSED option" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image" alt="SHEEN option" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: If you also specify NOFILL, then the data skin is applied to the outlines.

See: "Using Data Skins" on page 1685

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default: 0.0 (no offset)

**DISPLAYSTATS <=ALL | (statistics-list)>**

specifies statistics to be displayed for each box.

Note: This feature applies to SAS 9.4M5 and later releases.

**DISPLAYSTATS**

When DISPLAYSTATS is specified without any argument, the plot displays N, MEAN, and STD.

**DISPLAYSTATS=ALL**

This option displays all available statistics. (See the statistics-list.)

Note: When you choose this option, there might not be enough space for the boxes to be drawn. For horizontal box plots, you might have better results if you specify DISPLAYSTATS by itself or specify a limited set of statistics using DISPLAYSTATS=(statistics-list).
DISPLAYSTATS=(statistics-list)

statistics-list is a space-separated list of one or more of the following statistics, enclosed in parentheses:

- **DATAMAX**: maximum data value that includes not only the maximum whisker values but also the maximum outlier values. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

- **DATAMIN**: minimum data value that includes not only the minimum whisker values but also the minimum outlier values. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

- **IQR**: interquartile range (Q3–Q1).

- **MAX**: maximum data value below the box upper fence.

- **MEAN**: mean data value for the box.

- **MEDIAN**: median data value for the box.

- **MIN**: minimum data value above the box lower fence.

- **N**: number of observations for the box.

- **Q1**: lower quartile (25th percentile) for the box.

- **Q3**: upper quartile (75th percentile) for the box.

- **RANGE**: range of the data (MAX–MIN).

- **STD**: standard deviation of the data for the box.

- **SUMWGT**: sum of the weights for the box.

**Example**

```plaintext
displaystats=(mean median)
```

**Restriction**

This option is ignored if the GROUP= option is also specified.

**Note**

The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.

**EXTREME**

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL | NOFILL**

specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Default**

FILL

**FILLATRMS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.
Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions

This option has no effect if you specify the NOFILL option.

This suboption overrides the plot's TRANSPARENCY= option for the fill.

FILLPATTERN enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification
number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.21  Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1.png" alt="Pattern L1 Example" /></td>
<td>R1</td>
<td><img src="image2.png" alt="Pattern R1 Example" /></td>
<td>X1</td>
<td><img src="image3.png" alt="Pattern X1 Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4.png" alt="Pattern L2 Example" /></td>
<td>R2</td>
<td><img src="image5.png" alt="Pattern R2 Example" /></td>
<td>X2</td>
<td><img src="image6.png" alt="Pattern X2 Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image7.png" alt="Pattern L3 Example" /></td>
<td>R3</td>
<td><img src="image8.png" alt="Pattern R3 Example" /></td>
<td>X3</td>
<td><img src="image9.png" alt="Pattern X3 Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image10.png" alt="Pattern L4 Example" /></td>
<td>R4</td>
<td><img src="image11.png" alt="Pattern R4 Example" /></td>
<td>X4</td>
<td><img src="image12.png" alt="Pattern X4 Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image13.png" alt="Pattern L5 Example" /></td>
<td>R5</td>
<td><img src="image14.png" alt="Pattern R5 Example" /></td>
<td>X5</td>
<td><img src="image15.png" alt="Pattern X5 Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**  
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**  
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FREQ=numeric-variable**  
Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**  
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

**Interaction**  
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**  
Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY specifies how to display grouped boxes.

CLUSTER the boxes are drawn adjacent to each other.

OVERLAY all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Defaults CLUSTER for a discrete category axis

OVERLAY for a linear axis

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.
The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**INTBOXWIDTH=** numeric-value  
specifies the box width when an interval category (Y) variable is specified.

**Restriction** The axis type for the category axis must be LINEAR, and the variable must be numeric.

**Example**
```
proc sgplot data=sashelp.class;
 hbox weight / category=height intboxwidth=20 ;
 yaxis type=linear;
run;
```

**LABELFAR**  
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

**Note** This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

**LEGENDLABEL=** "text-string"  
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

**LINEATTRS=** style-element<(options)> | (options)  
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default** GraphDataDefault style element in the current style for ungrouped data.  
GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**MEANATTRS=** style-element<(options)> | (options)  
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

**Default** GraphBoxMean style element in the current style for ungrouped data.  
GraphData1 ... GraphData n style elements in the current style for grouped data.
grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**MEDIANATTRS=** `style-element<(options)> | (options)`
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default**
GraphBoxMedian style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interaction**
This option is ignored if the NOMEDIAN option is also specified.

**MISSING**
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

**NAME=** "text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**
The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOCAPS**
hides the cap lines for the whiskers.

**Interaction**
Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOUTLIERS in the same statement, the NOCAPS option might be ignored.

**NOMEAN**
hides the mean marker.

**NOMEDIAN**
hides the median line.

**NOOUTLIERS**
hides the outliers from the plot.

**NOTCHES**
specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median } \pm 1.58 \left( \frac{IQR}{\sqrt{N}} \right)
\]

For a visual description of the parts of a box plot, see "Details" on page 1012.
OUTLIERATTRS=style-element<(options)> | (options)
specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default  GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

Default  5 (empirical distribution function with averaging)

See  "Calculating Percentiles" on page 1014

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note  This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The roles for TIP are CATEGORY, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Note:  This feature applies to SAS 9.4M1 and later releases.

Requirement  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction  This option replaces all of the information that is displayed by default.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  tip=(mean median)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.
Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the \texttt{w.d} SAS format. To avoid this error condition, insert an \texttt{F} in front of the format name. Example: \texttt{F2.0}

Tip: Use the TIPLABEL option to assign labels to the list of roles.

See: \textit{SAS Formats and Informats: Reference}

Example: \texttt{tipformat=(auto F5.2)}

\texttt{TIPLABEL=(label-list)}

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the \texttt{label-list} and the \texttt{role-list} that is specified for the TIP= option. A label must be provided for each role, using the same order as the \texttt{role-list}. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of roles.

Example: \texttt{tiplabel=(auto "Class Weight")}

\texttt{TRANSPARENCY=value}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

\texttt{WEIGHT=numeric-variable}

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to \texttt{SAS 9.4M1} and later releases.

Requirement: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
WHISKERATTRS=style-element<(options)> | (options)
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

WHISKERPCT=number
specifies the whisker length, in percentile units.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified, \(number\) is used as the low percentile, and 100–\(number\) is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
- 10 specifies the 10th percentile low and the 90th percentile high
- 25 specifies the 25th percentile low and the 75th percentile high

Default: The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range: 0–25

Notes: When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

X2AXIS
assigns the analysis variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

Details

Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.
By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Note: Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots.

Figure 10.3  Parts of a Box Plot

In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.
Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 \text{ IQR}$). Outliers that are beyond upper and lower far fences ($\pm 3 \text{ IQR}$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let $n$ be the number of nonmissing values for a variable, and let $X_1$, $X_2$, ..., $X_n$ represent the ordered values of the variable. $X_1$ is the smallest value, $X_2$ is the next smallest, and $X_n$ is the largest value. Let the $t$th percentile be $y$, set:

$$p = \frac{t}{100}$$

and let:

$$np = j + g$$

when PERCENTILE=1, 2, 3, or 5, or let:

$$(n + 1)p = j + g$$

when PERCENTILE=4, where $j$ is the integer part of $np$, and $g$ is the fractional part of $np$. Then the PERCENTILE= option defines the $t$th percentile, $y$, as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at $X_{np}$</td>
<td>$y = (1 - g)x_j + gx_{j+1}$</td>
<td>$x_0$ is taken to be $x_1$</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to $np$</td>
<td>$y = x_j$</td>
<td>Used when $g &lt; \frac{1}{2}$ or when $g = \frac{1}{2}$ and $j$ is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y = x_j + 1$</td>
<td>Used when $g = \frac{1}{2}$ and $j$ is odd or when $g &gt; \frac{1}{2}$</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>$y = x_j$</td>
<td>Used when $g = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y = x_{j+1}$</td>
<td>Used when $g &gt; 0$</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at $x_{(n+1)p}$</td>
<td>$y = (1 - g)x_j + gx_{j+1}$</td>
<td>$x_{n+1}$ is taken to be $x_n$</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>$y = \frac{1}{2}(x_j + x_{j+1})$</td>
<td>Used when $g = 0$</td>
</tr>
</tbody>
</table>
HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

Interaction: Starting with SAS 9.4M4, the number of bins is limited to 100,000. If the number of bins exceeds the limit, the heat map is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement NXYBINSMAX= option, which defaults to 100,000. See NXYBINSMAX= on page 107.

Note: This feature applies to SAS 9.4M3 and later releases.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types.

Example: “About Heat Maps” on page 21

Syntax

HEATMAP X=variable Y=variable <options>;

Summary of Optional Arguments

Appearance options

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-variable
  specifies a numeric variable that is used to color the regions of the heat map.

COLORSTAT=FREQ | PCT | SUM | MEAN
  specifies the statistic to use for the COLORRESPONSE= variable.

FILLATTRS=(TRANSPARENCY=number)
  specifies the transparency of the area fill in the rectangles.

OUTLINE
  displays an outline around each colored region.

OUTLINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the rectangle outlines.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Axis options**

**SHOWXBINS**
specifies that bins be used as the basis for the X-axis tick marks.

**SHOWYBINS**
specifies that bins be used as the basis for the Y-axis tick marks.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**YENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

**Binning options**

**NXBINS=** *positive-integer*
specifies the number of bins to use for the X role.

**NYBINS=** *positive-integer*
specifies the number of bins to use for the Y role.

**XBINSIZE=** *positive-number*
specifies the horizontal size of bins in X-axis coordinate system units.

**XBINSTART=** *positive-number*
specifies the data value for the first bin of the X role.

**YBINSIZE=** *positive-number*
specifies the vertical size of bins in Y-axis coordinate system units.

**YBINSTART=** *positive-number*
specifies the data value for the first bin of the Y role.

**Data options**

**DISCRETEX**
forces the X axis to be discrete when the X= variable is numeric.

**DISCRETEY**
forces the Y axis to be discrete when the Y= variable is numeric.

**Data tip options**

**TIP=** *(role-list) | NONE*
specifies the information to display when the cursor is positioned over a rectangle.

**TIPFORMAT=** *(format-list)*
applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=** *(label-list)*
applies labels to the list of data tip roles that you specify in the TIP= option.

**Plot options**

**FREQ=** *numeric-variable*
specifies a variable for the frequency count for each observation in the input data.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations.

**Plot reference options**

**NAME="text-string"**
assigns a name to a plot statement.

**Required Arguments**

**X=variable**
specifies the variable for the X axis.

**Requirement** If you specify a numeric variable and the X-axis type is discrete, then you must also specify DISCRETEX in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

**Y=variable**
specifies the variable for the Y axis.

**Requirement** If you specify a numeric variable and the Y-axis type is discrete, then you must also specify DISCRETEY in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

**Optional Arguments**

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

colormodel=TwoColorRamp

**(color-list)** specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.
Requirement The list of colors must be enclosed in parentheses.

Example \texttt{colormodel=(blue yellow green)}

Default The ThreeColorRamp style element

Interaction For this option to take effect, the \texttt{COLORRESPONSE=} option must also be specified.

\texttt{COLORRESPONSE=numeric-variable}

specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

\texttt{COLORSTAT=FREQ | PCT | SUM | MEAN}

specifies the statistic to use for the \texttt{COLORRESPONSE=} variable.

Defaults \texttt{FREQ}

SUM if \texttt{COLORRESPONSE=} is specified

\texttt{DISCRETEX}

forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X-axis type is discrete, then you must specify \texttt{DISCRETEX}. Otherwise, the heat map might not be drawn correctly.

Interactions If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

When this option is used, the XENDLABELS= option is ignored.

\texttt{DISCRETEY}

forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y-axis type is discrete, then you must specify \texttt{DISCRETEY}. Otherwise, the heat map might not be drawn correctly.

Interactions If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

When this option is used, the YENDLABELS= option is ignored.

\texttt{FILLATTRS=(TRANSPARENCY=number)}

specifies the transparency of the area fill in the rectangles.

Default The \texttt{TRANSPARENCY=} option value.

Range 0 (opaque) to 1 (entirely transparent)

Interaction This option overrides the \texttt{TRANSPARENCY=} option for the colored region only. It does not affect the region outlines.

Tip You can combine this option with \texttt{TRANSPARENCY=} to set one transparency for the outline but a different transparency for the fill. Example:
FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NXBINS=positive-integer
specifies the number of bins to use for the X role. The system determines the XBINSIZE= and XBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.

Range 2 or more

Interaction NXBINS is ignored if SHOWXBINS is also specified.

See “Binning Options” on page 1023

NYBINS=positive-integer
specifies the number of bins to use for the Y role. The system determines the YBINSIZE= and YBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.

Range 2 or more

Interaction NYBINS is ignored if SHOWYBINS is also specified.

See “Binning Options” on page 1023

OUTLINE

displays an outline around each colored region.

Default No outline is displayed

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default: GraphOutlines style element in the current style. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Interaction: This option has no effect unless OUTLINE is also specified.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
"Overview of Attribute Maps” on page 1733

**SHOWXBINS**
specifies that bins be used as the basis for the X-axis tick marks.

Default: Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction: This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction: When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

**SHOWYBINS**
specifies that bins be used as the basis for the Y-axis tick marks.

Default: Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction: This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction: When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

**TIP=**(role-list)|NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)
a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP are X, Y, and COLORRESPONSE. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.
NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(x y)`

**TIPFORMAT=(format-list)**

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.


Example `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of roles.

Example  
```
tiplabel=(auto "Class Weight")
```

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**XBINSIZE=positive-number**
specifies the horizontal size of bins in X-axis coordinate system units. The system determines the NXBINS= and XBINSTART= values, if not specified. The bins always span the X data range.

Default  Determined by the system.

See  “Binning Options” on page 1023

**XBINSTART=positive-number**
specifies the data value for the first bin of the X role. The system determines the NXBINS= and XBINSIZE= values, if not specified. The bins always span the X data range.

Default  Determined by the system.

See  “Binning Options” on page 1023

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Default  If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interactions  This option is ignored when the X axis is discrete.

This option has no effect unless the SHOWXBINS option is also used.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.
**YBINSIZE=**<em>positive-number</em>
specifies the vertical size of bins in Y-axis coordinate system units. The system determines the NYBINS= and YBINSTART= values, if not specified. The bins always span the Y data range.

Default: Determined by the system.

See: “Binning Options” on page 1023

**YBINSTART=**<em>positive-number</em>
specifies the data value for the first bin of the Y role. The system determines the NYBINS= and YBINSIZE= values, if not specified. The bins always span the Y data range.

Default: Determined by the system.

See: “Binning Options” on page 1023

**YENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Default: If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interactions: This option is ignored when the Y axis is discrete. This option has no effect unless the SHOWYBINS option is also used.

---

**Details**

**Binning Options**

**Overview of Binning Options**

In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The number of observations that fall into each bin is computed, and the grid is displayed by coloring each bin with a shade of color computed from a color gradient. You can use the COLORRESPONSE= option to specify the variable that is used for the color gradient. You can also use the COLORSTAT= option to specify the statistic to apply to the variable.

**Note:** Although the examples in this section were created in the SGPLOT procedure, the general concepts apply also to heat maps in the SGPANEL procedure.

Heat maps have several options for controlling how bins are used to represent the data. You can do the following:

- specify the number of bins (SGPLOT procedure only)
specify the bin size
specify the bin start values

The following sections describe the binning options and show how they interact.
The examples are all based on the following simple program:

**Table 10.22  Example Program for Binning Options**

```sas
ods graphics / reset=all;
ods _all_ close;
ods html;
ods graphics / width=4.5in;
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city;
run;
```

**Specifying the Number of Bins**

The NXBINS= and NYBINS= options specify the number of bins to use for the X role
and the Y role respectively. The system determines the bin size and bin start values,
if not specified.

**Note:** The NXBINS= and NYBINS= options are available only in the SGPLOT
procedure. In the SGPANEL procedure, you can manage bins using the options to
control bin size and bin start values.

In the following example, the number of bins is reduced to 11 on both axes.
The following occur when you run this example:

- fewer bins are used to represent the data.
- because the bins always span the range of the data, the size of each bin
  increases. If you also specify the XBINSIZE, YBINSIZE, or both options, those
  options are ignored in order to accommodate the data.

**Table 10.23  Specified Number of Bins**

```sas
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city /
 nxbins=11
 nybins=11;
run;
```
Conversely, if you increase the number of bins, more bins are available to represent the data, and the size of each bin decreases.

Specifying the Bin Size

The XBINSIZE= and YBINSIZE= options specify the size of bins along the X role and the Y role in their respective data units. The system determines the number of bins and the bin start values, if not specified.

In the following example, the bin size is increased for both the X and Y roles.

The following occur when you run this example:

- the size of each bin increases.
- because the bins always span the range of the data, fewer bins are used to represent the data.

![Table 10.24 Specified Bin Size](image)

Specifying the Bin Start Values

The XBINSTART= and YBINSTART= options specify the data value for the first bin of the X and Y roles, respectively. The system determines the number of bins and the bin size, if not specified.

In the following example, the bin start values are increased for both the X and Y roles.

The following occur when you run this example:

- bins are drawn only for the data that starts with the specified values. In this case, the bins represent the intersection of data values in which X >= 4000 and Y >= 20.
- because the bins always span the range of the data, the size of each bin increases and fewer bins are used to represent the data.
HEATMAPPARM Statement

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

Requirements:  The COLORGROUP= role or the COLORRESPONSE= role must be specified.
The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

Interaction: Starting with SAS 9.4M4, the number of bins is limited to 100,000. If the number of bins exceeds the limit, the heat map is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement NXYBINSMAX= option, which defaults to 100,000. See NXYBINSMAX= on page 107.

Notes: The data for a parameterized heat map should contain only one observation for each X and Y value pair.
This feature applies to SAS 9.4M3 and later releases.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Heat Maps” on page 21

Syntax

HEATMAPPARM X=variable Y=variable COLORGROUP=variable </options>;
HEATMAPPARM X=variable Y=variable COLORRESPONSE=numeric-variable </options>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

FILLATTRS=(TRANSPARENCY=number)
  specifies the transparency of the area fill in the rectangles.

NOMISSINGCOLOR
  excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map.

OUTLINE
  displays an outline around each colored region.

OUTLINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the rectangle outlines.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
  specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
  specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axis options
  SHOWXBINS
    specifies that bins be used as the basis for the X-axis tick marks.

  SHOWYBINS
    specifies that bins be used as the basis for the Y-axis tick marks.

  X2AXIS
    assigns the X variable to the secondary (top) horizontal axis.

  XENDLABELS
    specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

  Y2AXIS
    assigns the Y variable to the secondary (right) vertical axis.

  YENDLABELS
    specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Data options
  DISCRETEX
    forces the X axis to be discrete when the X= variable is numeric.

  DISCRETEY
    forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options
  TIP=(variable-list) | NONE
    specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

  TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP=
one.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP=
one.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are
selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable
specifies the variable for the X axis.

Requirement If you specify a numeric variable and the X-axis type is discrete,
then you must also specify DISCRETEX in the HEATMAPPARM
statement. Otherwise, the heat map might not be drawn correctly.

Y=variable
specifies the variable for the Y axis.

Requirement If you specify a numeric variable and the Y-axis type is discrete,
then you must also specify DISCRETEY in the HEATMAPPARM
statement. Otherwise, the heat map might not be drawn correctly.

COLORGROUP=variable
specifies a variable that is used to color the regions of the heat map.

Requirement This argument is required when the response variable is of type
discrete.

COLORRESPONSE=numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Requirement This argument is required when the response variable is of type
interval.

Tip The color ramp is specified by the COLORMODEL= option. The
color ramp represents the range of unique response values.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.
Note: This feature applies to the COLORGROUP variable in the heat map.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

COLORMODEL=\texttt{style-element} \mid \texttt{(color-list)}
specifies a color ramp that is to be used with the COLORRESPONSE= option.

\textit{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\begin{itemize}
\item \texttt{STARTCOLOR} \hspace{1em} specifies the color for the smallest data value of the COLORRESPONSE= column.
\item \texttt{NEUTRALCOLOR} \hspace{1em} specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
\item \texttt{ENDCOLOR} \hspace{1em} specifies the color for the highest data value of the COLORRESPONSE= column.
\end{itemize}

Example \texttt{colormodel=TwoColorRamp}

\textit{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example \texttt{colormodel=(blue yellow green)}

Default The ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

\textbf{DISCRETEX}

forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X-axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interactions If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

When this option is used, the XENDLABELS= option is ignored.

\textbf{DISCRETEY}

forces the Y axis to be discrete when the Y= variable is numeric.
**Requirement**
If Y= specifies a numeric variable and the Y-axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

**Interactions**
If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

When this option is used, the YENDLABELS= option is ignored.

**FILLATTRS=(TRANSPARENCY=number)**
specifies the transparency of the area fill in the rectangles.

- **Default** The TRANSPARENCY= option value.
- **Range** 0 (opaque) to 1 (entirely transparent)
- **Interaction** This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.
- **Note** The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.
- **Tip** You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill.

**NAME=“text-string”**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

- **Note** The text-string is case-sensitive and must define a unique name within the procedure.
- **Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCOLOR**
excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.

- **Default** Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

**OUTLINE**
displays an outline around each colored region.

- **Default** No outline is displayed
OUTLINEATTRS=\texttt{style-element \langle options\rangle} | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default: GraphOutlines style element in the current style. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Interaction: This option has no effect unless OUTLINE is also specified.

RATTRID=\texttt{character-value}
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M3} and later releases.

See Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

SHOWXBINS
specifies that bins be used as the basis for the X-axis tick marks.

Default: Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction: This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the \texttt{UNIFORM=} option in the PROC SGPLOT statement.)

Interaction: When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y-axis tick marks.

Default: Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction: This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the \texttt{UNIFORM=} option in the PROC SGPLOT statement.)

Interaction: When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(\texttt{variable-list}) | \texttt{NONE}
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

`ODS GRAPHICS / IMAGEMAP;`

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See `SAS Formats and Informs: Reference`

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of roles.

TIPLABEL=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

The specified transparency is not applied to missing values. Missing values are always opaque.

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

For each plot element that is to have an active link.

Example: https://www.sas.com/en_us/home.html

By default, no HTML links are created.

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**XENDLABELS**

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the XVALUES= option identifies the X data as endpoint values or midpoint values.
Interactions  This option is ignored when the X axis is discrete.

This option has no effect unless the SHOWXBINS option is also used.

XVALUES=Midpoints | LeftPoints | RightPoints
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

Default  MIDPOINTS

Y2Axis
assigns the Y variable to the secondary (right) vertical axis.

YEndLabels
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Default
If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the YVALUES= option identifies the Y data as endpoint values or midpoint values.

Interactions  This option is ignored when the Y axis is discrete.

This option has no effect unless the SHOWYBINS option is also used.

YVALUES=Midpoints | LeftPoints | RightPoints
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Default  MIDPOINTS

---

**HIGHLOW Statement**

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

**Note:**  This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

**See:**  “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

**Examples:**  “About High-Low Plots” on page 23
“Example 11: Creating a High-Low Chart” on page 1543

**Syntax**

```plaintext
HIGHLOW X=variable | Y=variable
```
HIGH=numeric-variable LOW=numeric-variable <option(s)>;

## Summary of Optional Arguments

### Appearance options

- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
  - specifies the width of the bars as a ratio of the maximum possible width.

- **CLIPCAP**
  - displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.

- **CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW**
  - specifies the type of cap used for the clip cap.

- **COLORMODEL=style-element | (color-list)**
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
  - specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
  - specifies an amount to offset all lines or bars from the category midpoints.

- **FILL**
  - specifies whether the area fill is visible for bars.

- **NOFILL**
  - specifies the fill color and transparency.

- **FILLPATTERN**
  - enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <options> | (options)**
  - specifies the line-fill color and pattern.

- **HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW**
  - specifies the type of cap used at the high end of the bar or line.

- **INTERVALBARWIDTH=numeric-value**
  - specifies the thickness of the bar when the X (or Y) data is numeric.

- **LINEATTRS=style-element<(options)> | (options)**
  - specifies the appearance of the outlines for the band.

- **LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW**
  - specifies the type of cap used at the low end of the bar or line.

- **OUTLINE**
  - specifies whether the outlines of the bars are visible.

- **RATTRID=character-value**
  - specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=\textit{value}
specifies the degree of transparency for the plot.

\textbf{Axis options}

\texttt{X2AXIS}
assigns the X variable to the secondary (top) horizontal axis.

\texttt{Y2AXIS}
assigns the Y variable to the secondary (right) vertical axis.

\textbf{Data tip options}

\texttt{TIP=\{variable-list\} \mid \textit{NONE}}
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\texttt{TIPFORMAT=\{format-list\}}
applies formats to the list of data tip variables that you specify in the TIP= option.

\texttt{TIPLABEL=\{label-list\}}
applies labels to the list of data tip variables that you specify in the TIP= option.

\textbf{Group options}

\texttt{CLUSTERWIDTH=\textit{numeric-value}}
specifies the cluster width as a ratio of the maximum width.

\texttt{GROUP=\textit{variable}}
specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=OVERLAY \mid CLUSTER}
specifies how to display grouped data.

\texttt{GROUPORDER=DATA \mid REVERSEDATA \mid ASCENDING \mid DESCENDING}
specifies the ordering of the groups within a category.

\texttt{NOMISSINGGROUP}
specifies that missing values of the group variable are not included in the plot.

\textbf{Label options}

\texttt{HIGHLABEL=\textit{variable}}
specifies the label to be shown at the high end of the line or bar.

\texttt{LABELATTRS=\textit{style-element}\{options\} \mid \{options\}}
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

\texttt{LEGENDLABEL=\textit{"text-string"}}
specifies a label that identifies the elements from the band plot in the legend.

\texttt{LOWLABEL=\textit{variable}}
specifies the label to be shown at the low end of the line or bar.

\textbf{Plot options}

\texttt{CLOSE=\textit{numeric-variable}}
specifies the data for the CLOSE tick on the bar or line.

\texttt{OPEN=\textit{numeric-variable}}
specifies the data for the OPEN tick on the bar or line.

\texttt{TYPE=\textit{BAR} \mid \textit{LINE}}
specifies how the data is to be represented.
URL=character-variable
  specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
  assigns a name to a plot statement.

Required Arguments

X=variable | Y=variable
  specifies a variable that is used to plot the values along the N or Y axis.

Note  If you specify X=variable, then the statement creates vertical lines or bars on the X axis and the HIGH and LOW values are plotted along the Y axis. Conversely, if you specify Y=variable, then the statement creates horizontal lines or bars on the Y axis and the HIGH and LOW values are plotted along the X axis.

HIGH=numeric-variable
  specifies the upper value for the floating lines or bars.

LOW=numeric-variable
  specifies the lower value for the floating lines or bars.

Optional Arguments

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 18, “Using Discrete Attribute Maps,” on page 1737
    “Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
  specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default  0.85

Requirement  This option is applicable only when the X or Y axis is discrete.

Interaction  This option has no effect unless TYPE=BAR.

CLIPCAP
  displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the MIN= and MAX= axis options are specified for an axis and a data
value exceeds the specified axis range, the bar or line for that value is clipped. If
the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by
the Y-axis range. The cap is a vertical arrowhead that points toward the clip edge (▼
or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by
the X-axis range. The cap is a horizontal arrowhead that points toward the clip
edge (< or >).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side
where the bar or line was clipped.

Interactions  Clip indicators appear only when CLIPCAP is specified and the
data values exceed the axis range that is specified by the MIN= and MAX= options. When the MIN= and MAX= options are not
specified, the axis range is adjusted to accommodate the data
values, and clipping does not occur.

When TYPE=BAR, the caps are drawn to fit within the bar width.
The width of the bar itself might be reduced.

Note  When the high-low TYPE=LINE, you can change the appearance
of the clip cap using the CLIPCAPSHAPE= option.

Tip  If you specify the HIGHLABEL or LOWLABEL option, and the bar
or line is clipped, the label value is still drawn outside the tip of the
clip cap. If the entire bar or line is clipped, no labels are shown.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td></td>
<td>▶</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▶</td>
</tr>
</tbody>
</table>

Default  DEFAULT

Requirement  The shape can be changed only when TYPE=LINE (the default value).

CLOSE=numeric-variable
specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the
tick value is represented by an indicator on the side of the bar or line that has
higher X values. For a horizontal plot, the value is represented by an indicator on
the side with higher Y values.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from
0.0 (narrowest) to 1.0 (widest).
Requirement This option is applicable only when the X or Y axis is discrete.

Interactions This option is applicable only when TYPE=BAR.

This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

**COLORMODEL=** *style-element* | *(color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

---

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

*(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default**

The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for lines or for outline-only bars.

**Interaction**

For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=** *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

---

The fill colors are assigned according to the legend gradient.

**Interaction**

When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.
Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 925
"Using Gradient Color Legends" on page 1637

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.26  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

High-low plots can specify lines rather than bars.

Table 10.27  DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill
patterns, see "Using Fill Patterns to Distinguish Categories of Data" on page 1698. For instructions about viewing the contents of style templates, see "About Styles and Style Elements" on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See "Using Data Skins" on page 1685

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all lines or bars from the category midpoints. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset from the category midpoints)

Requirement This option is applicable only when the X or Y axis is discrete.

**FILL | NOFILL**
specifies whether the area fill is visible for bars. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.

Defaults Color attribute of the GraphDataConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData\ n style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interactions If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;
TYPE=BAR must be specified for the fill pattern to have any effect.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.28 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note
When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how to display grouped data.

OVERLAY
groups are overlaid without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.
CLUSTER
observations with different group values are displayed in adjacent clusters around the category value. Each set of group values is centered at the midpoint tick mark for the category.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is discrete.

Interactions GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR.
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

\textit{Figure 10.4} Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

\begin{tabular}{|c|c|c|}
\hline
NOE & SERIF & BARBEDARROW \\
\hline
\hline
FILLEDARROW & OPENARROW & CLOSEDARROW \\
\hline
\end{tabular}

Default: NONE

Restriction: Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction: When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

HIGHLABEL=variable

specifies the label to be shown at the high end of the line or bar.

INTERVALBARWIDTH=numeric-value

specifies the thickness of the bar when the X (or Y) data is numeric.

Default: The default thickness of the bar is derived from the minimum interval between the data values along X or Y.

Requirement: This option is applicable only when the X or Y axis is a linear axis or a TIME axis.
This option has no effect unless TYPE=BAR.

**LABELATTRS=**<br>
\(<\text{options}\>)\ | (\text{options})

Specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

**Examples**

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LEGENDLABEL=**"\text-string"

Specifies a label that identifies the elements from the band plot in the legend. By default, the label "band" is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

**LINEATTRS=**<br>
\(<\text{options}\>)\ | (\text{options})

Specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Defaults**

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless you also specify the OUTLINES option.

**LOWCAP=**\notext{character-variable} | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

Specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:
When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.

When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.

When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

**Figure 10.5** Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>NOIE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLEDAARROW</td>
<td>OPENARROW</td>
<td>CLOSEDARROW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

**Interaction** When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**LOWLABEL=variable**
specifies the label to be shown at the low end of the line or bar.

**NAME="text-string"**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The *text-string* is case-sensitive and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**OPEN=numeric-variable**
specifies the data for the OPEN tick on the bar or line.
For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

**OUTLINE | NOOUTLINE**
specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default**: OUTLINE

**Interactions**: This option has no effect unless TYPE=BAR.

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Note**: This feature applies to SAS 9.4M3 and later releases.

**See** Chapter 19, “Using Range Attribute Maps,” on page 1755

"Overview of Attribute Maps” on page 1733

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

**Note**: This feature applies to SAS 9.4M1 and later releases.

**Requirement**: You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

Interaction: This option replaces all of the information that is displayed by default.

Tip: Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)
TIPFORMAT=(format-list) applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPFORMAT option to assign formats to the list of variables.

See *SAS Formats and Informats: Reference*

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list) applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example

```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
TYPE=BAR | LINE
 specifies how the data is to be represented. BAR uses fill and outline attributes. LINE uses line attributes.

Default LINE

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
 specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS
 assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
 assigns the Y variable to the secondary (right) vertical axis.

HISTOGRAM Statement

Creates a histogram that displays the frequency distribution of a numeric variable.

Interactions: The HISTOGRAM statement can be combined only with DENSITY statements in the SGPLOT procedure. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Starting with SAS 9.4M4, the number of bins is limited to 10,000. If the number of bins exceeds the limit, the histogram is not drawn. A warning message is written to the SAS log in that case. The limit is specified by the ODS GRAPHICS statement NBINSMAX= option, which defaults to 10,000. See NBINSMAX= on page 107.

Note: The range of the response variable is automatically divided into an appropriate number of bins.

Examples: “About Histograms” on page 50
 “Example 8: Combining Histograms with Density Plots” on page 1540
Syntax

HISTOGRAM response-variable <options>;

Summary of Optional Arguments

Appearance options
- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **FILL**
 - **NOFILL**
 specifies whether the area fill is visible.

- **FILLATTRS=style-element <(options)> | (options)**
 specifies the fill color and transparency.

- **FILLENDCOLOR=color**
 specifies a fill color that is applied to the chart at the baseline.

- **FILLPATTERN**
 enables the display of line fill patterns for the plot.

- **FILLPATTERNATTRS=style-element <(options)> | (options)**
 specifies the line-fill color and pattern.

- **FILLYTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
 specifies the fill type that is applied to the chart.

- **OUTLINE**
 - **NOOUTLINE**
 specifies whether outlines are displayed for the bars.

- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.

Axis options
- **X2AXIS**
 assigns the response variable to the secondary (top) horizontal axis.

- **Y2AXIS**
 assigns the calculated values to the secondary (right) vertical axis.

Group options
- **GROUP=variable**
 specifies a variable that is used to group the data.

Label options
- **DATALABEL<= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>**
 specifies the statistic to display at the end of each bin.

- **DATALABELATTRS=style-element<(options)> | (options)**
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **LEGENDLABEL="text-string"**
specifies a label that identifies the histogram in the legend.

Plot options

BINSTART=numeric-value
specifies the X coordinate of the first bin.

BINWIDTH=numeric-value
specifies the bin width.

BOUNDARY=LOWER | UPPER
specifies how boundary values are assigned to bins.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

NBINS=numeric-value
specifies the number of bins.

SCALE=COUNT | PERCENT | PROPORTION
specifies the scaling that is applied to the vertical axis.

SHOWBINS
specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis.

WEIGHT=numeric-variable
specifies a variable in the input data set that contains values to be used as weights for the bin height.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Argument

response-variable
specifies the response variable for the histogram.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BINSTART=numeric-value
specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

Default The default value is determined by the system.
BINWIDTH=numeric-value
specifies the bin width. The system determines the number of bins. The bins
always span the range of the data.

Default The default value is determined by the system.

Restriction The maximum number of bins is limited to approximately 10,000. If
the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that
yields approximately 10,000 bins. A warning of the change is
written to the SAS log.

Interactions
This option is ignored if the NBINS= option is also specified.

BOUNDARY=LOWER | UPPER
specifies how boundary values are assigned to bins.

LOWER specifies that boundary values are assigned to the lower bin.

UPPER specifies that boundary values are assigned to the upper bin.

Default UPPER

DATALABEL<= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION> specifies the statistic to display at the end of each bin.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify one of the following:

NONE suppresses the data labels.

AUTO uses the SCALE= option value. By default, SCALE=PERCENT.

COUNT
DENSITY
PERCENT
PROPORTION specifies that the count, density, percentage, or proportion statistic is to be
displayed at the end of each bar.

Default If DATALABEL is specified without a value, then the default is
AUTO.

Interaction When DATALABEL=AUTO, the SCALE= option determines the
statistic that is displayed at the end of each bar.

DATALABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also
specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family="Arial" Size=8
 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP |GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.29 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![NONE]</td>
<td>![CRISP]</td>
<td>![GLOSS]</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td>![MATTE]</td>
<td>![PRESSED]</td>
<td>![SHEEN]</td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.
If you also specify NOFILL, then the data skin is applied to the outlines.

See "Using Data Skins" on page 1685

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default
The default status of the area fill is specified by the DisplayOpt attribute of the GraphHistogram style element in the current style.

Interactions
Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=
style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLENDCOLOR=
color
specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data.

Interactions
This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTPRIORITY option in the ODS GRAPHICS statement. Example:

```
ods graphics / attrpriority=none;
```

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Use the FILLPATTERNATRGS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot's fill color.

```
FILLPATTERNATRGS=style-element (options) | (options)
```

Specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

```
COLOR=style-reference | color
```

Specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

```
PATTERN=style-reference | line-pattern
```

Specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.30 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FILLTYPE=

SOLID | GRADIENT | ALPHAGRADIENT

specifies the fill type that is applied to the chart.

Note: This feature applies to SAS 9.4M2 and later releases.

SOLID

each bin is filled with the color that is assigned to the bin fill area.

GRADIENT

Prior to SAS 9.4M5, each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bin gradually changing to the color of the wall at the baseline of the bin. The option does not involve transparency. Only the color is affected.

Interactions

To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

(Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.
ALPHAGRADIENT

A gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips

If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bins.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note

If the value is not an integer, only the integer portion is used.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to SAS 9.4M2 and later releases.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"

Specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

NAME="text-string"

Assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NBINS=numeric-value
specifies the number of bins. The system determines the BINWIDTH= value. The bins always span the range of the data.

The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with NBINS=.

Default The default number of bins is determined by the system.

Range 2 to 10,000

Note The limit on the number of bins is specified by the ODS GRAPHICS statement NBINSMAX= option, which defaults to 10,000. See “NBINSMAX= n” on page 107.

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpt attribute of the GraphHistogram style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SCALE=COUNT | PERCENT | PROPORTION
specifies the scaling that is applied to the vertical axis. Specify one of the following values:

COUNT
the axis displays the frequency count.

PERCENT
the axis displays values as a percentage of the total.

PROPORTION
the axis displays values as proportions (0.0 to 1.0) of the total.

Default PERCENT

SHOWBINS
specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis. By default, the tick marks are created at regular intervals based on the minimum and maximum values.

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
WEIGHT=numeric-variable
specifies a variable in the input data set that contains values to be used as weights for the bin height.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

X2AXIS assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS assigns the calculated values to the secondary (right) vertical axis.

HLINE Statement

Creates a horizontal line chart. You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

Restrictions: The HLINE statement can be combined only with other categorization plot statements in the SGPLLOT procedure. See “Plot Compatibility” on page 1630. and “Plot Axes” on page 1634.

When category plots are overlaid, all of the plots must use the same category variable.

See: “Marker Fills and Outlines” on page 1645

Example: “About Line Charts” on page 60

Syntax

HLINE category-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from the discrete category values.

LINEATTRS=style-element{(options)} | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Axis options

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable

specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

Label options

CURVELABEL <"text-string">

adds a label for the line.

CURVELABELATTRS=style-element<(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label.

DATALABEL <"variable>

displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=DATA | LEFT | RIGHT

specifies the location of the data label.

LEGENDLABEL="text-string"

specifies the label that identifies the line plot in the legend.
SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and
data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL
NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis
and legend labels.

Limit options
LIMITATTRS=style-element<(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default
width of the limit-bar cap (serif).

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options
FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the plot.

Plot options
ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the
input data.

MISSING
accepts a missing value as a valid category value.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"

assigns a name to a plot statement.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the horizontal axis.

Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA= value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BREAK

breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.
Interaction

This option is ignored when the Y axis is discrete and the MISSING option is specified. To break the line at missing values in that case, remove the MISSING option.

Note

The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

RESPASC

sorts by the response values in ascending order.

RESPDESC

sorts by the response values in descending order.

Default

The plot is sorted in ascending order based on the category values.

Restrictions

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default

0.8
Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

CURVELABEL<="text-string">
adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).
Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
 places the curve label at the last point on the curve.

MAX
 places the label at the part of the curve closest to the maximum X-axis value.

MIN
 places the label at the part of the curve closest to the minimum X-axis value.

START
 places the curve label at the first point on the curve.

Default: END

Interactions
 This option has no effect unless the CURVELABEL option is also specified.

 The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
 displays a label for each data point.

 If you specify a variable, then the values of that variable are used for the data labels.

 If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

 If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions
 When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

 If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options.

 Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

DATALABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 For a description of the text options, see "Text Attributes" on page 1658.

Defaults
 Label font: style element GraphDataText attributes FontFamily, FontSize, FontStyle, and FontWeight.
Label color: for ungrouped data, style element GraphDataText attribute color. For grouped data, style element GraphData1...GraphData\textsubscript{n} attribute contrastColor when DATALABELPOS=DATA. Otherwise, style element GraphDataText attribute color.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATRGS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATRGS=GraphLabelText

DataSkin

DATALABELPOS=DATA | LEFT | RIGHT

specifies the location of the data label. Specify one of the following values:

- **DATA**
 places the label on the data primitives (at the right edge of the lines).

- **LEFT**
 places the label to the left of the lines.

- **RIGHT**
 places the label to the right of the lines.

Default: DATA

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

When you specify a value of LEFT or RIGHT for this option, the splitting of data labels (using the SPLITCHAR= option) is not supported.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 10.32 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
</tbody>
</table>

Default NONE
Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See "Using Data Skins" on page 1685

DISCRETEOFFSET= numeric-value
specifies an amount to offset all lines from the discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)
Requirement This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions This option has no effect unless MARKERS is also specified.
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ= numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.
Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction
If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction
When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Default
OVERLAY

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.
ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element<(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
LIMITCAPSCALE=positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default

1

Interaction

For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip

The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITS=BOTH | LOWER | UPPER

adds limit lines to the plot. Specify one of the following values:

- **BOTH**
 adds lower and upper limit lines to the plot.

- **LOWER**
 adds lower limit lines to the plot.

- **UPPER**
 adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction

Limit lines are displayed only when you specify STAT=MEAN.

Tip

To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
 confidence limits

- **STDDEV**
 standard deviation

- **STDERR**
 standard error

Default

If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interaction

If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS=style-element<options> | (options)**

specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction

This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element<(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKERS
adds markers to the plot.

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction
This option has no effect when FREQ= is specified.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLIMITCAPS
suppresses the serif cap on limit lines, if limit lines are displayed.

Note:
This feature applies to SAS Viya 3.5 and later releases.

Interaction
The appearance of the limit lines is controlled by the LIMITATTRS= option.

NUMSTD=\text{n}
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default
1

RESPONSE=\text{response-variable}
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.
SPLITCHAR="character-list"

specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.
Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.
Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGLOT statement.

You can use the PCTNDEC= option in the SGLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list) a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)
TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

INSET Statement

Add a text box inside the axes of the plot.
Syntax

INSET "text-string" <… "text-string-n"> <options>;
INSET (label-list) <options>;

Summary of Optional Arguments

Appearance options

- **BACKCOLOR=**color
 specifies the background color of the inset.
- **BORDER**
- **NOBORDER**
 specifies whether to display a border around the text box.
- **LABELALIGN=**LEFT | CENTER | RIGHT
 specifies how the labels are aligned when you specify label-value pairs.
- **OPAQUE**
 forces the inset background to be opaque rather than transparent.
- **POSITION=**position-value
 specifies the position of the text box within the plot.
- **TEXTATTRS=**style-element<options> | (options)
 specifies the appearance of the text in the text box.
- **TITLE=**"text-string"
 specifies a title for the text box.
- **TITLEATTRS=**style-element<options> | (options)
 specifies the appearance of the title.
- **VALUEALIGN=**LEFT | CENTER | RIGHT
 specifies how text values are aligned.

Required Argument

text-string-list | (label-list)
you must specify one of the following arguments:

- **text-string-list**
 specifies one or more quoted text strings. Each string is placed on a separate line in the text box (for example, "My line 1" "My line 2").

 TIP
 You can use the VALUEALIGN= option to align the text values. They can be centered in the graph, or right- or left-justified.

- **(label-list)**
 specifies a series of quoted labels and values for the text box. Specify your label-value pairs as follows:
Here is an example: ("My label 1" = "My value 1" "My label 2" = "My value 2")

TIP You can use the LABELALIGN= and VALUEALIGN= options to align the labels and the values, respectively.

You can format the text in insets and add special characters using the following syntax:

- \((*\text{ESC}*)\{\text{sup }'\text{string}'\}\) specifies that the string appears as a superscript.
- \((*\text{ESC}*)\{\text{sub }'\text{string}'\}\) specifies that the string appears as a subscript.
- \((*\text{ESC}*)\{\text{unicode 'hexadecimal-value'x}\}\) specifies a glyph (graphical character) to be displayed using its Unicode hexadecimal value or a SAS keyword equivalent. For more information about SAS keywords, see “Reserved Keywords and Unicode Values” in SAS Graph Template Language: Reference.

Note: \((*\text{ESC}*)\) is the default ODS escape character. You can set your own escape character with the ODS ESCAPECHAR=character; statement.

In the following inset statement, the Greek letter alpha denotes the alpha value for the confidence limits in a graph. The R-Square value is displayed using the superscript format:

```
inset ("(*\text{ESC}*)\{\text{unicode alpha}\}" = "0.05"  
  "\text{R}\{\text{ESC}*\}\{\text{sup '2'}\}" = "0.7705") / border;
```

Here is the text inset for this example:

\[
\begin{array}{cc}
\alpha & 0.05 \\
R^2 & 0.7705 \\
\end{array}
\]

Optional Arguments

BACKCOLOR=color

specifies the background color of the inset. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default By default, the background is transparent.
If BACKCOLOR= is set, then the OPAQUE option is also set automatically.

BORDER | NOBORDER

specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

LABELALIGN=LEFT | CENTER | RIGHT

specifies how the labels are aligned when you specify label-value pairs. Specify one of the following:

- **LEFT**
 - aligns the text to the left.

- **CENTER**
 - aligns the text to the center.

- **RIGHT**
 - aligns the text to the right.

Default: LEFT

OPAQUE

forces the inset background to be opaque rather than transparent.

Note: This feature applies to SAS 9.4M5 and later releases.

This option is useful when a transparent background makes the text in the inset difficult to see. For example, if the inset is positioned on top of a histogram, specifying OPAQUE sets the inset off from the histogram.

Default: The background is transparent unless BACKCOLOR= is also specified.

Interaction: If BACKCOLOR= is specified, the background is always opaque.

POSITION=position-value

specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
<th>Top</th>
<th>Topleft</th>
<th>Topright</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
<td></td>
<td>TOP</td>
<td></td>
<td></td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
<td></td>
<td>TOLEFT</td>
<td>TOPRIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.

TEXTATTRS=style-element<options> | (options)

specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.
Defaults Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Tip The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.

Examples TEXTATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

 TITLEATTRS=GraphDataText

TITLE=``text-string''
specifies a title for the text box. The title text is always center-aligned.

TITLEATTRS=style-element<\(options\)> | (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Examples TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

 TITLEATTRS=GraphTitleText

VALUEALIGN=LEFT | CENTER | RIGHT
specifies how text values are aligned.

Use this option to specify either of the following:

- how the values are aligned when you specify quoted label-value pairs in a `(label-list)`
- how the quoted strings are aligned when you specify a `text-string-list`

Specify one of the following values.

LEFT
aligns the text to the left.

CENTER
aligns the text to the center.

RIGHT
aligns the text to the right.
KEYLEGEND Statement

Adds a legend to the plot.

Tip: You can define a legend item that can be included in the legend. For more information, see "LEGENDITEM Statement" on page 1093. This feature applies to SAS 9.4M5 and later releases.

See: “Using Discrete Legends” on page 1636

Examples:
“Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1535
“Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1537
“Example 8: Combining Histograms with Density Plots” on page 1540

Syntax

KEYLEGEND <"name-1" ..."name-n"> <options>;

Summary of Optional Arguments

Appearance options
ACROSS=n
specifies the number of columns in the legend.

BORDER

NOBORDER
specifies whether the border around the legend is visible.

DOWN=n
specifies the number of rows in the legend.

LINELENGTH=dimension<units>
specifies the length of the line glyph for line entries in the legend.

LOCATION=OUTSIDE | INSIDE
specifies whether the legend is placed outside or inside the axis area.

OPAQUE

NOOPAQUE
OPAQUE removes the legend background's transparency.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=position-value
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title.

\[
\text{VALUEATTRS=style-element}(\text{options})|\ (\text{options})
\]

specifies the appearance of the legend value labels.

Legend options

"name-1" ... "name-n"

specifies the names of one or more plots that you want to include in the legend.

EXCLUDE=("item-name" <... "item-nameN" ...>)

specifies a list of legend entries to exclude from the display.

SORTORDER=ASCENDING | DESCENDING | REVERSEAUTO

specifies the sort order to use for the legend entry labels.

TYPE=\text{FILL} | \text{FILLCOLOR} | \text{LINE} | \text{LINECOLOR} | \text{LINEPATTERN} | \text{MARKER} | \text{MARKERCOLOR} | \text{MARKERSYMBOL}

specifies which visual attributes to display for legend entries in the legend.

Marker options

AUTOITEMSIZE

specifies that all markers and swatches in the legend are sized in proportion to the font size used for the legend value labels.

AUTOOUTLINE

specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

FILLASPECT=GOLDEN | positive-number

specifies an aspect ratio for the fill swatches based on their height.

FILLHEIGHT= \text{dimension}

specifies the height of the fill swatches.

SCALE=positive-number

specifies a scale factor that is to be applied to the fill swatch height.

Optional Arguments

"name-1" ... "name-n"

specifies the names of one or more plots that you want to include in the legend. Each name that you specify must correspond to a value that you entered for the NAME= option in a plot statement.

You can specify names to control which plots are included in the legend. In addition, if you specify one or more names, the KEYLEGEND statement creates a legend when no legend is created automatically.

\[\text{Note: A KEYLEGEND statement without a "name" reference affects only the automatic legend.}\]

\[\text{Default: If you do not specify a name, then the legend contains references to all of the plots in the graph.}\]

\[\text{Note: The names specified here determine which plots are included, but not the labels that appear in the legend for those plots. To specify labels, use the LEGENDLABEL= option on the plot statements.}\]
ACROSS=n
specifies the number of columns in the legend. By default, the number of columns is determined automatically.

Note: Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the ACROSS= option.

AUTOITEMSIZE
specifies that all markers and swatches in the legend are sized in proportion to the font size used for the legend value labels. These proportional sizes take effect regardless of the attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the color swatches are small compared to the labels. The second figure uses AUTOITEMSIZE to size the color swatches in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Swatch Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin ✈️ Asia ☘️ Europe 🇺🇸 USA</td>
<td>Origin ✈️ Asia ☘️ Europe 🇺🇸 USA</td>
</tr>
</tbody>
</table>

Tip: Use the VALUEATTRS= option to control the font size for the legend value labels.

AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

Note: This feature applies to SAS 9.4M3 and later releases.

Default: When this option is not specified, the legend fill swatches are always outlined.

Note: The outlines are always 1 pixel wide with a solid pattern.

BORDER | NOBORDER
specifies whether the border around the legend is visible. The BORDER option shows the border. The NOBORDER option hides the border.

Default: BORDER

DOWN=n
specifies the number of rows in the legend. By default, the number of rows is determined automatically.

Note: Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the DOWN= option.

EXCLUDE=("item-name" <... "item-nameN" ...>)
specifies a list of legend entries to exclude from the display.
Note: This feature applies to SAS 9.4M3 and later releases.

Default

No items are excluded.

Requirement

Each item name must be enclosed in quotation marks and separated from adjacent names by a space.

Note

When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.

Tip

For plots with groups, you can exclude specific group values.

Example

The following example excludes items Truck and Wagon from the legend.

```
exclude=(*Truck* "Wagon")
```

FILLASPECT=GOLDEN | positive-number

specifies an aspect ratio for the fill swatches based on their height.

Note: This feature applies to SAS 9.4M3 and later releases.

GOLDEN

specifies the golden ratio of 1.618 (width = 1.618 * height).

positive-number

specifies a custom aspect ratio.

Default

The system determines the aspect.

Interaction

This option is ignored when AUTOITEMSIZE is specified.

Tip

Use FILLHEIGHT= to specify the height.

FILLHEIGHT= dimension

specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

Note: This feature applies to SAS 9.4M3 and later releases.

Default

The system determines the height.

Interaction

This option is ignored when AUTOITEMSIZE is specified.

Tip

Use FILLASPECT= to specify the aspect ratio.

LINELENGTH=dimension<units>

specifies the length of the line glyph for line entries in the legend.

Note: This feature applies to SAS 9.4M2 and later releases.

The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of
measurement units that are supported, see "Units of Measurement" on page 1659.

Default The length is determined automatically by the system.

LOCATION=OUTSIDE | INSIDE
specifies whether the legend is placed outside or inside the axis area. The OUTSIDE option places the legend outside of the axis area. The INSIDE option places the legend inside the axis area.

Default OUTSIDE

Interaction If LOCATION=INSIDE and POSITION= is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see "Example 2: Legend with a Position Specified inside the Axis Area" on page 1092.

OPAQUE | NOOPAQUE
OPAQUE removes the legend background’s transparency. NOOPAQUE forces the legend background to be transparent.

This feature is useful when the legend is positioned within the graph area, and you want to hide the graphics elements that are behind the legend.

Defaults OPAQUE when LOCATION=OUTSIDE (the default value)
NOOPAQUE when LOCATION=INSIDE

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.

TOP=dimension specifies the amount of extra space added to the top.

BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default No padding

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list
of measurement units that are supported, see "Units of Measurement" on page 1659.

POSITION=position-value
specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
 places the legend at the bottom of the graph.
- **BOTTOMLEFT**
 places the legend at the bottom left corner of the graph.
- **BOTTOMRIGHT**
 places the legend at the bottom right corner of the graph.
- **LEFT**
 places the legend at the left side of the graph.
- **RIGHT**
 places the legend at the right side of the graph.
- **TOP**
 places the legend at the top of the graph.
- **TOPLEFT**
 places the legend at the top left corner of the graph.
- **TOPRIGHT**
 places the legend at the top right corner of the graph.

Defaults

- **BOTTOM**
 If LOCATION=INSIDE is specified, the legend is automatically positioned near an edge of the plot area that has the least amount of collision with the data.

Interaction

- If LOCATION=INSIDE and POSITION= is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see "Example 2: Legend with a Position Specified inside the Axis Area" on page 1092.

Notes

- By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.
- If you specify more than one legend with the same position, then all of your legends are placed at that position.

SCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

Note: This feature applies to **SAS 9.4M3** and later releases.

Default

- 1

Restriction

- This option does not apply to markers with pattern fills.

Interaction

- This option is ignored when AUTOITEMSIZE is specified.
Tips

Use FILLHEIGHT= to change the base height.

Use FILLASPECT= to specify the width.

SORTORDER=ASCENDING | DESCENDING | REVERSEAUTO
specifies the sort order to use for the legend entry labels.

Note: This feature applies to SAS 9.4M2 and later releases.

The REVERSEAUTO value was added in SAS 9.4M5. This value reverses the order of the legend entry labels.

Defaults

When the procedure contains more than one plot statement, the default is based on the order of the plot statements.

For grouped data, the default is derived from the data order. If using SAS CAS data, the default is ASCENDING.

Interaction

This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

Note

Legend entries are sorted by the formatted values of the data.

TITLE="text-string"
specifies a title for the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Defaults

In an auto-generated legend, no title is displayed unless the legend shows group values. If the legend shows group values, the group variable label is displayed when a label is assigned, or the group variable name is displayed when a label is not assigned.

In a custom legend created using plot NAME= options and a KEYLEGEND statement, by default, no legend title is displayed, even when the legend displays group values.

Requirement

text-string must be enclosed in quotation marks.

Tips

Use this option to add a title to a custom legend.

To suppress the default title in an auto-generated legend, specify TITLE="" in a KEYLEGEND statement as shown in the following example:

```sas
proc sgplot data=sashelp.class;
    scatter x=age y=height / group=sex;
    keylegend / title="";
run;
```
TITLEATTRS=\texttt{style-element}\langle\texttt{options}\rangle \mid \texttt{(options)}

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Examples

\begin{verbatim}
 TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
\end{verbatim}

Here is an example that specifies a style element:

\begin{verbatim}
 TITLEATTRS=GraphTitleText
\end{verbatim}

\textbf{TYPE=\texttt{FILL} | \texttt{FILLCOLOR} | \texttt{LINE} | \texttt{LINECOLOR} | \texttt{LINEPATTERN} | \texttt{MARKER} | \texttt{MARKERCOLOR} | \texttt{MARKERSYMBOL}}

specifies which visual attributes to display for legend entries in the legend.

\begin{verbatim}
Note: This feature applies to SAS 9.4M2 and later releases.
\end{verbatim}

The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying TYPE=MARKERSYMBOL displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the TYPE specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords FILLCOLOR or MARKERSYMBOL result in the display of a single attribute. Other keywords (for example, FILL, LINE, or MARKER) result in legends that display a set of visual attributes. For example, the keyword LINE results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to LINEPATTERN or MARKERSYMBOL, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords FILLCOLOR, LINECOLOR, and MARKERCOLOR, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the CONTRASTCOLOR attribute of the GraphOutlines style element.

Default

All attributes are displayed.

\textbf{VALUEATTRS=\texttt{style-element}\langle\texttt{options}\rangle \mid \texttt{(options)}}

specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

Defaults
Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples

```
valueattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
valueattrs=GraphTitleText
```

Examples

Example 1: Legend for Two Ellipses

```ods graphics / reset width=4in;
proc sgplot data=sashelp.class
    noautolegend;
scatter x=height y=weight;
ellipse x=height y=weight /
    alpha=.2
    name="eighty"
    legendlabel="80% Prediction";
ellipse x=height y=weight /
    alpha=.05
    name="ninetyfive"
    legendlabel="95% Prediction";
keylegend "eighty" "ninetyfive";
run;
```
Example 2: Legend with a Position Specified inside the Axis Area

If POSITION= on page 1088 INSIDE and LOCATION= on page 1087 INSIDE are both specified, you might need to offset the axis in order to make space for the legend within the axis area.

The following example specifies LOCATION=INSIDE and POSITION=BOTTOM. In the graph, the legend collides with the data. To avoid this problem, the graph specifies an OFFSETMIN= on page 1503 value for the Y axis. (If the legend’s position was at the top of the plot, an OFFSETMAX= on page 1503 value would be specified instead.)

```ods graphics / reset width=4in;
title "Mileage by Type (Excluding Hybrids)";
proc sgplot data=sashelp.cars;
   where type ne "Hybrid";
   vbar type / response=mpg_city;
   keylegend / location=inside position=bottom;
   xaxis grid;
   yaxis offsetmin=0.15 display=(nolabel);
run;
title;
```

Note: For HBOX on page 996, HBAR on page 929, HLINE on page 1060, and DOT on page 883 plot statements, the Y axis is reversed by default, so the axis origin is at the top. As a result, you use OFFSETMAX= on page 1503 to create an offset at the bottom of the axis. OFFSETMIN= on page 1503 is used to create an offset at the top of the axis for these plot types.

The following example specifies LOCATION=INSIDE and POSITION=TOPRIGHT. To avoid having the legend collide with the graph, the code specifies an OFFSETMAX= value for the X axis. The OFFSETMAX= value is applied to the end of the axis farther from the origin.
LEGENDITEM Statement

Creates a legend item that can be included in the legend. The LEGENDITEM statement must be used with one or more plot statements. The procedure can contain multiple LEGENDITEM statements.

Notes:
This feature applies to SAS 9.4M5 and later releases.

When used with multiple plot statements, the order of the LEGENDITEM statement among the plot statements determines the legend item’s position in the automatic legend.

Any of the supported attribute options can be specified for a legend item regardless of its type. However, attribute options that do not apply to the specified TYPE= value are ignored. For example, the MARKERATTRS= option sets the attributes for a marker and is useful if you set TYPE=MARKER or TYPE=MARKERLINE. However, if TYPE= is set to a value that does not display a marker symbol, then the MARKERATTRS= option is ignored. Similarly, if you specify a marker legend item that uses a filled marker type, then specifying NOFILL has no effect.

See:
“KEYLEGEND Statement” on page 1083
Syntax

LEGENDITEM TYPE=type NAME="text-string" </options>;

Summary of Optional Arguments

Appearance options

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency when TYPE= is set to FILL.

FILLEDOUTLINEDMARKERS
specifies that a filled marker also has an outline.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE.

NOFILL
NOOUTLINE
hides the fill or outline of the fill swatch for the legend item

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outline when TYPE= is set to FILL.

TEXT="text-string"
specifies the text to display when TYPE= is set to TEXT.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the legend item when TYPE is set to TEXT.

Label options

LABEL="text-string"
specifies a label to be used for the item in the legend.

LABELATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the legend item’s label.

Required Arguments

TYPE= FILL | MARKER | MARKERLINE | LINE | TEXT
specifies the type of legend item.

FILL
specifies a fill (displayed as a filled square). The appearance can be managed with the FILLATTRS= and OUTLINEATTRS= options.

MARKER
specifies a marker. The appearance can be managed with the MARKERATTRS= option.

MARKERLINE
specifies a marker and a line. The appearance can be managed with the MARKERATTRS= and LINEATTRS= options.
LINE
specifies a line. The appearance can be managed with the LINEATTRS= option.

TEXT
specifies text that can be displayed in the legend area. The text string is defined with the TEXT= option, and the text appearance can be managed with the TEXTATTRS= option.

NAME="text-string"
assigns a name to the legend item for reference in a KEYLEGEND statement.

Note The text-string is case-sensitive and must define a unique name within the procedure. The text-string must be enclosed in quotation marks.

Optional Arguments

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency when TYPE= is set to FILL. You can specify the color by using a style element or by specifying a specific option. If you specify a style element, you can also specify options to override the color.

Note: TRANSPARENCY cannot be derived from the style element, but it can be set in the options.

For a description of fill attributes, see "Fill Attributes" on page 1655.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction This option has no effect if you specify the NOFILL option.

FILLEDOUTLINEDMARKERS
specifies that a filled marker also has an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless TYPE= is set to MARKER or MARKERLINE.

Use the FILLATTRS= and OUTLINEATTRS= options to specify attributes for the fill and outline.

Note When this option is specified, the default fill color is the color that is in effect for the FILLATTRS= option. The default line color is the color that is in effect for the OUTLINEATTRS= option. The default transparency is the transparency in effect for the MARKERATTRS= option (the transparency in the FILLATTRS= option is not honored).

LABEL="text-string"
specifies a label to be used for the item in the legend.
You can specify the font and color attributes for the label with the LABELATTRS= option.

Tip

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default

GraphValueText style element in the current style. The affected attributes are Color, Family, FontSize, FontStyle, and FontWeight.

Interactions

For this option to take effect, the LABEL= option must also be specified.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default

GraphDataDefault style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default

GraphDataDefault style element in the current style. The affected attributes are ContrastColor, MarkerSize, and MarkerSymbol.

NOFILL | NOOUTLINE

hides the fill or outline of the fill swatch for the legend item

Default

The fill and outline are shown.

Interactions

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

If you specify a marker legend item that uses a filled marker type, then specifying NOFILL has no effect.

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the outline when TYPE= is set to FILL. You can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the outline.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n \) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction
This option has no effect if NOOUTLINE is also specified.

TEXT="text-string"

specifies the text to display when TYPE= is set to TEXT.

Default
If this option is not specified in a legend item with TYPE=TEXT, then a default blank space is used.

Tip
You can specify the appearance of the text with the TEXTATTRS= option.

TEXTATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font properties of the legend item when TYPE is set to TEXT. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default
GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Details

The LEGENDITEM statement creates a definition for a legend item that can be included in a legend. The item that you define is independent of the data and enables you to customize the legend to enhance or replace a standard legend. For example, to display annotation text within the legend area, you can define a LEGENDITEM statement with TYPE=TEXT and specify the text in the TEXT= option.

The LEGENDITEM statement must be used with one or more plot statements within the procedure. The legend item is included in the automatically generated legend. The legend contains the legend item along with entries for the other plot statements. Note the following behaviors:

- When used with multiple plot statements, the order of the LEGENDITEM statement among the plot statements determines the legend item’s position in the automatic legend.
If a plot statement includes a group, then only the group plot shows up in the automatic legend by default.

You can override the automatic legend functionality with the KEYLEGEND statement. A single KEYLEGEND statement can reference one or more legend item names the same way it references plot names. Each legend item name that you specify must correspond to a value that you entered for the NAME= option in the LEGENDITEM statement.

See also “KEYLEGEND Statement” on page 1083.

Example

This example scatter plot shows the city miles per gallon (MPG) and the manufacturer’s suggested retail price (MSRP) for a group of vehicles. A Loess fit plot is also included. Without the LEGENDITEM statement, the auto-generated legend shows each of the six group values for vehicle type. The legend does not include the Loess plot.

Figure 10.6 Graph without the LEGENDITEM or KEYLEGEND Statements

In this example, the goal is to present the overall trend of vehicle prices and MPG rather than focus on individual vehicle types. The detailed legend shown in the previous figure is not needed.

The example shows how to customize the legend to do the following:

- combine all the vehicle types into a single legend entry
- include the Loess plot

In the following program, the LEGENDITEM statement is used to represent all the vehicle types within a single legend entry. The legend item is a marker that matches the scatter plot that it represents. The marker is given a neutral color so as not to be associated with any one of the vehicle types. The KEYLEGEND on page 1083 statement includes both the legend item and the Loess plot.

```sql
title "MSRP and MPG for Various Vehicle Types";
```
proc sgplot data=sashelp.cars;
scatter x=mpg_city y=msrp / group=type;
loess x=mpg_city y=msrp / nomarkers name="fit";
 legenditem type=marker name="car_types" /
 label="Vehicle types"
 markerattrs=(color=black symbol=circle);
 keylegend "fit" "car_types";
run;
title;
The result is a legend with a single entry for vehicles and an entry for the Loess plot.

Output 10.1 Graph with the LEGENDITEM and KEYLEGEND Statements

LINEPARM Statement

Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.

Requirement: The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

Example: “About Parameterized Lines” on page 27

Syntax

LINEPARM X=numeric-value | numeric-variable
Y=numeric-value | numeric-variable
SLOPE=numeric-value | numeric-variable
</option(s)>;
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element<options> | (options)
specifies the appearance of the line.

NOEXTEND
prevents the line from being extended beyond the axis offset.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL="text-string"
adds a label for the line.

CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | MIN | MAX
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CLIP
specifies that the data for the line is ignored when determining the data ranges for the axes.
Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-value | numeric-variable
specifies the X coordinate of a point.

Notes
Values are in the units of the data.

If the value specified for the X= option is outside of the data range, then
the data range is extended to include the specified point. This behavior
can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values,
no line is drawn for the respective observation.

Y=numeric-value | numeric-variable
specifies the Y coordinate of a point.

Notes
Values are in the units of the data.

If the value specified for the Y= option is outside of the data range, then
the data range is extended to include the specified point. This behavior
can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values,
no line is drawn for the respective observation.

SLOPE=numeric-value | numeric-variable
specifies the slope of the line. The slope can be positive or negative.

Tips
SLOPE=0 creates a horizontal line (parallel to the X axis).
SLOPE= . (missing value) creates a vertical line (parallel to the Y axis).

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

CLIP
specifies that the data for the line is ignored when determining the data ranges
for the axes. Each axis scale is determined by the other plots in the overlay. This
might result in the line not being displayed if its data range is not within the data
ranges of the other plots. This option ensures that the line is displayed.
CURVELABEL <"text-string">
adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=style-element(options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

Interactions This option is used in conjunction with the CURVELABELPOS= option to determine where the labels appear.

This option has no effect unless CURVELABEL is also specified.

CURVELABELPOS=AUTO | MIN | MAX
specifies the location of the curve label. Specify one of the following values:
AUTO
determines the best label position automatically. The line label is positioned
near the line boundary along unused axes whenever possible (typically Y2
and X2).

Interaction This value is available only when
CURVELABELLOC=OUTSIDE. If CURVELABELLOC=INSIDE,
you must specify either MIN or MAX.

MIN
places the curve label at the minimum value for the X axis.

MAX
places the curve label at the maximum value for the X axis.

Defaults AUTO when CURVELABELLOC=OUTSIDE
MAX when CURVELABELLOC=INSIDE

Interaction This option has no effect unless CURVELABEL is also specified.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for
each unique value of the grouping variable. The plot elements for each group
value are automatically distinguished by different visual attributes.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label
“LineParm” is used (if you specify a numeric value for Y) or the Y variable name
is used (if you specify a variable for Y).

Interaction The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LINEATTRS=style-element<options>| (options)
specifies the appearance of the line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in
other statements.

Note The text-string is case-sensitive and must define a unique name within the
procedure.

Tip This option is often used with legend statements in order to coordinate the
use of colors and line patterns between the graph and the legend.
NOEXTEND
prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interaction This option has no effect unless CURVELABEL is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.
See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

LOESS Statement

Creates a fitted loess curve.

Restriction: Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

“Marker Fills and Outlines” on page 1645

Example: “About Loess Plots” on page 42

Syntax

```
LOESS X=numeric-variable Y=numeric-variable </options>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set.

- **LINEATTRS=style-element<options> | (options)**

 specifies the appearance of the fit curve.

- **NOMARKERS**

 removes the scatter markers from the plot.

- **SMOOTH=numeric-value**
specifies a smoothing parameter value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options
X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
GROUP=variable
specifies a variable that is used to group the data.

Label options
CURVELABEL <="text-string”>
adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the fit line in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.
Legend options

NOLEGCLM
 hides the legend entry for the mean value confidence limits.

NOLEGFIT
 hides the legend entry for the fit line.

Limit options

CLM <="text-string">
 creates confidence limits.

CLMATTRS =style-element | (CLM-attrs-suboptions)
 specifies the appearance of the mean value confidence limits by using an
 ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
 specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.

JITTER
 specifies that data markers are offset when multiple observations have
 the same response value.

MARKERATTRS=style-element<(options)> | (options)
 specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
 specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element<(options)> | (options)
 specifies the appearance of the marker outlines.

Plot options

ALPHA=numeric-value
 specifies the confidence level for the confidence limits.

DEGREE=1 | 2
 specifies the degree of the local polynomials to use for each local
 regression.

INTERPOLATION=CUBIC | LINEAR
 specifies the degree of the interpolating polynomials that are used for
 blending local polynomial fits at the kd tree vertices.

MAXPOINTS=n
 specifies the maximum number of predicted points for the loess fit and the
 corresponding limits.

REWEIGHT=n
 specifies the number of iterative reweighting steps to apply to the data.

WEIGHT=numeric-variable
 specifies a variable that contains values to be used as weights for the
 calculations.

Plot reference options

NAME="text-string"
 assigns a name to a plot statement.
Required Arguments

\(X=\text{numeric-variable} \)
specifies the variable for the X axis.

\(Y=\text{numeric-variable} \)
specifies the variable for the Y axis.

Optional Arguments

\(\text{ALPHA}=\text{numeric-value} \)
specifies the confidence level for the confidence limits.

- **Default**: .05
- **Range**: 0.01 (complete confidence) to 0.99 (no confidence)
- **Interaction**: This option has no effect unless you also specify the CLM option.

\(\text{ATTRID}=\text{character-value} \)
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps" on page 1733

\(\text{CLM}="\text{text-string}\" \)
creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the \(\text{ALPHA}= \) option.

\(\text{CLMATTRS} = \text{style-element} | (\text{CLM-attrs-suboptions}) \)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

- **Note**: The CLMATTRS= option has no effect unless you also specify the CLM option.

\(\text{CLM-attrs-suboptions} \) can be the following suboptions:

\(\text{CLMFILLATTRS} = \text{style-element} <(\text{options})> | (\text{options}) \)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.

- **Interactions**: CLMFILLATTRS= has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.

The transparency specified with this option overrides the CLMTRANSPARENCY= option.
Tip If you want to display only the outlines, starting with SAS Viya 3.5, you can specify the OUTLINE and NOFILL suboptions.

Example `clmattrs=(clmfillattrs=(color=red transparency=.8))`

CLMLINEATTRS=style-element <(options)> | (options)

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with the SAS Viya 3.5 you can specify the OUTLINE suboption.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example `clmattrs=(outline clmlineattrs=(color=red thickness=8))`

FILL | NOFILL

specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default FILL

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE | NOOUTLINE

specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOOUTLINE

Interaction If NOOUTLINE and NOFILL are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Interaction The CLMATTRS= option has no effect unless you also specify the CLM option.
CLMTRANSPARENCY=\textit{numeric-value}

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL \textless \textit{text-string} \textgreater

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

CURVELABELATTRS=\textit{style-element}(\textit{options}) | (\textit{options})

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textit{n} style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples

\texttt{CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:

\texttt{CURVELABELATTRS=GraphTitleText}

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE
CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction
This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default
END

Interaction
This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction
This option has no effect if you also specify the NOMARKERS option.

DATALABELATRIS=style-element< (options) > | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATRIS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELPOS= *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Location</th>
<th>Pos.</th>
<th>Pos.</th>
<th>Pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>Bottom</td>
<td>Bottom</td>
<td>Bottom</td>
</tr>
<tr>
<td>Center</td>
<td>Center</td>
<td>Center</td>
<td>Center</td>
</tr>
<tr>
<td>Top</td>
<td>Top</td>
<td>Top</td>
<td>Top</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE= 1 | 2

specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

GROUP= *variable*

specifies a variable that is used to group the data. A separate plot is created for each unique value of the category variable. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

INTERPOLATION= CUBIC | LINEAR

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default LINEAR
JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the fit line in the legend. By default, the label "Loess" is used, along with the value of the SMOOTH= option if specified.

LINEATTRS=style-element<options> | (options)
specifies the appearance of the fit curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults For grouped data, GraphData1 ... GraphData_n style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Note If you overlay multiple Loess plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData_n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.
MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see "Marker Fills and Outlines" on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.
MAXPOINTS=n
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default 201

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

REWEIGHT=n
specifies the number of iterative reweighting steps to apply to the data.

Default 0

SMOOTH=numeric-value
specifies a smoothing parameter value.

Default A smoothing value is determined automatically.

Range (0,1]

See What is loess regression? on blogs.sas.com.
The LOESS Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the LOESS statement uses.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY= LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to **SAS 9.4M1** and later releases.
Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

TIPFORMAT=(format-list)
Applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an `F` in front of the format name. Example: `F2.0`

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example
```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)
Applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

NEEDLE Statement

Creates a plot with needles connecting each point to the baseline.

Restriction: The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Needle Plots” on page 29

Syntax

```plaintext
NEEDLE X=variable Y=numeric-variable <options>;
```
Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 - specifies the value of the ID variable in a discrete attribute map data set.

- **BASELINEATTRS=style-element\(<\text{options}>\) | (\text{options})**
 - specifies the appearance of the baseline.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 - specifies an amount to offset all needle lines from discrete X values.

- **DISPLAYBASELINE=AUTO | ON | OFF**
 - specifies whether the baseline is displayed.

- **LINEATTRS=style-element\(<\text{options}>\) | (\text{options})**
 - specifies the appearance of the needle lines.

- **TRANSPARENCY=value**
 - specifies the degree of transparency for the plot.

Axis options

- **BASELINE=numeric-value**
 - specifies the Y-intercept for the baseline.

- **X2AXIS**
 - assigns the X variable to the secondary (top) horizontal axis.

- **Y2AXIS**
 - assigns the Y variable to the secondary (right) vertical axis.

Data tip options

- **TIP=(variable-list) | NONE**
 - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
 - applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
 - applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

- **CLUSTERWIDTH=numeric-value**
 - specifies the width of the group clusters as a fraction of the midpoint spacing.

- **GROUP=variable**
 - specifies a variable that is used to group the data.

- **GROUPDISPLAY=CLUSTER | OVERLAY**
 - specifies how to display grouped needles.

- **GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
 - specifies the ordering of the groups within a category.

- **NOMISSINGGROUP**
 - specifies that missing values of the group variable are not included in the plot.
Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is
not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

MARKERATTRS=style-element<options> | (options)
specifies the appearance of the markers in the plot.

MARKERS
adds markers to the tips of the needles.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are
selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable
specifies the variable for the X axis.

Y=numeric-variable
specifies the variable for the Y axis.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733
BASELINE=numeric-value
specifies the Y-intercept for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the axis.

Default 0

Tips
The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.
DATALABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use
the DATALABEL= option. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also
specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphDataText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current
style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of
the GraphData1...GraphData n style elements.

Interaction

This option has no effect unless the DATALABEL option is also
specified.

Examples

DATALABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be
one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL
option.

This option displays group values for each category when
GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 10.33 DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 10.34 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![NONE]</td>
</tr>
<tr>
<td>CRISP</td>
<td>![CRISP]</td>
</tr>
<tr>
<td>GLOSS</td>
<td>![GLOSS]</td>
</tr>
<tr>
<td>MATTE</td>
<td>![MATTE]</td>
</tr>
<tr>
<td>PRESSED</td>
<td>![PRESSED]</td>
</tr>
<tr>
<td>SHEEN</td>
<td>![SHEEN]</td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all needle lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X axis is discrete.

DISPLAYBASELINE=AUTO | ON | OFF

specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO

displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative needles. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON

always displays the baseline.

OFF

hides the baseline.
Tip To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped needles.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\textsubscript{n} style elements in the current style.

Default OVERLAY

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.
DESCENDING orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=“” “text-string”

specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<(options)> | (options)

specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS option.

MARKERS
adds markers to the tips of the needles.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

- **Note** The text-string is case-sensitive and must define a unique name within the procedure.
- **Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

- **Interaction** This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

- "character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

 SPLITCHAR="abc"

 When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

 If the value does not contain any of the specified split characters, a split does not occur.

- **Default** Values are not split.

- **Interactions** This option has no effect unless DATALABEL is specified.

 When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

 You can specify the justification of the text by using the SPLITJUSTIFY= option.

- **Notes** When multiple characters are specified, the order of the characters in the list is not significant.

 The split characters are case sensitive.
See \textit{“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643}

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See \textit{“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643}

SPLITJUSTIFY= \texttt{LEFT} | \texttt{CENTER} | \texttt{RIGHT}
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See \textit{“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643}

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list) a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to \texttt{SAS 9.4M1} and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

\begin{verbatim}
ODS GRAPHICS / IMAGEMAP;
\end{verbatim}

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example \begin{verbatim}
tip=(age weight)
\end{verbatim}

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the \texttt{format-list} and the \texttt{variable-list} that is specified for the TIP= option. A format must be provided for each variable, using the same order as the \texttt{variable-list}. If you do not want to apply a format to a variable, use the AUTO keyword instead.
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Use the TIPLABEL= option to assign labels to the list of variables.

SAS Formats and Informats: Reference

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of variables.

Example

```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

By default, no HTML links are created.
Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

PBSPLINE Statement
Creates a fitted penalized B-spline curve.

Restriction:
Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

See:
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types
“Marker Fills and Outlines” on page 1645

Example:
“About Penalized B-Spline Plots” on page 43

Syntax

PBSPLINE X=numeric-variable Y=numeric-variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fitted curve.
NKNOTS=n
specifies the number of evenly spaced internal knots.

SMOOTH=numeric-value
specifies a smoothing parameter value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend.

NOLEGCLI
hides the legend entry for the individual value prediction limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options
CLI\(<"text-string">\)
creates confidence limits for the individual predicted values.

CLIATTRS = *style-element | (CLI-attrs-suboptions)*
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

CLM\(<"text-string">\)
creates confidence limits.

CLMATTRS = *style-element | (CLM-attrs-suboptions)*
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY = *numeric-value*
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS = *style-element<(options)> | (options)*
specifies the appearance of the markers in the plot.

MARKERFILLATTRS = *style-element<(COLOR=color)> | (COLOR=color)*
specifies the color of the marker fill.

MARKEROUTLINEATTRS = *style-element <(options)> | (options)*
specifies the appearance of the marker outlines.

NOMARKERS
removes the scatter markers from the plot.

PBSPLINE options

MAXPOINTS = *n*
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Plot options

ALPHA = *numeric-value*
specifies the confidence level for the confidence limits.

DEGREE = *non-negative-integer*
specifies the degree of the spline transformation.

FREQ = *numeric-variable*
specifies a variable for the frequency count for each observation in the input data.

GROUP = *variable*
specifies a variable that is used to group the data.
WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-variable
specifies the variable for the X axis.

Y=numeric-variable
specifies the variable for the Y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

<table>
<thead>
<tr>
<th>Default</th>
<th>.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0.01 (complete confidence) to 0.99 (no confidence)</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the CLI or CLM option (or both).</td>
</tr>
</tbody>
</table>

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

CLI <="text-string”>
creates confidence limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits. The confidence level is set by the ALPHA= option.

CLIAATTRS =style-element | (CLI-attrs-suboptions)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

Note: The CLIAATTRS= option has no effect unless you also specify the CLI option.

CLI-attrs-suboptions can be the following suboptions:

CLIFILLATTRS=style-element <(options)> | (options)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of fill attributes, see "Fill Attributes" on page 1655.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default
GraphConfidence style element in the current style for ungrouped data. The affected attributes are Color and Transparency.

Interaction
The CLIFILLATTRS= suboption has no effect unless you also specify the FILL suboption.

Example
```plaintext
cliattrs=(fill clifillattrs=(color=yellow transparency=.8))
```

CLILINEATTRS= style-element <(options)> | (options)

Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default
GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Example
```plaintext
cliattrs=(clilineattrs=(color=orange pattern=longdash thickness=8px))
```

FILL | NOFILL

specifies whether the prediction band is filled.

The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default
NOFILL

Interaction
If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE | NOOUTLINE

specifies whether the prediction band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default
OUTLINE

Interaction
If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Default The default style element for CLIATTRS= is GraphPredictionLimits.
Interaction The CLIATTRS= option has no effect unless you also specify the CLI option.

CLM `<"text-string">`
creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the ALPHA= option.

CLMATTRS =style-element | (CLM-attrs-suboptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

Note: The CLMATTRS= option has no effect unless you also specify the CLM option.

CLM-attrs-suboptions can be the following suboptions:

CLMFILLATTRS=style-element <(options)> | (options)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.

Interactions CLMFILLATTRS= has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.

The transparency specified with this option overrides the CLMTRANSPARENCY= option.

Tip If you want to display only the outlines, starting with SAS Viya 3.5, you can specify the OUTLINE and NOFILL suboptions.

Example `clmattrs=(clmfillattrs=(color=red transparency=.8))`

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with SAS Viya 3.5 you can specify the OUTLINE suboption.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example `clmattrs=(outline clmlineattrs=(color=red thickness=8))`
FILL | NOFILL

specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default FILL

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE | NOOUTLINE

specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOOUTLINE

Interaction If NOOUTLINE and NOFILL are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Interaction The CLMATTRS= option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL <"text-string">

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.
CURVELABELATTRS=style-element<options> | (options)
specifies the appearance of the labels in the plot when you use the
CURVELABEL= option. You can specify the appearance by using a style
element or by specifying specific options. If you specify a style element, you can
do also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults: GraphValueText style element in the current style. The affected
attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current
style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of
the GraphData1...GraphData style elements.

Interaction: This option has no effect unless the CURVELABEL option is also
specified.

Examples: CURVELABELATTRS=(Color=Green Family="Arial" Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or
outside of the plot axes (OUTSIDE).

Default: INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along
unused axes whenever possible (typically Y2 or X2).

Interaction: This value takes effect only when
CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default: END

Interactions: This option has no effect unless the CURVELABEL option is also
specified.

The START and END suboptions take effect only when
CURVELABELLOC=INSIDE.
DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight .

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>B</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=non-negative-integer
specifies the degree of the spline transformation.

Default 3

Ranges 0–174 in SAS 9.4M1 and earlier releases.
Restriction Starting with SAS 9.4M2, DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.
Markers that represent the same response value are overlaid, which results in some markers being obscured.

This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults For grouped data, GraphData1 ... GraphData\(n\) style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData\(n\) style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=

\(<\text{style-element}<(\text{COLOR}=color)\)> | \((\text{COLOR}=color)\)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=

\(<\text{style-element} <options\)> | \((options)\)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MAXPOINTS=\(n\)

specifies the maximum number of predicted points for the spline curve and for any confidence limits.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NKNOTS=n
specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots is usually enough to follow the functional form found in most data.

Default 100
Range 0 to 1000

NOLEGCLI
hides the legend entry for the individual value prediction limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

SMOOTH=numeric-value
specifies a smoothing parameter value.

Default A smoothing value that minimizes a lack-of-smoothness penalty is determined automatically.

Range [0,1]

Tips Specify SMOOTH=0 for an ordinary B-spline fit.

See The TRANSREG Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the PBSPLINE statement uses.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip: If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY= LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.
Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction
This option replaces all of the information that is displayed by default.

Note
The option affects only the scatter plot in this statement.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example `tiplabel=(auto "Class Weight")`

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction Starting with SAS 9.4M2, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

POLYGON Statement

Draws one or more polygons from data stored in a data set. This statement can be used with other basic plot and fit plot statements.

Restrictions:

You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

The POLYGON statement does not support data that resides in a CAS in-memory table. Only SAS data sets are supported for polygons.
This feature applies to SAS 9.4M1 and later releases.

Syntax

```
POLYGON X=x-variable Y=y-variable ID=id-variable <options>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value`
 specifies the value of the ID variable in a discrete attribute map data set.

- `BACKLIGHT<=number>`
 specifies that label text should have a back light of a contrasting color.

- `COLORMODEL=style-element | (color-list)`
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
 specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
 specifies a special effect to be used on the plot.

- `FILL`
 `NOFILL`
 specifies whether the polygon(s) are filled.

- `FILLATTRS=style-element <(options)> | (options)`
 specifies the fill color and transparency.

- `FILLPATTERN`
 enables the display of line fill patterns for the plot.

- `FILLPATTERNATTRS=style-element <(options)> | (options)`
 specifies the line-fill color and pattern.

- `LINEATTRS=style-element<(options)> | (options)`
 specifies the appearance of the polygon outline.

- `OUTLINE`
 `NOOUTLINE`
 specifies whether the polygon(s) have outlines.

- `RATTRID=character-value`
 specifies the value of the ID variable in a range attribute map data set.

- `ROTATE=numeric-column | number`
 specifies the angle of rotation for the polygon measured in degrees.

- `TRANSPARENCY=value`
 specifies the degree of transparency for the plot.

Axis options

- `X2AXIS`
 assigns the response variable to the secondary (top) horizontal axis.

- `XOFFSET=numeric-value | numeric-variable`
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

\texttt{Y2AXIS} \\
assigns the category variable to the secondary (right) vertical axis.

\texttt{YOFFSET=numeric-value | numeric-variable} \\
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

\textbf{Data tip options}

\texttt{TIP=(variable-list) | NONE} \\
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\texttt{TIPFORMAT=(format-list)} \\
applies formats to the list of data tip variables that you specify in the TIP= option.

\texttt{TIPLABEL=(label-list)} \\
applies labels to the list of data tip variables that you specify in the TIP= option.

\textbf{Group options}

\texttt{GROUP=variable} \\
creates a separate polygon color or outline pattern for each unique grouping that is specified.

\texttt{NOMISSINGGROUP} \\
specifies that missing values of the group variable are not included in the plot.

\textbf{Label options}

\texttt{LABEL <=variable>} \\
specifies a label for the polygon curve.

\texttt{LABELATTRS=style-element<(options)}> | (options) \\
specifies the appearance of the labels in the plot.

\texttt{LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE} \\
specifies the location of the polygon label.

\texttt{LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX} \\
specifies the position of the polygon’s label.

\texttt{LEGENDLABEL="text-string"} \\
specifies the label that identifies the polygon in the legend.

\texttt{ROTATELABEL=AUTO | NONE | VERTICAL} \\
specifies the rotation of the polygon label with respect to the rotation of the polygon.

\texttt{SPLITCHAR="character-list"} \\
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

\texttt{SPLITCHARNODROP} \\
specifies that the split characters are included in the displayed value.

\texttt{SPLITJUSTIFY=LEFT | CENTER | RIGHT} \\
specifies the horizontal alignment of the value text that is being split.

\textbf{Plot options}

\texttt{URL=character-variable}
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

```
NAME="text-string"
```

assigns a name to a plot statement.

Required Arguments

- **X=x-variable**
 specifies the variable for the X values.

- **Y=y-variable**
 specifies the variable for the Y values.

- **ID=id-variable**
 specifies the variable for the ID values that identify the polygon(s). All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

 When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.

Optional Arguments

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

 See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

 “Overview of Attribute Maps” on page 1733

- **BACKLIGHT<=number>**
 specifies that label text should have a back light of a contrasting color. When you specify the BACKLIGHT option, you can also specify a number. `number` specifies the degree of the back-light effect.

 The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).
Defaults 0 (no back-light effect) when the BACKLIGHT option is not used.

When no number is specified for the BACKLIGHT option, the default is 0.5 when no GROUP= or COLORRESPONSE= option is used. The default is 0.75 when the GROUP= or COLORRESPONSE= option is used.

Range 0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

\texttt{COLORMODEL=style-element | (color-list)}

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\textit{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\texttt{STARTCOLOR} specifies the color for the smallest data value of the COLORRESPONSE= column.

\texttt{NEUTRALCOLOR} specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

\texttt{ENDCOLOR} specifies the color for the highest data value of the COLORRESPONSE= column.

Example \texttt{colormodel=TwoColorRamp}

\textit{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example \texttt{colormodel=(blue yellow green)}

Default The ThreeColorRamp style element for filled polygons. The ThreeColorAltRamp style element for unfilled polygons.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.
COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 925
“Using Gradient Color Legends” on page 1637

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

Table 10.35 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1685

FILL | NOFILL
specifies whether the polygon(s) are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.

Default NOFILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

Tip
The TRANSPARENCY= suboption sets the transparency for the polygon fill and the polygon outline. You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example: transparency=0.2 fillattrs=(transparency=0.6)

FILLPATTERN
enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips
Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:
COLOR=style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=style-reference | line-pattern
specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

Table 10.36 Fill Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>R1</td>
<td></td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>R2</td>
<td></td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>R3</td>
<td></td>
<td>X3</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>R4</td>
<td></td>
<td>X4</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>R5</td>
<td></td>
<td>X5</td>
<td></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interactions
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is specified. The plot elements for each group value are automatically distinguished by different visual attributes.
The polygon attributes for each unique group value are derived from the GraphData1–GraphDataN and GraphMissing style elements. If the polygon is filled, then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR attribute is used for the polygon outline. If the polygon is not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

Interactions

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

This option is ignored if the COLORRESPONSE= option is also used.

Tip

To create a grouped color-gradient polygon plot, use a POLYGON statement to generate the color-gradient polygon plot, and then use a second POLYGON statement to overlay the group fill patterns onto the color-gradient polygon plot. See "Using Fill Patterns and Gradient-Color Fills" on page 1701.

LABEL <=variable>

specifies a label for the polygon curve.

Default

When no variable is provided, the ID variable is used for labels.

Interaction

If a variable is supplied, rows that have the same ID value are expected to have the same value. If they do not, the ID value’s first row determines the polygon label.

Tip

The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS=style-element<options> | (options)

specifies the appearance of the labels in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontWeight, and FontStyle.

Interaction

This option has no effect unless the LABEL= option is also specified.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphValueText

LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE

specifies the location of the polygon label.

INSIDEBOX

inside the polygon.
OUTSIDEBOX
outside the polygon but inside the plot area.

OUTSIDE
outside the plot area.

Default INSIDEBOX

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELPOS= option.

LABELPOS= CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon’s label. Specify one of the following values:

CENTER
centers the label.

Interaction LABELPOS=CENTER has no effect if you also specify LABELLOC=OUTSIDE or LABELLOC=OUTSIDEBOX. The default label position is used in those cases.

XMIN
places the label at the part of the polygon closest to the minimum X-axis value, centered in the Y-axis range.

XMAX
places the label at the part of the polygon closest to the maximum X-axis value, centered in the Y-axis range.

YMIN
places the label at the part of the polygon closest to the minimum Y-axis value, centered in the X-axis range.

YMAX
places the label at the part of the polygon closest to the maximum Y-axis value, centered in the X-axis range.

Default CENTER

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELLOC= option.

When LABELLOC=OUTSIDE, increasing the length of the label might cause the available plot area to decrease. Also, when LABELLOC=OUTSIDE, the label might collide with the axis ticks and tick values.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.
LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the polygon outline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults
For non-grouped data, the GraphOutlines style element.
For grouped data, the LineThickness attributes of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1 – GraphData n style elements.

Interactions
This option is ignored if the NOOUTLINE option is also specified.
This option is ignored if the DATASKIN= option is also specified.

Note
If this option is used with grouped data, the COLOR= suboption has the effect of holding the polygon outline color constant across all group values.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction
This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the polygon(s) have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default
OUTLINE

Interaction
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

Tip
Use the LINEATTRS= option to control the appearance of the outline.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See
Chapter 19, “Using Range Attribute Maps,” on page 1755
ROTATE= \textit{numeric-column | number}

specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counterclockwise direction, and negative angles are measured in the clockwise direction.

Default: 0 (no rotation is performed)

Interaction: When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEBOX and CENTER respectively.

Notes: An angle that exceeds 360 degrees in absolute value can be specified.

Rotating a polygon might cause clipping in some cases.

ROTATELABEL= AUTO | NONE | VERTICAL

specifies the rotation of the polygon label with respect to the rotation of the polygon. Specify one of the following:

- AUTO: rotates the label with the rotation of the polygon.
- NONE: does not rotate the label with the rotation of the polygon. The label position remains fixed regardless of the polygon rotation.
- VERTICAL: rotates the label to a vertical position.

Default: AUTO

Interaction: If ROTATION= is also specified, then ROTATELABEL=VERTICAL is ignored.

SPLITCHAR= "character-list"

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR=abc}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

Default: A single space

Interaction: This option has no effect unless LABEL= is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the *w.d* SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example

```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics / imagemap;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

XOFFSET=numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Default 0.0 (no offset)

Range –0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.

Requirement The X axis must be discrete.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

YOFFSET=numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Default 0.0 (no offset)

Range –0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.

Requirement The Y axis must be discrete.
Details

Overview

The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.

Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.

Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.

Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.

specify an HTML page to display when the selectable polygon is clicked.

Drawing a Single Polygon

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

data polydata;
  input id $1-2 x y;
datalines;
P1 40  100
P1 20  220
P1 160 200
P1 180 80
P1 40  100
;run;
proc sgplot data=polydata;
polygon X=x Y=y ID=id / fill outline;
run;

The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.

Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the
order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

```plaintext
data polydata;
 input id x y;
datalines;
 1 0 0
 1 20 0
 1 20 30
 1 0 30
 1 0 0
 2 30 0
 2 50 0
 2 40 30
 2 30 0
 3 60 0
 3 80 5
 3 80 15
 3 70 30
 3 60 30
 3 60 0
;
run;
```

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.

![Polygon Example](image)

The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the
starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Examples

Example 1: Create a Single Filled Hexagon

This example shows creates a single filled hexagon.

Example 2: Use a Polygon to Highlight Data in a Scatter Plot

This example shows you how to use the POLYGON statement to draw a filled polygon that highlights data in an iris petal dimension scatter plot. The polygon surrounds the markers for the Setosa species in order to highlight the data with a yellow highlight for that species.
/* Generate the data for the polygon */
data polydata;
  input polyID polyX polyY label $8-40;
datalines;
1 9 2 Setosa
1 13 5
1 16 7
1 17 6
1 20 5
1 20 1
1 17 1
1 15 0
1 14 0
1 11 0
;
run;

/* Concatenates the SASHELP.IRIS and polygon data into data set IRIS */
data iris;
  set sashelp.iris polydata;
run;

/* Create the graph */
title "Iris Petal Dimensions";
proc sgplot data=iris;
  scatter x=petallength y=petalwidth / name="s" group=species;
  ellipse x=petallength y=petalwidth / type=predicted alpha=.2
    name="p80" legendlabel="80%" lineattrs=graphconfidence;
  ellipse x=petallength y=petalwidth / type=predicted alpha=.05
    name="p95" legendlabel="95%" lineattrs=graphconfidence2;
  polygon x=polyX y=polyY id=polyID / fill
    fillattrs=(color=yellow transparency=0.75)
    label=label labelloc=outsidebbox labelpos=ymax;
run;
title;
To draw a single polygon, the data set must provide a column for \textit{X}= on page 1147, \textit{Y}= on page 1147, and \textit{ID}= on page 1147. The data specifies the polygon points around the Setosa data in the clockwise direction. A \textit{LABEL}= on page 1152 column is added to provide a label for the polygon in the plot output.

In the POLYGON statement, the \texttt{FILLATTRS=} on page 1274 option specifies the fill color as yellow and a fill transparency of 0.75. The \texttt{LABEL=} option specifies the column in the data set that contains the polygon label text. The \texttt{LABELLOC=} on page 1152 and \texttt{LABELPOS=} on page 1153 options place the polygon label outside of and above the polygon's bounding box.

To draw the polygon, the POLYGONPLOT statements starts at \textit{X}=9, \textit{Y}=2, and draws a segment between each point in data order. The last point, \textit{X}=11, \textit{Y}=0, does not close the polygon. To close the polygon, the POLYGON statement draws a segment between \textit{X}=11, \textit{Y}=0 and \textit{X}=9, \textit{Y}=2 automatically.

If you want to highlight the Versicolor data instead of the Setosa data, you need only modify the data in the POLYDATA data set to draw a polygon around the Versicolor data instead. You do not have to make any changes to the SGPLOT procedure.

### See Also

*Area Bar Charts using SGPLOT*

### REFLINE Statement

Creates a horizontal or vertical reference line.

See: "Plot Compatibility" on page 1630 for information about overlaying this plot with other plot types

Example: "About Reference Lines" on page 25

### Syntax

\texttt{REFLINE variable | value-1<…value-n> <options>;} 

### Summary of Optional Arguments

**Appearance options**

\texttt{DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot.

\texttt{DISCRETEOFFSET=numeric-value}

specifies an amount to offset all lines from discrete X or Y values.

\texttt{DISCRETETHICKNESS=numeric-value}

specifies that the line thickness should be interpreted as a percentage of the mid-point spacing.
LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the reference line.

NOCLIP
extends the plot axes to contain the reference lines.

TRANSPARENCY=value
specifies the degree of transparency for the reference line.

Axis options
AXIS=X | X2 | Y | Y2
specifies the axis that contains the reference line values.

Label options
LABEL <=variable>
<="text-string-1" ... "text-string-n">
creates labels for each reference line.

LABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels.

LABELLOC=INSIDE | OUTSIDE
specifies whether the labels are placed inside or outside of the plot area.

LABELPOS=AUTO | MIN | MAX
specifies the position of the labels.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
splits the text for labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

variable
draws a reference line for each value of the specified variable.

Requirements
Values must be the same type as the data type of the axis. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Unformatted numeric values do not map to a formatted discrete axis. For example, if reference lines are drawn at points on a discrete X axis, the specified variable must use the same format that is used for the X axis.

value-1 <... value-n>
draws one or more reference lines at the values that you specify.
Requirements
Values must be the same type as the data type of the axis. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Unformatted numeric values do not map to a formatted discrete axis. For example, if reference lines are drawn at points on a discrete X axis, the REFLINE values must be the formatted value that appears on the X axis.

Optional Arguments

**AXIS=X | X2 | Y | Y2**
specifies the axis that contains the reference line values. For example, if you specify AXIS= X, vertical reference lines are drawn at points on the X axis.

Default  Y

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

Note: This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>

Default  NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See  "Using Data Skins" on page 1685

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all lines from discrete X or Y values.

Default  0.0 (no offset)

Range  -0.5 (left offset) to +0.5 (right offset)

Requirement  This option is applicable only when the X or Y axis is discrete.
**DISCRETETHICKNESS=numeric-value**

specifies that the line thickness should be interpreted as a percentage of the mid-point spacing.

**Note:** This feature applies to SAS 9.4M5 and later releases.

The following partial images show horizontal reference lines with varying values for DISCRETETHICKNESS=:

<table>
<thead>
<tr>
<th>DISCRETETHICKNESS=0.1 (Occupies one tenth of the mid-point spacing)</th>
<th>DISCRETETHICKNESS=0.5 (Occupies one half of the mid-point spacing)</th>
<th>DISCRETETHICKNESS=0.75 (Occupies 75% of the mid-point spacing)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Image of DISCRETETHICKNESS=0.1" /></td>
<td><img src="image2" alt="Image of DISCRETETHICKNESS=0.5" /></td>
<td><img src="image3" alt="Image of DISCRETETHICKNESS=0.75" /></td>
</tr>
</tbody>
</table>

**Default**

0.01

**Range**

0–1

**Requirement**

This option is applicable only when the REFLINE axis is discrete.

**Interaction**

When DISCRETETHICKNESS= is used, specifying the LINEATTRS= thickness option has no effect.

**Note**

Specifying a value of 0 effectively hides the line.

**Tip**

This feature enables you to display category color bands.

**LABEL** `<variable>` | `<=text-string-1" ... "text-string-n")`<

creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

**variable**

a variable for the label value.

**Restriction**

This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

"text-string-1" ... "text-string-n"

a text string for the label value.

**Restriction**

The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.
LABELATTRS=style-element<options> | (options)
specifies the appearance of the labels. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element,
you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
  GraphLabelText style element in the current style. The affected
  attributes are FontFamily, FontSize, FontStyle, and FontWeight.
  Color attribute of the GraphLabelText style element in the current
  style (ungrouped data). For grouped data, the color changes to
  match the group color derived from the ContrastColor attribute of
  the GraphData1...GraphData

Interaction
  This option has no effect unless the LABEL option is also specified.

Examples
  LABELATTRS=(Color=Green Family=Arial Size=8
  Style=Italic Weight=Bold)

  Here is an example that specifies a style element:
  LABELATTRS=GraphTitleText

LABELLOC=INSIDE | OUTSIDE
specifies whether the labels are placed inside or outside of the plot area. The
INSIDE option places the labels inside the plot area. The OUTSIDE option
places the labels outside of the plot area.

Default
  OUTSIDE

LABELPOS=AUTO | MIN | MAX
specifies the position of the labels. MIN specifies the label is placed at the
minimum value of the data axis. MAX specifies that the label is placed at the
maximum value of the data axis. AUTO places the label automatically.

Default
  AUTO

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label
“Reference Line” is used.

Interaction
  This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element<options> | (options)
specifies the appearance of the reference line. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1651.

Default
  GraphReference style element in the current style. The affected
  attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in
other statements.
Note: The *text-string* is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOCLIP**
extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

**SPLITCHAR="character-list"**
Splits the text for labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

`SPLITCHAR="abc"`

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TRANSPARENCY=value
specifies the degree of transparency for the reference line.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

Note  This option does not affect the reference-line label.

---

**REG Statement**

Creates a fitted regression line or curve.

Restriction: Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNNOBSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase LINEPATTERNNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Interaction: A linear regression (DEGREE=1) cannot be used with logarithmic axes.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

"Marker Fills and Outlines” on page 1645

Examples: “About Regression Plots” on page 44

"Example 4: Adding Prediction and Confidence Bands to a Regression Plot” on page 1534

---

**Syntax**

REG X=numeric-variable Y=numeric-variable <options>;

---

**Summary of Optional Arguments**

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fit line.

**TRANSPARENCY=**value
specifies the degree of transparency for the plot.

**Axis options**

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

**TIP=**(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=**(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=**(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**GROUP=**variable
specifies a variable that is used to group the data.

**Label options**

**CURVELABEL <=**"text-string">
adds a label for the curve.

**CURVELABELATTRS=**style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

**CURVELABELLOC=**OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**CURVELABELPOS=**AUTO | END | MAX | MIN | START
specifies the location of the curve label.

**DATALABEL <=**variable>
displays a label for each data point.

**DATALABELATTRS=**style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELPOS=**position
specifies the location of the data label with respect to the plot.

**SPLITCHAR=**"character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=**LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

**Legend options**
LEGENDLABEL="text-string"
   specifies a label that identifies the regression curve in the legend.
NOLEGCLI
   hides the legend entry for the individual value confidence limits.
NOLEGCLM
   hides the legend entry for the mean value confidence limits.
NOLEGFIT
   hides the legend entry for the fit line.

Limit options
CLI <="text-string">
   creates confidence limits for the individual predicted values.
CLIATTRS =style-element | (CLI-attrs-suboptions)
   specifies the appearance of the individual value prediction limits by using
an ODS style element or by specifying line and fill attributes.
CLM <="text-string">
   creates confidence limits.
CLMATTRS =style-element | (CLM-attrs-suboptions)
   specifies the appearance of the mean value confidence limits by using an
ODS style element or by specifying fill and line attributes.
CLMTRANSPARENCY=numeric-value
   specifies the degree of transparency for the confidence limits.

Marker options
FILLEDOUTLINEDMARKERS
   specifies that markers have a fill and an outline.
JITTER
   specifies that data markers are offset when multiple observations have
   the same response value.
MARKERATTRS=style-element<(options)> | (options)
   specifies the appearance of the markers in the plot.
MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
   specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element<(options)> | (options)
   specifies the appearance of the marker outlines.
NOMARKERS
   removes the scatter markers from the plot.

Plot options
ALPHA=numeric-value
   specifies the confidence level for the confidence limits.
DEGREE=n
   specifies the degree of the polynomial fit.
FREQ=numeric-variable
   specifies a variable for the frequency count for each observation in the
   input data.
MAXPOINTS=n
   specifies the maximum number of predicted points for the regression
curve and for any confidence limits.
WEIGHT=numeric-variable
   specifies a variable that contains values to be used as weights for the
calculations.
Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-variable
specifies the variable for the X axis.

Y=numeric-variable
specifies the variable for the Y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default .05
Range 0.01 (complete confidence) to 0.99 (no confidence)
Interaction This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

CLI <="text-string”>
creates confidence limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits. The confidence level is set by the ALPHA= option.

CLIAATTRS=style-element | (CLI-attrs-suboptions)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying line and fill attributes.

Note: The CLIAATTRS= option has no effect unless you also specify the CLI option.

CLI-attrs-suboptions can be the following suboptions:

CLIFILLATTRS=style-element <(options)> | (options)
Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.
Default GraphConfidence style element in the current style for ungrouped data. The affected attributes are Color and Transparency.

Interaction The CLIFILLATTRS= suboption has no effect unless you also specify the FILL suboption.

Example cliattrs=(fill clifillattrs=(color=yellow transparency=.8))

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Example cliattrs=(clilineattrs=(color=orange pattern=longdash thickness=8px))

FILL | NOFILL
specifies whether the prediction band is filled.
The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default NOFILL

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

OUTLINE | NOOUTLINE
specifies whether the prediction band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Note: This suboption is available with the SAS Viya 3.5 and later releases.

Default OUTLINE

Interaction If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Default The default style element for CLIATTRS= is GraphPredictionLimits.

Interaction The CLIATTRS= option has no effect unless you also specify the CLI option.
CLM <="text-string"> creates confidence limits. The optional text string overrides the default legend label for the confidence limit. The confidence level is set by the ALPHA= option.

CLMATTRS =style-element | (CLM-attrs-suboptions ) specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

Note: The CLMATTRS= option has no effect unless you also specify the CLM option.

CLM-attrs-suboptions can be the following suboptions:

CLMFILLATTRS=style-element <(options)> | (options) Specify the fill attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see "Fill Attributes" on page 1655.

Interactions CLMFILLATTRS= has no effect unless the fill is displayed. The fill is displayed by default. You can manually control this setting with the FILL and NOFILL suboptions.

The transparency specified with this option overrides the CLMTRANSPARENCY= option.

Tip If you want to display only the outlines, starting with SAS Viya 3.5, you can specify the OUTLINE and NOFILL suboptions.

Example clmattrs=(clmfillattrs=(color=red transparency=.8))

CLMLINEATTRS=style-element <(options)> | (options) Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

The confidence limits have no outlines by default (for most styles). To make the outlines appear, starting with the SAS Viya 3.5 you can specify the OUTLINE suboption.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction Specifying OUTLINE also hides the fill color, unless FILL is also specified.

Example clmattrs=(outline clmlineattrs=(color=red thickness=8))

FILL | NOFILL specifies whether the confidence band is filled. The FILL suboption shows the fill color. The NOFILL suboption hides the fill color.
Default: FILL

Interaction: If NOFILL and NOOUTLINE are both specified, then both suboptions are ignored and a warning is written to the SAS log.

**OUTLINE | NOOUTLINE**
specifies whether the confidence band has outlines. The OUTLINE suboption shows the outlines. The NOOUTLINE suboption hides the outlines.

Default: NOOUTLINE

Interaction: If NOOUTLINE and NOFILL are both specified, then both suboptions are ignored and a warning is written to the SAS log.

Interaction: The CLMATTRS= option has no effect unless you also specify the CLM option.

**CLMTRANSPARENCY=**numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

Interaction: This option takes effect only if you also specify the CLM option.

**CURVELABEL<="text-string">>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions: If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

**CURVELABELATTRS=**style-element<options>| (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData \( n \) style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.

MAX

places the label at the part of the curve closest to the maximum X-axis value.

MIN

places the label at the part of the curve closest to the minimum X-axis value.

START

places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**DATALABEL <=variable**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.
Interaction  This option has no effect if you also specify the NOMARKERS option.

**DATALABELATTRS=**<style-element>(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Interaction  This option has no effect unless the DATALABEL option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

**DATALABELPOS=**position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interaction  This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DEGREE=**n

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

Ranges 0–174 in SAS 9.4M1 and earlier releases.

1–10 starting with SAS 9.4M2.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.
Requirement  The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction  Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See  For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction  If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note  If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions  If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP= option is used, the data is rendered in sorted order by the group variable.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of jittering.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Image]</td>
<td>![JITTER Specified Image]</td>
</tr>
</tbody>
</table>

Default  Markers that represent the same response value are overlaid, which results in some markers being obscured.
This option affects only how the scatter plot is drawn. It has no effect on the REG curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"

specifies a label that identifies the regression curve in the legend. By default, the label "Regression" is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<(options)> | (options)

specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Defaults

For grouped data, GraphData1 ... GraphData\(n\) style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note

If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData\(n\) style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
Default  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions  This option has no effect unless FILLEDOU TLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip  You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See  For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction  This option has no effect unless FILLEDOU TLINEDMARKERS is also specified.

Tip  You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See  For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MAXPOINTS=n
specifies the maximum number of predicted points for the regression curve and for any confidence limits.

Default  10

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOLEGCLI
hides the legend entry for the individual value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interactions This option has no effect unless SPLITCHAR= is also specified.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction  This option replaces all of the information that is displayed by default.

Note  The option affects only the scatter plot in this statement.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction  This option has no effect unless TIP= is also specified.

Note  A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip  Use the TIPLABEL= option to assign labels to the list of variables.

See  SAS Formats and Informats: Reference

Example  tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Note: This feature applies to SAS 9.4M2 and later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
Interaction

Starting with SAS 9.4M2, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

SCATTER Statement

Creates a scatter plot.

See:
“Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Examples:
“About Scatter Plots” on page 30
“Example 1: Grouping a Scatter Plot” on page 1531
“Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1535
“Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1537

Syntax

SCATTER X=variable Y=variable </options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

ERRORBARATTRS=style-element </options> | (options)
specifies the appearance of the error bars in the plot.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps.

**LABELSTRIP**
strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=value**
specifies the degree of transparency for the plot.

**Axis options**

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing.

**GROUP=variable**
specifies a variable that is used to group the data.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped markers.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**NOERRORCAPS**
suppresses the serif cap on error bars, if error bars are displayed.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

**Label options**

**DATALABEL <=variable>**
displays a label for each data point.

**DATALABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL="text-string"**
specifies a label that identifies the markers from the plot in the legend.

**SPLITCHAR**="character-list"

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODODROP**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY**=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

### Marker options

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**JITTER <=UNIFORM**

specifies that data markers are offset when multiple observations have the same response value.

**JITTERWIDTH**=positive-number

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

**MARKERATTRS**=style-element<(options)> | (options)

specifies the appearance of the markers in the plot.

**MARKERCHAR**=variable

specifies a variable whose values replace the marker symbols in the plot.

**MARKERCHARATTRS**=style-element<(options)> | (options)

specifies the appearance of the markers in the plot when you use the **MARKERCHAR=** option.

**MARKERFILLATTRS**=style-element<(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill.

**MARKEROUTLINEATTRS**=style-element <(options)> | (options)

specifies the appearance of the marker outlines.

### Plot options

**FREQ**=numeric-variable

specifies a variable for the frequency count for each observation in the input data.

**URL**=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

**XERRORLOWER**=numeric-variable

specifies a variable that contains the lower endpoints for the X error bars.

**XERRORUPPER**=numeric-variable

specifies a variable that contains the upper endpoints for the X error bars.

**YERRORLOWER**=numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

**YERRORUPPER**=numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.

### Plot reference options

**NAME**="text-string"

assigns a name to a plot statement.
Required Arguments

**X=variable**
- specifies the variable for the X axis.

**Y=variable**
- specifies the variable for the Y axis.

Optional Arguments

**ATTRID=character-value**
- specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**CLUSTERWIDTH=numeric-value**
- specifies the width of the group clusters as a fraction of the midpoint spacing.
  Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**COLORMODEL=style-element | (color-list)**
- specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*
- specifies the name of a style element. The style element should contain these style attributes:

  **STARTCOLOR**
  - specifies the color for the smallest data value of the COLORRESPONSE= column.

  **NEUTRALCOLOR**
  - specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

  **ENDCOLOR**
  - specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLOREMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 925

"Using Gradient Color Legends" on page 1637

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight .

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Note When the DATALABELPOS= option is specified, the data label font size might be reduced in some cases to avoid overlapping labels and markers.
Examples   DATALABELATTRS=(Color=Green Family="Arial" Size=8 
            Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 10.38</th>
<th>DATASKIN Options for Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Crisp</td>
</tr>
<tr>
<td><img src="image" alt="none" /></td>
<td><img src="image" alt="crisp" /></td>
</tr>
<tr>
<td>Matte</td>
<td>Pressed</td>
</tr>
<tr>
<td><img src="image" alt="matte" /></td>
<td><img src="image" alt="pressed" /></td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**

You can use the MARKERATTRS= option to specify a filled marker symbol.

**See**

"Using Data Skins" on page 1685
DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element<(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:

COLOR=color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.

PATTERN=line-pattern
specifies the line pattern for the line. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default The default line pattern is specified by the LineStyle attribute of the GraphError style element in the current style.

THICKNESS=n <units>
specifies the thickness of the line. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Default The default line thickness is specified by the LineThickness attribute of the GraphError style element in the current style.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps. For example, ERRORCAPSCALE=2 doubles the default cap width and ERRORCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction This option has no effect if NOERRORCAPS is specified.

Tip The thickness (height) of a cap honors the line thickness specified in the ERRORBARATTRS= option. The cap pattern is always solid.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled”
suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interaction

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note

If the value is not an integer, only the integer portion is used.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note

When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

specifies how to display grouped markers.

**CLUSTER**

grouped items are drawn adjacent to each other.

**OVERLAY**

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\( n \) style elements in the current style.

Default

OVERLAY

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need
larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

**Default**
DATA

**Interactions**
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Note**
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**JITTER <=UNIFORM>**
specifies that data markers are offset when multiple observations have the same response value. You can specify JITTER by itself or JITTER=UNIFORM.

**JITTER**
When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.
In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

Note: When the JITTER width is not wide enough to fit long strings of markers, those long strings are squeezed to fit. The other strings that do fit are not squeezed. To force the JITTER option to squeeze all the strings of markers proportionally, specify JITTER=UNIFORM.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

**Table 10.40** Both Axes Are Linear

**JITTER=UNIFORM**

JITTER=UNIFORM specifies that data markers should first be jittered and then squeezed together uniformly across all category values. This feature applies to **SAS 9.4M5 and later releases**.

If UNIFORM is not specified, data markers are squeezed together only for those categories whose data markers cannot fit within the jittering space.

The following partial graphs show the effect of specifying the UNIFORM argument.
### Table 10.41  JITTER versus JITTER=UNIFORM

<table>
<thead>
<tr>
<th>JITTER</th>
<th>JITTER=UNIFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

#### Restriction
The JITTER=UNIFORM option is available only for discrete, one-dimensional jittering.

#### Default
When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.

#### Interaction
The JITTER option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.

#### Note
By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**JITTERWIDTH=** positive-number
specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

#### Note: This feature applies to SAS 9.4M2 and later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.85</th>
</tr>
</thead>
</table>

#### Notes
The specified number can be greater than 1.

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

**LABELSTRIP**
strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

#### Note: This feature applies to SAS 9.4M1 and later releases.

The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.
Interactions  This option affects marker strings only when the MARKERCHAR= option is specified.

This option affects data labels only when DATALABEL is specified.

Tip  Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction  The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**MARKERATTRS=**style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**MARKERCHAR=**variable

specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6. format is used.

Interaction  The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

Tip  If the MARKERCHAR= variable contains one or more long character strings, large axis offsets might result. In that case, use the OFFSETMIN= and OFFSETMAX= options in the axis statement to override the automatic axis offsets. See “Plot Axes” on page 1634.

**MARKERCHARATTRS=**style-element<(options)> | (options)

specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults  ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples

MARKERCHARATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

MARKERCHARATTRS=GraphValueText

**MARKERFILLATTRS=**<style-element>(COLOR=color)<

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=**<style-element> <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1645.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Note:  This feature applies to SAS 9.4M1 and later releases.

Interaction  The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction  This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note:  This feature applies to SAS 9.4M3 and later releases.

See  Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

SPLITCHAR="character-list"
 splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)
TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)
Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

color=variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS assigns the X variable to the secondary (top) horizontal axis.

XERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the X error bars.

Y2AXIS assigns the Y variable to the secondary (right) vertical axis.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SERIES Statement

Creates a line plot.

Restriction: Starting with SAS 9.4M5, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option LINEPATTERNOBSSMAX=. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In
that case, increase LINEPATTERNOBSMAX= to the value suggested in the note or change the line pattern to SOLID using the LINEATTRS= option.

Note: The SERIES statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.

See: “Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Examples: “About Series Plots” on page 32
“Example 3: Plotting Three Series” on page 1533

Syntax

SERIES X=variable Y=variable </options>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the series line.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.
THICKRESP=numeric-variable
    specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
    specifies the degree of transparency for the plot.

**Axis options**

X2AXIS
    assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
    assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
    specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
    applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
    applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

CLUSTERWIDTH=numeric-value
    specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
    specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
    specifies how to display grouped lines.

GROUPLC=variable
    specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
    specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPMC=variable
    specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

GROUPMS=variable
    specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.

LCATTRID=discrete-attr-variable
    specifies an attribute map ID variable to be associated with the GROUPLC= variable.

LPATTRID=discrete-attr-variable
    specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID="discrete-attr-variable"
specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options
CURVELABEL="text-string"
adds a label for the curve.

CURVELABELATTRS="style-element"(options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL=variable
displays a label for each data point.

DATALABELATTRS="style-element"(options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the series plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options
FILLEDDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS="style-element"(options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS="style-element"(COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS="style-element"(options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the series plot data points.

Plot options
BREAK
creates a break in the line for each missing value for the Y variable.
URL=character-variable
    specifies an HTML page to be displayed when parts of the plot are
    selected.

Plot reference options
    NAME="text-string"
    assigns a name to a plot statement.

Series options
    SMOOTHCONNECT
    specifies that a smoothed line passes through all vertices.

Required Arguments

X=variable
    specifies the variable for the X axis.

Y=variable
    specifies the variable for the Y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
    specifies a position for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The arrowheads are placed at the starting and ending points using the X values
in data order. In order to position the arrowheads properly, you might need to
sort the data by the X column.

START   displays an arrowhead at the starting point of each line.
END     displays an arrowhead at the ending point of each line.
BOTH    displays an arrowhead at each end of each line.

Default   No arrowheads are displayed when this option is not specified

See   "Example 12: Series Plot with Line-Thickness Response and
Arrowheads" on page 1544 for an example of how to use this option.

ARROWHEADSCALE=positive-number
    specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to SAS 9.4M3 and later releases.

Default   1.0

Interaction  ARROWHEADPOS= must also be specified for this option to have
any effect.

Tip   Use a factor greater than 1.0 to make a larger arrowhead.
See "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1544 for an example of how to use this option.

**ARROWHEADSHAPE= OPEN | FILLED | BARBED**

specifies a shape for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The following figure shows each of the arrowhead shapes.

```
 OPEN
 FILLED
 BARBED
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

See "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1544 for an example of how to use this option.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BREAK**

creates a break in the line for each missing value for the Y variable.

**CLUSTERWIDTH=numeric-value**

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.
Note: This feature applies to SAS 9.4M3 and later releases.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example: `colormodel=TwoColorRamp`

**color-list**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement: The list of colors must be enclosed in parentheses.

Example: `colormodel=(blue yellow green)`

Default: The ThreeColorAltRamp style element

Interaction: For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction: When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip: The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See: “GRADLEGEND Statement” on page 925

"Using Gradient Color Legends" on page 1637

**CURVELABEL <="text-string"?>**

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.
Interactions  If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

\[
\text{CURVELABELATTRS=}(\text{style-element}(\text{options})> (\text{options})
\]

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults  GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n style elements.

Interaction  This option has no effect unless the CURVELABEL option is also specified.

Examples  CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

\[
\text{CURVELABELLOC=OUTSIDE} \quad \text{INSIDE}
\]

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default  INSIDE

\[
\text{CURVELABELPOS=AUTO} \quad \text{END} \quad \text{MAX} \quad \text{MIN} \quad \text{START}
\]

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction  This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.
MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL\[=\text{variable}\]
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=\text{style-element}(\text{options})\ | (\text{options})
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

---

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 10.42 DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

**Table 10.43 DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Default**: NONE

**Restriction**: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**See**: “Using Data Skins” on page 1685

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default**: 0.0 (no offset)
This option is applicable only when the X or Y axis is discrete.

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

**Interactions**
This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1655.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**
When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

**Note**
When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped lines.

**CLUSTER**
grouped items are drawn adjacent to each other.

**OVERLAY**
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

**Default**
OVERLAY

**Interactions**
This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced. The size could be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need
larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData n style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips
Use the GROUPLP= option to set the line pattern.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

You can also use LINEATTRS= option to set the line pattern and thickness.

See “Example 1: Using Group Options with or without an Attribute Map” on page 1223

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

Note: This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData n style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tips
Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.

See “Example 1: Using Group Options with or without an Attribute Map” on page 1223
**GROUPMC=variable**

specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphData n style elements based on the GROUPMC= variable instead of the GROUP= variable.

**Interactions**

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

**Tips**

Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPMC= variable with an attribute map ID.

**See**

“Example 1: Using Group Options with or without an Attribute Map” on page 1223

---

**GROUPMS=variable**

specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphData n style elements based on the GROUPMS= variable instead of the GROUP= variable.

**Interactions**

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

**Tips**

Use the GROUPMC= option to set the marker color. You can also use the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable with an attribute map ID.

**See**

“Example 1: Using Group Options with or without an Attribute Map” on page 1223
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC= variable. This option enables the plot to associate an attribute map with the line color group. The option specifies the value of the ID variable that maps attributes to LINECOLOR in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLC= option is specified.
This option overrides the COLOR= suboption of the LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See “Example 1: Using Group Options with or without an Attribute Map” on page 1223

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

**LEGENDLABEL=“text-string”**
specifies a label that identifies the series plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**LINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the series line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData$n$ style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**LPATTRID=discrete-attr-variable**
specifies an attribute map ID variable to be associated with the GROUPLP= variable. This option enables the plot to associate an attribute map with the line pattern group. The option specifies the value of the ID variable that maps attributes to LINEPATTERN in the attribute map.

Note: This feature applies to SAS 9.4M3 and later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLP= option is specified.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See “Example 1: Using Group Options with or without an Attribute Map” on page 1223

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

**MARKERATTRS=style-element<(options)> | (options)**
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

**Default**
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**Interaction**
This option has no effect unless you also specify the MARKERS option.

**MARKERFILLATTRS=** *style-element* *(COLOR=**color**)* 
| (COLOR=**color**)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Default**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

**Interactions**
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

**Tip**
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=** *style-element* *(options)* 
| *(options)*

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

**Tip**
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1645.
MARKERS
adds data point markers to the series plot data points.

MCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker color group. The option specifies the value of the ID variable that maps attributes to MARKERCOLOR in the attribute map.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**Requirement**
The procedure statement must specify the attribute map data set using the DATTRMAP= option.

**Interactions**
This option is ignored unless the GROUPMC= option is specified.
This option is ignored unless the MARKERS option is specified.
This option overrides the COLOR= suboption of the MARKERATTRS= option.

**Note**
Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

**See**
“Example 1: Using Group Options with or without an Attribute Map” on page 1223
Chapter 18, “Using Discrete Attribute Maps,” on page 1737

MSATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMS= variable. This option enables the plot to associate an attribute map with the marker symbol group. The option specifies the value of the ID variable that maps attributes to MARKERSYMBOL in the attribute map.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**Requirement**
The procedure statement must specify the attribute map data set using the DATTRMAP= option.

**Interactions**
This option is ignored unless the GROUPMS= option is specified.
This option is ignored unless the MARKERS option is specified.
This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

**Note**
Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

**See**
“Example 1: Using Group Options with or without an Attribute Map” on page 1223
Chapter 18, “Using Discrete Attribute Maps,” on page 1737
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction: This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See: Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

**Default**

Values are not split.

**Interactions**

This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Interaction**

This option has no effect unless you specify the SPLITCHAR= option.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**THICKMAX=**

*dimension*

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**Default**

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

**Interactions**

The THICKRESP= option must be specified for this option to have any effect.
The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to SAS 9.4M3 and later releases.

Default The maximum value in the response column that is specified in the THICKRESP= option.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default The GraphDataDefault style element LineThickness attribute.

Restriction The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.
TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Note
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference
Example    tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPFORMAT option to assign formats to the list of variables.

Example    tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**Restriction** The specified transparency is not applied to missing values. Missing values are always opaque.

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example** https://www.sas.com/en_us/home.html

**Default** By default, no HTML links are created.

**Interactions** This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.
Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the Y variable to the secondary (right) vertical axis.

### Examples

#### Example 1: Using Group Options with or without an Attribute Map

When you specify the GROUP= on page 1233 option, you specify a variable that is used to group the lines of your series plot. The plot lines and markers, if enabled, for each group value are automatically distinguished by different visual attributes.

The SERIES plot statement also includes four group options that give you additional control over grouped output:

- **GROUPLC=** on page 1212 specifies a variable that determines the line colors for the grouped series plot.
- **GROUPLP=** on page 1212 specifies a variable that determines the line patterns for the grouped series plot.
- **GROUPMC=** on page 1213 specifies a variable that determines the marker colors for the grouped series plot.
- **GROUPMS=** on page 1213 specifies a variable that determines the marker symbols for the grouped series plot.

When you specify one or more of these group options, you override the particular attribute (line color, line pattern, marker color, or marker symbol) from the GROUP= option.

The following example shows line attributes that are specified using the GROUP= and GROUPLC= options. The GROUPLC option is used to distinguish Microsoft stock close values from IBM and Intel stock close values. The Microsoft values have red lines.
data stocks;
  set sashelp.stocks;
  emphasis = 2;
  if stock eq 'Microsoft' then emphasis=1;
run;

title 'Microsoft Compared to IBM and Intel';
proc sgplot data=stocks (where=(date >= "01jan2003"d));
  series x=date y=close /
  group=stock grouplc=emphasis;
run;

Starting with SAS 9.4M3, you can associate group variables with an attribute map.

Use the following attribute ID variables:

- **LCATTRID=** on page 1201 associates the GROUPLC= variable with an attribute map ID.
- **LPATTRID=** on page 1215 associates the GROUPLP= variable with an attribute map ID.
- **MCATTRID=** on page 1217 associates the GROUPMC= variable with an attribute map ID.
- **MSATTRID=** on page 1217 associates the GROUPMS= variable with an attribute map ID.

Here is a simple example that shows attribute mapping of grouped markers.

/* Create the data set. */
data myclass;
  set sashelp.class;
  length type $10;
  if age > 12 then type='Teen';
  else type='Pre-Teen';
  label type="Age Group";
run;
/* Create the attribute map. */
data mymap;
retain id "mytest";
input value $ markersymbol $;
datalines;
Pre-Teen triangle
Teen square
;
run;

The series plots show markers that are determined by an attribute map.

Table 10.44  Markers Determined by an Attribute Map

Example 2: Using Curve Label Options with a Series Plot

This example adds a curve label to identify gender. One line is green with a line
pattern of 2, and the other line is red with a line pattern of 26. The CURVELABEL on
page 1231 option adds the curve label. The CURVELABELPOS= on page
1232MAX option places the label at the part of the curve closest to the maximum X-
axis value. The ATTRPRIORITY= on page 99NONE option in the ODS GRAPHICS
statement ensures that the list of line patterns is rotated.
SPLINE Statement

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

Notes:
- The SPLINE statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.
- The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 1240.
- This feature applies to SAS 9.4M3 and later releases.

See:
- “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:
- “About Spline Plots” on page 33

Syntax

```
SPLINE X=variable Y=variable </options>;
```
Summary of Optional Arguments

**Appearance options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROWHEADPOS=</td>
<td>Specifies a position for arrowheads.</td>
</tr>
<tr>
<td>ARROWHEADSCALE=positive-number</td>
<td>Specifies an arrowhead scale factor based on the thickness of the arrow line.</td>
</tr>
<tr>
<td>ARROWHEADSHAPE=OPEN</td>
<td>FILLED</td>
</tr>
<tr>
<td>ATTRID=character-value</td>
<td>Specifies the value of the ID variable in a discrete attribute map data set.</td>
</tr>
<tr>
<td>COLORMODEL=style-element</td>
<td>(color-list)</td>
</tr>
<tr>
<td>COLORRESPONSE=numeric-column</td>
<td>Specifies the numeric column that is used to map colors to a gradient legend.</td>
</tr>
<tr>
<td>DATASKIN=NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>DISCRETEOFFSET=numeric-value</td>
<td>Specifies an amount to offset all lines from discrete X or Y values.</td>
</tr>
<tr>
<td>LINEATTRS=style-element</td>
<td>(options)</td>
</tr>
<tr>
<td>RATTRID=character-value</td>
<td>Specifies the value of the ID variable in a range attribute map data set.</td>
</tr>
<tr>
<td>THICKMAX=dimension</td>
<td>Specifies the maximum line thickness when a response variable is used to determine the line thickness.</td>
</tr>
<tr>
<td>THICKMAXRESP=numeric-value</td>
<td>Specifies the response value that corresponds to the maximum line thickness.</td>
</tr>
<tr>
<td>THICKRESP=numeric-variable</td>
<td>Specifies a response variable that is used to map a line thickness to each group value.</td>
</tr>
<tr>
<td>TRANSPARENCY=value</td>
<td>Specifies the degree of transparency for the plot.</td>
</tr>
</tbody>
</table>

**Axis options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2AXIS</td>
<td>Assigns the X variable to the secondary (top) horizontal axis.</td>
</tr>
<tr>
<td>Y2AXIS</td>
<td>Assigns the Y variable to the secondary (right) vertical axis.</td>
</tr>
</tbody>
</table>

**Data tip options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIP=(variable-list)</td>
<td>NONE</td>
</tr>
<tr>
<td>TIPFORMAT=(format-list)</td>
<td>Applies formats to the list of data tip variables that you specify in the TIP= option.</td>
</tr>
</tbody>
</table>
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
 CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.
 GROUP=variable
 specifies a variable that is used to group the data.
 GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped lines.
 GROUPLC=variable
 specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.
 GROUPLP=variable
 specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.
 GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.
 NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options
 CURVELABEL="text-string"
 adds a label for the curve.
 CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
 CURVELABELLOC=OUTSIDE | INSIDE
 specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
 CURVELABELPOS=AUTO | END | MAX | MIN | START
 specifies the location of the curve label.
 LEGENDLABEL="text-string"
 specifies a label that identifies the spline plot in the legend.
 SPLITCHAR="character-list"
 specifies one or more characters used to split the text used for curve and data labels into multiple lines.
 SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
 SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Plot options
 BREAK
 creates a break in the line for each missing value for the Y variable.
 SEGPOINTS=positive-integer
 specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.
 URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

NAME="text-string"
assigns a name to a plot statement.

**Required Arguments**

X=variable
specifies the variable for the X axis.

Y=variable
specifies the variable for the Y axis.

**Optional Arguments**

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START  displays an arrowhead at the starting point of each line.

END    displays an arrowhead at the ending point of each line.

BOTH   displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads. The following figure shows each of the arrowhead shapes.
Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ATTRID=character-value specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLOREMODEL=style-element | (color-list) specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.
Example  
`colormodel=(blue yellow green)`

Default  
The ThreeColorAltRamp style element

Interaction  
For this option to take effect, the `COLORRESPONSE=` option must also be specified.

**COLORRESPONSE=numeric-column**  
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction  
When the `GROUP=` option is specified with the `COLORRESPONSE=` option, the color attributes are controlled by the `COLORRESPONSE=` option.

Tip  
The color ramp is specified by the `COLORMODEL=` option. The color ramp represents the range of unique response values.

See  
“GRADLEGEND Statement” on page 925  
“Using Gradient Color Legends” on page 1637

**CURVELABEL <"text-string">**  
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions  
If you specify `VALUES=`, `MAX=` , or `MIN=` in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the `NAME=` option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

**CURVELABELATTRS=style-element<(options)> | (options)**  
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults  
GraphValueText style element in the current style. The affected attributes are `FontFamily`, `FontSize`, `FontWeight`, and `FontStyle`.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the `GraphData1...GraphDataN` style elements.
Interaction  This option has no effect unless the CURVELABEL option is also specified.

Examples  CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default  INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction  This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default  END

Interactions  This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 10.45  DATASKIN Options for Lines

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Chapter 10 / SGPLOT Procedure
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1685

**DISCRETEOFFSET=** numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default** 0.0 (no offset)

**Requirement** This option is applicable only when the X or Y axis is discrete.

**GROUP=** variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction** When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

**Note** When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

**Tip** ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=** CLUSTER | OVERLAY
specifies how to display grouped lines.

**CLUSTER**
grouped items are drawn adjacent to each other.

**OVERLAY**
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData$n style elements in the current style.

**Default** OVERLAY

**Interaction** This option is ignored unless GROUP= is specified.

**GROUPPLC=** variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–
GraphData\textit{n} style elements based on the \texttt{GROUPLC=} variable instead of the \texttt{GROUP=} variable.

**Interactions**

The \texttt{GROUP=} option must be specified for this option to have any effect.

This option overrides the \texttt{COLOR=} suboption of the \texttt{LINEATTRS=} option.

**Tips**

Use the \texttt{GROUPLP=} option to set the line pattern.

You can also use \texttt{LINEATTRS=} option to set the line pattern and thickness.

**See**

“Example 1: Using Group Options with or without an Attribute Map” on page 1223

\texttt{GROUPLP=}\texttt{variable}

specifies a variable that determines the line patterns for a grouped plot independently of the \texttt{GROUP=} variable. When this option is specified with the \texttt{GROUP=} option, the series line patterns are selected from the GraphData\textit{1}–GraphData\textit{n} style elements based on the \texttt{GROUPLP=} variable instead of the \texttt{GROUP=} variable.

**Interactions**

The \texttt{GROUP=} option must be specified for this option to have any effect.

This option overrides the \texttt{PATTERN=} suboption of the \texttt{LINEATTRS=} option.

**Tip**

Use the \texttt{GROUPLC=} option to set the line color. You can also use the \texttt{LINEATTRS=} option to set the line thickness and color.

**See**

“Example 1: Using Group Options with or without an Attribute Map” on page 1223

**GROUPORDER=\texttt{DATA} | \texttt{REVERSEDATA} | \texttt{ASCENDING} | \texttt{DESCENDING}**

specifies the ordering of the groups within a category.

- **DATA** orders the groups within a category in data order of the group variable.
- **REVERSEDATA** orders the groups within a category in the reverse data order of the group variable.
- **ASCENDING** orders the groups within a category in ascending order of the group variable.
- **DESCENDING** orders the groups within a category in descending order of the group variable.

**Interactions**

The \texttt{DATA} and \texttt{REVERSEDATA} values have no effect when you are using SAS CAS data.

This option is ignored unless \texttt{GROUP=} is specified.

By default, the groups in the legend are shown in the order that is specified in \texttt{GROUPORDER=}\. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Note** The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL="text-string"**

specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**LINEATTRS=style-element<(options)> | (options)**

specifies the appearance of the spline line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**NAME="text-string"**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The text-string is case-sensitive and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**RATTRID=character-value**

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Note:** This feature applies to SAS 9.4M3 and later releases.

**See** Chapter 19, “Using Range Attribute Maps,” on page 1755
SEGPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the
INTERVAL= axis option.

Default 20

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data
labels into multiple lines. The text value is split at every occurrence of the
specified split character or characters.

"character-list" is one or more characters with no delimiter between each
character and enclosed in quotation marks. For example, to specify the split
characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated
as a separate split character unless the specified characters appear
consecutively in the value. In that case, all of the specified split characters
together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or
DATALABEL is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to
appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters
in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both
types of labels. If you do not want to split both types with the same
split character, consider using an overlaid plot in your graph. You
can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels”
on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on
page 1643
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction  This option has no effect unless you specify the SPLITCHAR=
option.

See  "Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on
page 1643

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to
determine the line thickness. By default, this option determines the thickness of
the line that represents the maximum response column value.

Default  Ten times the thickness that is specified by the GraphDataDefault
style element LineThickness attribute.

Interactions  The THICKRESP= option must be specified for this option to have
any effect.

The THICKMAXRESP= option specifies the response value at
which this maximum line thickness is reached. The line thickness
for response values that exceed the THICKMAXRESP= value are
set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and
THICKMAXRESP= option values is less than 0.5 for a line, that
line is not drawn.

See  "Example 12: Series Plot with Line-Thickness Response and
Arrowheads" on page 1544 for an example of how to use this
option.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Default  The maximum value in the response column that is specified in the
THICKRESP= option.

Interactions  The THICKRESP= option must be specified for this option to have
any effect.

The thickness for all lines that exceed the maximum response
value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and
THICKMAXRESP= option values is less than 0.5 for a line, that
line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group
value.

Default  The GraphDataDefault style element LineThickness attribute.

Restriction  The THICKRESP= values are assumed to be constant for each
group value. If the THICKRESP column has multiple values for a
single GROUP value, only one of the THICKRESP= values is used for that group.

**Requirement**
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

**Interactions**
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

**See**
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(*variable-list*) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(*variable-list*)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

**Requirement**
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

TIPFORMAT=(*format-list*)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.
Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**
Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPFORMAT option to assign formats to the list of variables.

Example `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
Specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**
Specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example** `https://www.sas.com/en_us/home.html`

**Default** By default, no HTML links are created.

**Interactions** This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:
Tip
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Details**

Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.

*Figure 10.7 Spline and Series Plots*

**STEP Statement**

Creates a step plot.

Restrictions: The vertical axis that is used with the STEP statement cannot be a discrete axis. Starting with **SAS 9.4M5**, the number of vertices for a patterned line cannot exceed the maximum specified by the ODS GRAPHICS statement option **LINEPATTERNOBSMAX=**. The default is 10,000. If the limit is exceeded, the plot is not drawn and a note is written to the SAS log stating that the limit has been exceeded. In that case, increase **LINEPATTERNOBSMAX=** to the value suggested in the note or change the line pattern to **SOLID** using the **LINEATTRS=** option.
Note: The STEP statement plots data in data order. For this reason, the input data set should be sorted by the X variable. Otherwise, unexpected results might occur.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types
“Marker Fills and Outlines” on page 1645

Example: “About Step Plots” on page 34

Syntax

STEP X=variable Y=numeric-variable <options>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values.

ERRORBARATTRS=style-element<(options)> | (options)
specifies the appearance of the error bars in the plot.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the step line.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Axis options**

- **X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.

- **Y2AXIS**
  assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

- **TIP=(variable-list) | NONE**
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
  applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
  applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH=numeric-value**
  specifies the width of the group clusters as a fraction of the midpoint spacing.

- **GROUP=variable**
  specifies a variable that is used to group the data.

- **GROUPDISPLAY=CLUSTER | OVERLAY**
  specifies how to display grouped step lines.

- **GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
  specifies the ordering of the groups within a category.

- **NOERRORCAPS**
  suppresses the serif cap on error bars, if error bars are displayed.

- **NOMISSINGGROUP**
  specifies that missing values of the group variable are not included in the plot.

**Label options**

- **CURVELABEL <="text-string">**
  adds a label for the curve.

- **CURVELABELATRGS=style-element<(options)> | (options)**
  specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

- **CURVELABELLOC=OUTSIDE | INSIDE**
  specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

- **CURVELABELPOS=AUTO | END | MAX | MIN | START**
  specifies the location of the curve label.

- **DATALABEL <=variable>**
  displays a label for each data point.

- **DATALABELATRGS=style-element<(options)> | (options)**
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the step plot in the legend.

**SPLITCHAR=**"character-list"

specifies one or more characters used to split the text used for curve and data labels into multiple lines.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=**LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**Marker options**

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**MARKERATTRS=**style-element<options> | (options)

specifies the appearance of the markers in the plot.

**MARKERFILLATTRS=**style-element<COLOR=color> | (COLOR=color)

specifies the color of the marker fill.

**MARKEROUTLINEATTRS=**style-element <options> | (options)

specifies the appearance of the marker outlines.

**MARKERS**

adds markers to the step plot data points.

**Plot options**

**URL=**character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

**YERRORLOWER=**numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

**YERRORUPPER=**numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.

**Plot reference options**

**NAME=**"text-string"

assigns a name to a plot statement.

**Step options**

**BREAK**

creates a break in the line for each missing value for the Y variable.

**Required Arguments**

**X=**variable

specifies the variable for the X axis.

**Y=**numeric-variable

specifies the variable for the Y axis.
Optional Arguments

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.
END displays an arrowhead at the ending point of each line.
BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSCALE= positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to SAS 9.4M3 and later releases.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

Note: This feature applies to SAS 9.4M3 and later releases.

The following figure shows each of the arrowhead shapes.

```
 OPEN
 FILLED
 BARBED
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.
See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

**ATTRID=** *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BREAK**

creates a break in the line for each missing value for the Y variable.

**CLUSTERWIDTH=** *numeric-value*

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**CURVELABEL** <=*"text-string"*>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

**CURVELABELATTRS=** *style-element*(options) | (options)*

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily,FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default

INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction

This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.

MAX

places the label at the part of the curve closest to the maximum X-axis value.

MIN

places the label at the part of the curve closest to the minimum X-axis value.

START

places the curve label at the first point on the curve.

Default

END

Interactions

This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.
**DATALABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

**Interaction**
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 10.46 DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>Crisp</td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>Pressed</td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 10.47  DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image" alt="CRISP" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="MATTE" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image" alt="PRESSED" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See: "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X axis is discrete.

ERRORBARATTRS=style-element<options> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

ERRORCAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the error-bar caps. For example, ERRORCAPSCALE=2 doubles the default cap width and ERRORCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.
**FILLEDOUTLINEDMARKERS**

Specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

**Interaction**
This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**GROUP=variable**

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**
When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

Specifies how to display grouped step lines.

- **CLUSTER**
  Grouped items are drawn adjacent to each other.

- **OVERLAY**
  Grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

**Default**
OVERLAY

**Interaction**
This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced. The size could be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need
larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point. Figure 10.31 on page 1250 shows the effect of each option:

Figure 10.8 Values for JUSTIFY=
**LEGENDLABEL=**"text-string"

specifies a label that identifies the step plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**LINEATTRS=**style-element<options> | (options)

specifies the appearance of the step line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**MARKERATTRS=**style-element<options> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction: This option has no effect unless you also specify the MARKERS option.

**MARKERFILLATTRS=**style-element<COLOR=color> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip: You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=**style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

**Tip**

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKERS**

adds markers to the step plot data points.

**NAME=**"text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOERRORCAPS**

suppresses the serif cap on error bars, if error bars are displayed.

**Note:** This feature applies to SAS 9.4M1 and later releases.

**Interaction**

The appearance of the error bars is controlled by the ERRORBARATTRS= option.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction**

This option has no effect unless GROUP= is also specified.

**SPLITCHAR=**"character-list"

specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THICKMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to SAS 9.4M3 and later releases.
Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

**THICKMAXRESP=numeric-value**

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to SAS 9.4M3 and later releases.

The maximum value in the response column that is specified in the THICKRESP= option.

The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKRESP=numeric-variable**

specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to SAS 9.4M3 and later releases.

The GraphDataDefault style element LineThickness attribute.

The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.
Interactions

When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.
Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP= option.
  Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
  A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
  specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
  specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:
ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SYMBOLCHAR Statement

Defines a marker symbol using a Unicode character that can be referenced in other statements. The procedure can contain more than one SYMBOLCHAR statement.

Note: This feature applies to SAS 9.4M1 and later releases.

Syntax

SYMBOLCHAR NAME=identifier
CHAR="hex-string"x | keyword < /options>;

Summary of Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
specifies a scale factor for the marker symbol as a percentage.

TEXTATTRS=style-element<(options)> | (options)
specifies the text attributes for the character symbol.

VOFFSET=offset
specifies a vertical offset for the marker symbol.
Required Arguments

**NAME=**identifier

specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique identifier. The identifier is not case-sensitive.

**Interaction**

If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See marker symbols on page 1656.

**Note**

Do not enclose the identifier in quotation marks.

**CHAR=**"hex-string"x | keyword

specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

"hex-string"x

specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the Unicode hexadecimal constants at the following URL: http://www.unicode.org/charts/charindex.html

**keyword**

specifies a SAS keyword for a Unicode character, such as alpha or alpha_u. See Appendix 2, "Reserved Keywords and Unicode Values," on page 1899.

**Note:** The "_u" in a keyword makes the character uppercase.

**TIP**

This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.

Optional Arguments

**HOFFSET=**offset

specifies a horizontal offset for the marker symbol.

**Default** 0 (the marker symbol is centered on its data point)

**Range** -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

**Interaction** Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

**Notes** Prior to SAS 9.4M3, a positive offset moves the marker symbol bounding box to the right. A negative offset moves it to the left.

Starting with SAS 9.4M3, a positive offset moves the marker symbol to the right within its bounding box, and a negative offset moves it to
the left. The bounding box remains centered on the data point. After
the offset, the size, and the rotation are applied to the marker
symbol, any portion of the symbol that falls outside of the marker
bounding box is clipped.

Tip If clipping occurs, you can use this option, the VOFFSET= option,
and the SCALE= option to remove the clipping. In the
accompanying plot statement that uses markers, you can also use
the suboption SIZE= in the MARKERATTRS= option to help remove
the clipping.

**ROTATE=**number
specifies the angle of rotation for the marker symbol in degrees. Positive angles
are measured in the counterclockwise direction, and negative angles are
measured in the clockwise direction.

Default 0 (no rotation is performed)

Note An angle that exceeds 360 degrees in absolute value can be specified.

**SCALE=**double
specifies a scale factor for the marker symbol as a percentage. The scale factor
is applied to the character's height.

Default 1.0 (100%)

Range Greater than zero. Very small (for example, 0.1) or very large (for
example, 4) scale factors can make the markers invisible or truncated,
respectively.

**TEXTATTRS=**style-element<(<options>)> | (options)
specifies the text attributes for the character symbol. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Note: Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The
color and size text attributes are derived from the MARKERATTRS= option in the
plot statement.

Default GraphUnicodeText style element in the current style. The affected
attributes are FontFamily, FontStyle, and FontWeight.

Examples TEXTATTRS=(Family='Albany AMT' Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TEXTATTRS=GraphDataText

**VOFFSET=**offset
specifies a vertical offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker
size.
Interaction
Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

Notes
Prior to SAS 9.4M3, a positive offset moves the marker symbol bounding box up. A negative offset moves it down.

Starting with SAS 9.4M3, a positive offset moves the marker symbol up within its bounding box, and a negative offset moves it down. The bounding box remains centered on the data point. After the offset, the size, and the rotation are applied to the marker symbol, any portion of the symbol that falls outside of the marker bounding box is clipped.

Tip
If clipping occurs, you can use this option, the HOFFSET= option, and the SCALE= option to remove the clipping. In the accompanying plot statement that uses markers, you can also use the suboption SIZE= in the MARKERATTRS= option to help remove the clipping.

Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

Unicode symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statement. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This enables you to use SYMBOLCHAR statements in IF/ELSE statements.

For an example that uses more than one SYMBOLCHAR statement, see the SAS blog article More symbols, you say?.

Note: You might need to specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement to ensure that the data does not use color as the primary distinction between symbols. The need to specify ATTRPRIORITY=NONE depends on which ODS style you are using. If your results do not cycle through the symbols, try specifying ATTRPRIORITY=NONE in the ODS GRAPHICS statement.

You can modify the appearance of markers that are created by the SYMBOLCHAR statement in the following ways:

- use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option in the plot statement.

Note: The WEIGHT= suboption has no effect on these markers.
- use the FAMILY=, WEIGHT=, and STYLE= suboptions of the TEXTATTRS= option in the SYMBOLCHAR statement to format the symbol character. The color and size are controlled using the MARKERATTRS= option.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLCHAR Example

This example specifies the SAS keyword DELTA_U, which produces the delta (Δ) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.

```
proc sgplot data=sashelp.class;
 symbolchar name=sym1 char=delta_u / rotate=180
 textattrs=(Weight=Bold);
 scatter x=weight y=height / markerattrs=(symbol=sym1 size=15pt);
run;
```
Example 2: SYMBOLCHAR Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign colors and symbols for each grouping of the variable SIZE.

In the example, the following marker symbols are used:

- ✓ indicates students whose height is 60 inches or more
- ❌ indicates students whose height is less than 60 inches

The procedure uses two SYMBOLCHAR statements to identify the marker symbols used in the plot. The example creates marker symbols from the Unicode check mark, heavy character ('2714'x) and the Ballot X character ('2717'x). The example then shows how to use the symbols in a scatter plot.

```sas
/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns colors and symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markerColor $ markersymbol $;
datalines;
```

![Graph showing marker symbols for height groups](image)

```sas continued
```
myid  Short   green  greeny  
myid  Tall    red    redx   
   
   ;  
run;  
   
/*  Specify the marker symbols used in the scatter plot,  
and apply the SG attribute map. */  
proc sgplot data=classHeight (where=(age >= 12)) dattrmap=myattrmap ;  
symbolchar name=redx char='2714'x;  
symbolchar name=greeny char='2717'x;  
scatter x=name y=height / attrid=myid  
   markerattrs=(size=15pt)  
   group=size;  
run;  

SYMBOLIMAGE Statement

Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.

Note: This feature applies to SAS 9.4M1 and later releases.

Syntax

SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" < /options>;

Summary of Optional Arguments

HOFFSET=offset
   specifies a horizontal offset for the marker symbol.

ROTATE=number
   specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
   specifies a scale factor for the marker symbol as a percentage.

VOFFSET=offset
   specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
   specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLIMAGE statements are used in a procedure, each statement must have a unique identifier. The name identifier is not case-sensitive.
If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See marker symbols on page 1656.

**Note**
Do not enclose the identifier in quotation marks.

**IMAGE=**"image-file-specification"

specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

**Requirements**
The image file specification must be enclosed in quotation marks.

The image file must be located on the local file system. URL access is not supported.

**Example**
image="c:\temp\mylogo.gif"

### Optional Arguments

**HOFFSET=offset**
specifies a horizontal offset for the marker symbol.

**Default**
0 (the marker symbol is centered on its data point)

**Range**
-0.5 to +0.5, where 0.5 represents one-half of the original marker size.

**Interaction**
Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

**Note**
A positive offset moves the marker symbol bounding box to the right. A negative offset moves it to the left.

**ROTATE=number**
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counterclockwise direction, and negative angles are measured in the clockwise direction.

**Default**
0 (no rotation is performed)

**Note**
An angle that exceeds 360 degrees in absolute value can be specified.

**SCALE=double**
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

**Default**
1.0 (100%)

**Range**
Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

**VOFFSET=offset**
specifies a vertical offset for the marker symbol.

**Default**
0 (the marker symbol is centered on its data point)
Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Interaction Starting with SAS 9.4M3, the specified offset is also applied to the marker symbol that is displayed in the legend.

Note A positive offset moves the marker symbol bounding box up. A negative offset moves it down.

Details

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.

The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUTLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified
Examples

Example 1: Simple SYMBOLIMAGE Example

This example specifies the image file for a triangle (▽). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.

```
proc sgplot data=sashelp.class;
 symbolimage name=sym1 image="c:\temp\triangle.png" / rotate=90;
 scatter x=weight y=height / markerattrs=(symbol=sym1 size=10pt);
run;
```

Example 2: SYMBOLIMAGE Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>indicates students whose height is 60 inches or more</td>
</tr>
<tr>
<td>✗</td>
<td>indicates students whose height is less than 60 inches</td>
</tr>
</tbody>
</table>

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
   set sashelp.class;
   size="Short";
   if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
   input ID $ value  $ markersymbol $;
   datalines;
   myid Short  greeny
   myid Tall    redx
   ;
run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgplot data=classHeight (where=(16> age >= 12))
   datatrmap=myattrmap;
   symbolimage name=redx image='c:\temp\redCheck.png';
   symbolimage name=greeny image='c:\temp\greenX.png';
   scatter x=name y=height / attrid=myid
      markerattrs=(size=15pt)
         group=size;
run;

TEXT Statement
Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.
Note: This feature applies to **SAS 9.4M2** and later releases.

Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Text Plots” on page 36

Syntax

```
TEXT X=variable Y=variable TEXT=variable <options>;
```

### Summary of Optional Arguments

**Appearance options**

- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.
- **BACKFILL**
  - displays filled bounding boxes around the text.
- **BACKLIGHT=number**
  - specifies that the text should have a back light of a contrasting color.
- **COLORMODEL=style-element | (color-list)**
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.
- **COLORRESPONSE=numeric-column**
  - specifies the numeric column that is used to map colors to a gradient legend.
- **CONTRIBUTEOFFSET=ALL | NONE | (axis-offset-list)**
  - specifies whether this plot's space requirements contribute to the calculation of the axis offsets.
- **DISCRETEOFFSET=numeric-value**
  - specifies an amount to offset all markers from discrete X or Y values.
- **FILLATTRS=style-element <(options)> | (options)**
  - specifies the fill color and transparency.
- **OUTLINE**
  - displays outlined bounding boxes around the text.
- **OUTLINEATTRS=style-element <(options)> | (options)**
  - specifies the appearance of the outlines around the text boxes.
- **PAD=dimension<units> | (pad-options)**
  - specifies the amount of extra space that is added inside the text-marker border.
- **RATTRID=character-value**
  - specifies the value of the ID variable in a range attribute map data set.
- **TRANSPARENCY=value**
  -
specifies the degree of transparency for the plot.

**Axis options**

CLUSTERAXIS= X | Y
specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

**Legend options**

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.

**Plot options**

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

NAME="text-string"
assigns a name to a plot statement.

**Text options**

POSITION=position-option | character-variable
specifies the position of the text with respect to the location of the data point.

ROTATE=number | numeric-column
specifies the angle of rotation in degrees for the text markers.
SIZEMAX=dimension<unit>
specifies the maximum font size for the largest text marker when a
response variable is used to size the text-marker font.

SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size
for text markers.

SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable
is used to size the font for text values.

SIZERESPONSE=numer-ic-variable
specifies a response variable that is used to determine the font size for
each text value.

SPLITCHAR=character-list
splits the text at the specified character(s) when there is not enough room
to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character
count.

STRIP
specifies that leading and trailing blanks should be stripped from the
marker text before it is displayed.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text.

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text
bounding box or the text baseline.

Required Arguments

X=variable
specifies the variable for the X axis.

Y=variable
specifies the variable for the Y axis.

TEXT=variable
specifies the variable for the text values that are used for the markers.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
BACKFILL

displays filled bounding boxes around the text.

Tips
Use the OUTLINE option to specify outlined boxes around the text.

Use the TRANSPARENCY= option to change the transparency of the backfill and the text. To change the transparency of only the backfill, use the TRANSPARENCY= suboption of the FILLATTRS= OPTION.

BACKLIGHT=number

specifies that the text should have a back light of a contrasting color. The effect is applied to the marker text only. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Text" /></td>
<td><img src="image2.png" alt="Text" /></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Text" /></td>
<td><img src="image4.png" alt="Text" /></td>
<td><img src="image5.png" alt="Text" /></td>
</tr>
</tbody>
</table>

Defaults
0.5 when no GROUP= or COLORRESPONSE= option is used.
0.75 when the GROUP= or COLORRESPONSE= option is used.

Range
0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note
This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
Default  Uses the discrete axis for clustering groups when only one axis is
discrete. Uses the X axis for clustering if both axes are discrete or
interval.

Interaction  The GROUPDISPLAY= option must be set to CLUSTER for this
option to have any effect. The GROUP= option must also be used.

**CLUSTERWIDTH=** numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing.
Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default  0.8

Interaction  This option is applicable only when the GROUP option is specified,
when GROUPDISPLAY=CLUSTER, and when the category axis is
discrete.

**COLORMODEL=** style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*

specifies the name of a style element. The style element should contain
these style attributes:

- **STARTCOLOR**  specifies the color for the smallest data value of the
  COLORRESPONSE= column.

- **NEUTRALCOLOR**  specifies the color for the midpoint of the range of
  the COLORRESPONSE= column. This attribute is
  not required when you specify a two-color ramp
  model.

- **ENDCOLOR**  specifies the color for the highest data value of the
  COLORRESPONSE= column.

Example  **colormodel=TwoColorRamp**

*(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can
use style attribute references such as GraphData3:Color. You can specify
colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1660. The list can contain
a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  **colormodel=(blue yellow green)**

Default  The ThreeColorAltRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must
also be specified.

**COLORRESPONSE=** numeric-column

specifies the numeric column that is used to map colors to a gradient legend.
The fill colors are assigned according to the legend gradient.
Interaction
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 925
“Using Gradient Color Legends” on page 1637

CONTRIBUTE OFFSETS=ALL | NONE | (axis-offset-list)
specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.

The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTE OFFSETS= option to modify or eliminate this plot's contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

XMAX the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.

XMIN the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.

YMAX the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.

YMIN the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default ALL

DISCRETE OFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

Requirement This option is applicable only when the X or Y axis is discrete.
FILLATTRS=style-element *(options)* | *(options)*
specifies the fill color and transparency. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults
Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData n style
elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s
TRANSPARENCY= option.

Interactions
This option has no effect unless BACKFILL is also specified.

This suboption overrides the plot’s TRANSPARENCY= option for
the fill.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each
group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.

Note
When GROUP= is used with COLORRESPONSE=, only a gradient
color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color
legend.

Tip
ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change
the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each
group is represented by unique visual attributes derived from the
GraphData1... GraphData n style elements in the current style.

Default
OVERLAY

Interaction
This option is ignored unless GROUP= is specified.

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend. By
default, the label of the Y variable or the group value for each marker is used.
Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

OUTLINE

displays outlined bounding boxes around the text.

Tip

Use the BACKFILL option to display filled bounding boxes around the text.

OUTLINEATTRS=

specifies the appearance of the outlines around the text boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify line color.

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify line thickness or line pattern.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\text{\textit{n}} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction

This option has no effect unless OUTLINE is also specified.

PAD=dimension<\textit{units}> | (pad-options)

specifies the amount of extra space that is added inside the text-marker border.

\textit{dimension}

specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

\textit{pad-options}

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension<\textit{units}> TOP=dimension<\textit{units}>
RIGHT=dimension<\textit{units}> BOTTOM=dimension<\textit{units}>

Default

Padding is a fraction of the font height.

Note

Sides that are not assigned padding are padded with the default amount.
Tips

This option is meaningful only when you also specify OUTLINE, BACKFILL, or both.

Use pad-options to create non-uniform padding.

Note

The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

POSITION=position-option | character-variable

specifies the position of the text with respect to the location of the data point. You can either specify a position option or specify the name of a variable that contains one or more position options.

Note: The ability to specify a variable applies to SAS 9.4M5 and later releases.

Here are the position options:

BOTTOM CENTER TOP
BOTTOMLEFT LEFT TOPLEFT
BOTTOMRIGHT RIGHT TOPRIGHT

The VCENTER= option specifies whether the position is relative to the text bound box or the text baseline. By default, the positions are relative to the text bounding box. The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.

Default CENTER
Interaction

When `character-variable` is specified and `SPLITJUSTIFY=` is also specified, the position values specified in `character-variable` are ignored and the text is positioned `BOTTOMRIGHT`.

**RATTRID=character-value**

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**See** Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

**ROTATE=number | numeric-column**

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counterclockwise direction, and negative angles are measured in clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0

**SIZEMAX=dimension<unit>**

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

**Default** Three times the size specified in the GraphDataText style element for the maximum response variable value marker.
Interactions

The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips

Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE=number

specifies the response value that corresponds to the maximum font size for text markers.

Note: This feature applies to SAS 9.4M3 and later releases.

Default

The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction

The SIZERESPONSE= option must be specified for this option to have any effect.

Note

When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.

SIZEMIN=dimension<unit>

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

Note: This feature applies to SAS 9.4M3 and later releases.

The following table contains the units that are available:

Table 10.49 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
Default The size specified in the GraphDataText style element for the minimum response column value marker.

Interaction The SIZERESPONSE= option must be specified for this option to have any effect.

Tip Use the SIZEMAX= option to specify the maximum text size.

SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

Note: This feature applies to SAS 9.4M3 and later releases.

Default The size specified in the GraphDataText style element for all text values.

Notes When the variable value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value.

When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on.

When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.

SPLITCHAR=“character-list”
splits the text at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITPOLICY=None | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

NONE
does not split the text for text markers that collide.

SPLIT
splits the marker text at a split character only if a split is needed at that character in order to make the text fit the available space. No split occurs at split characters that occur where a split is not needed. If the text does not contain any of the specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.

See
See the SPLITCHAR= option for information about specifying the split characters.

SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See
See the SPLITCHAR= option for information about specifying the split characters

Default
NONE

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every width-in-characters characters.

Default
Uses the width of the longest inter-split-character substring.
Restriction  This option has effect only when SPLITPOLICY=SPLIT.

STRIP  
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default  Blanks are not stripped

Tip  Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS=style-element | style-element (text-options) | (text-options)  
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults  For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions  When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

Note  When the POSITION= option is specified, the data label font size might be reduced in some cases to avoid overlapping labels.

TIP=(variable-list) | NONE  
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)  
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE  
suppresses the data tips from this plot.

Note:  This feature applies to SAS 9.4M1 and later releases.

Restriction  Data tips in text plots are not supported in the SVG output format. To generate a text plot with data tips, use a bitmapped output format such as PNG. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP OUTPUTFMT=PNG;
Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default** The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement** A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction** This option has no effect unless TIP= is also specified.

**Note** A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: `F2.0`

**Tip** Use the TIPLABEL= option to assign labels to the list of variables.

**See** *SAS Formats and Informats: Reference*

**Example** `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction** This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tlabel=(auto "Class Weight")

TRANSAPRENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Restriction The specified transparency is not applied to missing values. Missing values are always opaque.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

corcher-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

BBOX vertically centers the text with respect to its bounding box.

BASELINE vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

Default BBOX
Tip Use the POSITION= option to specify the text position with respect to the text bounding box or the text baseline.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

## VBAR Statement

Creates a vertical bar chart that summarizes the values of a category variable.

**Restrictions:**
The VBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1628. When category plots are overlaid, all of the plots must use the same category variable. For information about overlaying this plot with other plot types, see “Plot Compatibility” on page 1630.

**Tips:**
Starting with SAS 9.4M3, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements. The VBAR statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

**Examples:**
“About Bar Charts” on page 51
“Example 10: Creating a Bar-Line Chart” on page 1542

### Syntax

```
VBAR category-variable <options>;
```

### Summary of Optional Arguments

**Appearance options**

- `ATTRID=character-value`
specifies the value of the ID variable in a discrete attribute map data set.

- `BARWIDTH=numeric-value`
specifies the width of the bars as a ratio of the maximum possible width.

- `BASELINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the baseline.

- `COLORMODEL=style-element | (color-list)`
specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
specifies a special effect to be used on the plot.

**DISCRETEOFFSET=**\ numeric-value
specifies an amount to offset all bars from the category midpoints.

**DISPLAYBASELINE=**\ AUTO | ON | OFF
specifies whether the baseline is displayed.

**FILL**

**NOFILL**
specifies whether the bars are filled.

**FILLATTRS=**\ style-element \ <\ (options)> | \ (options)
specifies the fill color and transparency.

**FILLENDCOLOR=**\ color
specifies a fill color that is applied to the chart at the baseline.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

**FILLPATTERNATTRS=**\ style-element \ <\ (options)> | \ (options)
specifies the line-fill color and pattern.

**FILLTYPE=**\ SOLID | GRADIENT | ALPHAGRADIENT
specifies the fill type that is applied to the chart.

**NOZEROBARS**
suppresses zero-length bars.

**OUTLINE**

**NOOUTLINE**
specifies whether the bars have outlines.

**OUTLINEATTRS=**\ style-element \ <\ (options)> | \ (options)
specifies the appearance of the bar outlines.

**RATTRID=**\ character-value
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=**\ value
specifies the degree of transparency for the plot.

**Axis options**

**BASELINE=**\ numeric-value
specifies the response axis intercept for the baseline.

**X2AXIS**
assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the response variable to the secondary (right) vertical axis.

**Bar options**

**RESPONSE=**\ response-variable
specifies a numeric response variable for the plot.

**Data tip options**

**TIP=**\ (variable-list) | \ NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=**\ (format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=**\ (label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=**numeric-value

specifies the cluster width as a ratio of the maximum width.

**GROUP=**variable

specifies a variable that is used to group the data.

**GROUPDISPLAY=**STACK | CLUSTER

specifies how to display grouped bars.

**GROUPORDER=**DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

**Label options**

**DATALABEL** <=variable>

displays a label for each bar.

**DATALABELATTRS=**style-element<(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELFITPOLICY=**policy-value

specifies a policy for avoiding collisions among the bar labels, when displayed.

**DATALABELPOS=**DATA | BOTTOM | TOP

specifies the location of the data label.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the bar chart in the legend.

**SEGLABEL**

displays a label inside each segment of a stacked bar.

**SEGLABELATTRS=**style-element<(options)> | (options)

specifies the text properties of the bar segment label text.

**SEGLABELFITPOLICY=**NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

**SEGLABELFORMAT=**format

specifies the text format used to display the bar segment labels.

**SPLITCHAR=**"character-list"

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**STATLABEL**

**NOSTATLABEL**

specifies whether the response variable statistic is displayed in the axis and legend labels.

**Limit options**

**LIMITATTRS=**style-element<(options)> | (options)

specifies the appearance of the limit lines in the plot.

**LIMITCAPSCALE=**positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).
LIMITS=BOTH | LOWER | UPPER
 specifies which limit lines to display.
LIMITSTAT=CLM | STDERR
 specifies the statistic for the limit lines.
NUMSTD=n
 specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
 specifies the confidence level for the confidence limits.
CATEGORYORDER=RESPASC | RESPDESC
 specifies the order in which the categories are arranged.
FREQ=numeric-variable
 specifies a variable for the frequency count for each observation in the input data.
MISSING
 accepts a missing value as a valid category value.
URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.
WEIGHT=numeric-variable
 specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME=“text-string”
 assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
 specifies the statistic to use for computing the response colors.
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
 specifies the statistic for the vertical axis.

Required Argument

category-variable
 specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting with SAS 9.4M3, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value
 specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05
Interactions

This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA= value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.
If GROUPDISPLAY=STACK is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the baseline.

Note: This feature applies to SAS 9.4M1 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element's COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**CATEGORYORDER=RESPASC | RESPDESC**

specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

**RESPASC**

sorts by the response values in ascending order.
RESPDESC
   sorts by the response values in descending order.

Default   The plot is sorted in ascending order based on the category values.

Restrictions   This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions   When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes   Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CLUSTERWIDTH=numeric-value
   specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default   0.8

Interactions   This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)
   specifies a color ramp that is to be used with the COLORRESPONSE= option.
style-element
   specifies the name of a style element. The style element should contain these style attributes:

   STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

   NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

   ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

   Example  colormodel=TwoColorRamp

   (color-list)
   specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

   Requirement The list of colors must be enclosed in parentheses.

   Example  colormodel=(blue yellow green)

   Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

   Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 925
“Using Gradient Color Legends” on page 1637

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.
Note: This feature applies to SAS 9.4M3 and later releases.

When the COLORRESPONSE= option is specified, all of the values are valid.
When COLORRESPONSE= is not specified, the following values are valid:

- **FREQ** frequency count
- **PCT** percentages between 0 and 100
- **Alias** PERCENT can be used in place of PCT.

**Defaults**
- SUM when you also specify the COLORRESPONSE= option.
- FREQ when do not specify the COLORRESPONSE= option.

**Note**
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL variable**

- Displays a label for each bar.
  - If you specify a variable, then the values of that variable are used for the data labels.
  - If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.
  - If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

**Interactions**
- When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

- If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL without a variable.

- This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.

**DATALABELATTRS=style-element<options> | (options)**

- Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

- For a description of the text options, see “Text Attributes” on page 1658.

- **Default**
  - GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight.
**Interactions**

This option has no effect unless the DATALABEL option is also specified.

The STYLE= option is ignored when DATALABELPOS= is TOP or BOTTOM.

**Examples**

DATALABELATTRS=(Color=Green Family="Arial" Size=8
                      Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELFITPOLICY=** *policy-value*

specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- **NONE**
  - does not rotate the bar labels. Labels that are too long overlap.

- **ROTATE**
  - rotates the text 90 degrees, but only if collisions occur.

- **SPLIT**
  - splits the labels at the character or characters specified in the SPLITCHAR= option.

  No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

  Default: The default split character is a space.

  Tips: Use the SPLITCHAR= option to specify a split character.

  The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**SPLITALWAYS**

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default: The default split character is a space.

Tips: Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**Defaults**

- ROTATE if the column is numeric.
- SPLIT if the column is character.

**Interaction**

This option has no effect unless DATALABEL= is also specified.

**See**

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
**DATALABELPOS=DATA | BOTTOM | TOP**

specifies the location of the data label. Specify one of the following values:

- **DATA**
  places the label on the data primitives (at the upper boundary of the bars).

- **BOTTOM**
  places the label below the bars.

- **TOP**
  places the label above the bars.

**Default**

**DATA**

**Interactions**

This option displays limit information when limits are specified. When limits are specified, the default data label position is **BOTTOM**.

This option displays group values for each category when **GROUP=** is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the **DATALABEL** option.

When you specify a value of **TOP** or **BOTTOM** for this option, the splitting or rotation of data labels is not supported.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 10.50 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

**Default**

**NONE**

**Restriction**

The ODS GRAPHICS option **DATASKINMAX=** controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the **DATASKINMAX=** option to increase or decrease the maximum limit.
Interactions

This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See

“Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF

specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

AUTO
displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON always displays the baseline.

OFF hides the baseline.
To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

**FILL | NOFILL**

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

**Default**  
FILL

**Interactions**  
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**  
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

**Interactions**  
This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLENDCOLOR=color**

specifies a fill color that is applied to the chart at the baseline.

**Note:** This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Default**  
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

**Interactions**  
This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

**Note:** This feature applies to SAS 9.4M5 and later releases.
Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility
note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

FILLPATTERNATTRS=

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

options can be one or both of the following:

COLOR=

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=

specifies the type of line pattern to use for the fill.

line-pattern is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="example1.png" alt="Example" /></td>
<td>R1</td>
<td><img src="example2.png" alt="Example" /></td>
<td>X1</td>
<td><img src="example3.png" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="example4.png" alt="Example" /></td>
<td>R2</td>
<td><img src="example5.png" alt="Example" /></td>
<td>X2</td>
<td><img src="example6.png" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="example7.png" alt="Example" /></td>
<td>R3</td>
<td><img src="example8.png" alt="Example" /></td>
<td>X3</td>
<td><img src="example9.png" alt="Example" /></td>
</tr>
</tbody>
</table>
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**
For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=**
- **SOLID**
  - each bar is filled with the color that is assigned to the bar fill area.
- **GRADIENT**
  - Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.
  - Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.
  - To change the color of the wall, use the FILLENDCOLOR= option.
  - Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.
  - (Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATRIS=, to set the initial transparency in the gradients.
ALPHAGRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interactions If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, "Using Attribute Maps to Control Visual Attributes," on page 1733.
Note  When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips  ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=STACK | CLUSTER
  specifies how to display grouped bars.

STACK  groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER  displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note:  CLUSTER is supported only when the category axis is discrete.

Default  STACK

Interaction  This option is ignored unless GROUP= is specified.

Tip  The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

DATA  orders the groups within a category in data order of the group variable.

REVERSEDATA  orders the groups within a category in the reverse data order of the group variable.

Note:  This feature applies to SAS 9.4M3 and later releases.

ASCENDING  orders the groups within a category in ascending order of the group variable.

DESCENDING  orders the groups within a category in descending order of the group variable.

Default  ASCENDING
Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip

The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**style-element([options]) | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITCAPSCALE=**positive-number

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1
For this option to have any effect, either LIMITS= or LIMITSTAT= must be specified.

Tip  The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

**LIMITS=**BOTH | LOWER | UPPER

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

- **BOTH**
  - adds lower and upper limit lines to the plot.
- **LOWER**
  - adds lower limit lines to the plot.
- **UPPER**
  - adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions  Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

Tip  To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

**LIMITSTAT=**CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
  - confidence limits
- **STDDEV**
  - standard deviation
- **STDERR**
  - standard error

Default  If you specify the LIMITS= option, then the default for LIMITSTAT= is CLM. Otherwise, there is no default.

Interactions  If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.
MISSING
accepts a missing value as a valid category value. By default, observations with
missing values are ignored. If more than one chart is specified in the procedure,
the MISSING option affects the calculations for all of the charts.

Interaction  This option has no effect when FREQ= is specified.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in
other statements.

Note  The text-string is case-sensitive and must define a unique name within the
procedure.

Tip  This option is often used with legend statements in order to coordinate the
use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-
length bars are not drawn. The following figure shows a simple example. In the
figure, the graph border, axis line, and bar-chart baseline are suppressed for
clarity.

Default NOZEROBARS Specified

Interaction  This option is ignored when the GROUP= and
GROUPDISPLAY=STACK options are in effect. In that case, zero-
length bar segments are drawn.

Notes  If BASELINE= is specified, a zero-length bar value equals the
baseline.

When this option is used, the bar is not drawn. However, other
elements associated with the bar such as the target bar, the error
bar, the bar label, and the data label, are drawn.

Tip  This option is useful when the bar chart baseline is suppressed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive
number, including decimals.

Default  1
OUTLINE | NOOUTLINE
 specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default: OUTLINE

Interactions:
Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see "Line Attributes and Patterns" on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default: GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction: This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
 “Overview of Attribute Maps” on page 1733

RESPONSE=response-variable
 specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SEGLABEL
 displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips

For a grouped bar chart when \texttt{GROUPDISPLAY=} \texttt{STACK}, to display a label for each bar segment and a label for the entire bar, specify both \texttt{SEGLABEL} and \texttt{DATALABEL}.

Use the \texttt{SEGLABELATTRS=} option to modify the appearance of the label text.

Use the \texttt{SEGLABELFORMAT=} option to modify the format of the segment labels.

Use the \texttt{SEGLABELFITPOLICY=} option to specify how the labels fit in the segments.

\texttt{SEGLABELATTRS=} \texttt{style-element} \texttt{(options)} | \texttt{(options)}

specifies the text properties of the bar segment label text.

\begin{itemize}
  \item \textbf{Note:} This feature applies to \texttt{SAS 9.4M2} and later releases.
\end{itemize}

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

\begin{itemize}
  \item \textbf{Default} The \texttt{GraphDataText} style element.
  \item \textbf{Interaction} This option has no effect unless \texttt{SEGLABEL} is also specified.
\end{itemize}

\texttt{SEGLABELFITPOLICY=} \texttt{NONE} | \texttt{NOCLIP} | \texttt{THIN}

specifies a policy for fitting the bar segment labels within the bar segments.

\begin{itemize}
  \item \textbf{Note:} This feature applies to \texttt{SAS 9.4M2} and later releases.
\end{itemize}

\begin{itemize}
  \item \texttt{NONE} no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.
  \item \texttt{NOCLIP} does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.
\end{itemize}
THIN

drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\textit{format}

specifies the text format used to display the bar segment labels.

\textbf{Note:} This feature applies to SAS 9.4M2 and later releases.

Default The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction This option has no effect unless SEGLABEL is also specified.

Note When a segment-label format is specified with this option, the segment labels are formatted as specified by \textit{format}. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

SPLITCHAR=\textit{"character-list"}

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

\textit{"character-list"} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\begin{verbatim}
SPLITCHAR=\"abc\"
\end{verbatim}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.
You can use the `PCTNDEC=` option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

**Note**

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**

the sum of the response variable. This is the default value when you specify the `RESPONSE=` option.

**Interaction**

For this value to take effect, you must also specify the `RESPONSE=` option.

**Defaults**

SUM when you also specify the `RESPONSE=` option.

FREQ when do not specify the `RESPONSE=` option.

**Restriction**

If you do not also specify the `RESPONSE=` option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify `RESPONSE=`, then you can use any of the statistics.

**Interaction**

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

**STATLABEL | NOSTATLABEL**

specifies whether the response variable statistic is displayed in the axis and legend labels. `STATLABEL` forces the statistic to be displayed. `NOSTATLABEL` removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

**Defaults**

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

**Interaction**

This option has no effect unless the `RESPONSE=` option is specified.

This option has no effect if you specify the axis label using the `LABEL=` option in an AXIS statement.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.
Note: This feature applies to SAS 9.4M1 and later releases.

Requirement: You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction: This option replaces all of the information that is displayed by default.

Tip: Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example: tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
```
tiplabel=(auto "Class Weight")
```

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**
```
```

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

**Tip**
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.
Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction  If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS  assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS  assigns the response variable to the secondary (right) vertical axis.

---

**VBARBASIC Statement**

Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Notes:  This feature applies to SAS 9.4M3 and later releases.

When using the VBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the VBAR statement, which by default sorts bars in alphabetical order based on the category values.

Tip:  The VBARBASIC statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

See:  Basic plot types on page 1629

“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example:  “About Bar Charts” on page 51

---

**Syntax**

```
VBARBASIC category-variable <options>;
```

---

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value`  specifies the value of the ID variable in a discrete attribute map data set.
- `BARWIDTH=numeric-value`  specifies the width of the bars as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the baseline.

**COLORMODEL=** *style-element | (color-list)*

specifies a color ramp that is to be used with the **COLORRESPONSE=** option.

**COLORRESPONSE=** *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend.

**DATASKIN=** *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*

specifies a special effect to be used on the plot.

**DISCRETEOFFSET=** *numeric-value*

specifies an amount to offset all bars from the category midpoints.

**DISPLAYBASELINE=** *AUTO | ON | OFF*

specifies whether the baseline is displayed.

**FILL**

**NOFILL**

specifies whether the bars are filled.

**FILLATTRS=** *style-element <(options)> | (options)*

specifies the fill color and transparency.

**FILLENDCOLOR=** *color*

specifies a fill color that is applied to the chart at the baseline.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

**FILLPATTERNATTRS=** *style-element <(options)> | (options)*

specifies the line-fill color and pattern.

**FILLTYPE=** *SOLID | GRADIENT | ALPHAGRADIENT*

specifies the fill type that is applied to the chart.

**NOZEROBARS**

suppresses zero-length bars.

**OUTLINE**

**NOOUTLINE**

specifies whether the bars have outlines.

**OUTLINEATTRS=** *style-element <(options)> | (options)*

specifies the appearance of the bar outlines.

**RATTRID=** *character-value*

specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=** *value*

specifies the degree of transparency for the plot.

**Axis options**

**BASELINE=** *numeric-value*

specifies the response axis intercept for the baseline.

**X2AXIS**

assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the response variable to the secondary (right) vertical axis.

**Data tip options**

**TIP=** *role-list | NONE*

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=** *format-list*
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
   specifies the cluster width as a ratio of the maximum width.

GROUP=variable
   specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
   specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
   specifies the ordering of the groups within a category.

Label options

DATALABEL
   displays the bar statistic value for each bar.

DATALABELATTRS=style-element<(options)> | (options)
   specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
   specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
   specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
   specifies the label that identifies the bar chart in the legend.

SEGLABEL
   displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
   specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
   specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
   specifies the text format used to display the bar segment labels.

Plot options

MISSING
   accepts a missing value as a valid category value.

RESPONSE=response-variable
   specifies a numeric response variable for the plot.

URL=character-variable
   specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
   assigns a name to a plot statement.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to
include the baseline, and the baseline is placed at the specified value on the response axis.

**BASELINEATTRS=**

```
style-element <(options)> | (options)
```

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**CLUSTERWIDTH=**

```
numeric-value
```

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default** 0.8
Interactions  This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**  `colormodel=TwoColorRamp`

**(color-list)**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**  The list of colors must be enclosed in parentheses.

**Example**  `colormodel=(blue yellow green)`

**Default**  The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

**Interaction**  For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interactions**  When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.
Tip: The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

See: "GRADLEGEND Statement" on page 925

"Using Gradient Color Legends" on page 1637

\texttt{COLORSTAT=} \texttt{FREQ | PCT | SUM | MEAN}

specifies the statistic to use for computing the response colors.

When the \texttt{COLORRESPONSE=} option is specified, the following values are valid:

- \texttt{SUM} sum values for the color response
- \texttt{MEAN} mean values for the color response

When \texttt{COLORRESPONSE=} is not specified, the following values are valid:

- \texttt{FREQ} frequency count
- \texttt{PCT} percentages between 0 and 100

Alias: PERCENT can be used in place of PCT.

Defaults: \texttt{SUM} when you also specify the \texttt{COLORRESPONSE=} option.

- \texttt{FREQ} when do not specify the \texttt{COLORRESPONSE=} option.

Note: This option is independent of the \texttt{STAT=} and \texttt{RESPONSE=} options.

\texttt{DATALABEL}

displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default: No label is shown

Tip: The font and color attributes for the label are specified by the \texttt{DATALABELATTRS=} option. The text format is specified by the \texttt{DATALABELFORMAT=} option.

\texttt{DATALABELATTRS=style-element\langle options\rangle | (options)}

specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Default: GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interactions: This option has no effect unless the \texttt{DATALABEL=} option is also specified.

The \texttt{STYLE=} option is ignored when \texttt{DATALABELPOS=} is TOP or BOTTOM.
Examples

DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATABELLFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATABELLFITPOLICY=NONE.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL is also specified.

DATABELFORMAT=\textit{format}
specifies the text format used to display the bar label.

Default
The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 10.52 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th></th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
<td></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See
"Using Data Skins" on page 1685
**DISCRETEOFFSET=numeric-value**  
specifies an amount to offset all bars from the category midpoints.

Default  
0.0 (no offset)

Range  
-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction  
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**DISPLAYBASELINE=AUTO | ON | OFF**  
specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:

**AUTO**  
displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

**ON**  
always displays the baseline.

**OFF**  
hides the baseline.

**FILL | NOFILL**  
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default  
FILL

Tip  
To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATRTS=style-element (options) | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Defaults**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot's TRANSPARENCY= option.

**Interaction**
This suboption overrides the plot’s TRANSPARENCY= option for the fill.

**FILLENDCOLOR=color**
specifies a fill color that is applied to the chart at the baseline.

---

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Defaults**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

**Interactions**
This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

---

Note: This feature applies to SAS 9.4M5 and later releases.

**Interaction**
If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

`ods graphics / attrpriority=none;`

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**Tips**
Use the FILLPATTERN= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.
FILLPATTERNATTRS=style-element <(options)> | (options)
specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=style-reference | color**
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=style-reference | line-pattern**
specifies the type of line pattern to use for the fill.

*line-pattern* is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 10.53 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image" alt="Example L1" /></td>
<td>R1</td>
<td><img src="image" alt="Example R1" /></td>
<td>X1</td>
<td><img src="image" alt="Example X1" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image" alt="Example L2" /></td>
<td>R2</td>
<td><img src="image" alt="Example R2" /></td>
<td>X2</td>
<td><img src="image" alt="Example X2" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image" alt="Example L3" /></td>
<td>R3</td>
<td><img src="image" alt="Example R3" /></td>
<td>X3</td>
<td><img src="image" alt="Example X3" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image" alt="Example L4" /></td>
<td>R4</td>
<td><img src="image" alt="Example R4" /></td>
<td>X4</td>
<td><img src="image" alt="Example X4" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image" alt="Example L5" /></td>
<td>R5</td>
<td><img src="image" alt="Example R5" /></td>
<td>X5</td>
<td><img src="image" alt="Example X5" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions** For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.
For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**
This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
specifies the fill type that is applied to the chart.

**SOLID**
each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**
Prior to **SAS 9.4M5**, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with **SAS 9.4M5**, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

**Interactions**
To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**
(Prior to **SAS 9.4M5**) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**ALPHAGRADIENT**
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

**Note:** This feature applies to **SAS 9.4M5** and later releases.

**Interaction**
Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

**Tips**
If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

**Default**
**SOLID**

**Interaction**
This option has no effect if NOFILL is also specified.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each
group value are automatically distinguished by different visual attributes.

Restriction If you specify a group variable in a category chart, and the
procedure contains more than one category chart statement, all of
the charts must specify the same GROUP variable. If you do not
specify the same GROUP= option for all of the category charts,
then an error is generated.

Interaction When the procedure contains both computed and non-computed
plot statements, the assignment of group attributes does not always
align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute
map. For more information, see Chapter 17, “Using Attribute Maps
to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient
color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the
procedure step to add a discrete legend and a gradient color
legend.

Tips ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change
the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is
enabled, use FILLPATTERN to distinguish the group values. See
“Using Fill Patterns and Gradient-Color Fills” on page 1701.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given
group value are drawn at the exact coordinate, on top of one another. Each
group is represented by unique visual attributes derived from the
GraphData1... GraphData n style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single
category bar. Each set of group values is centered at the midpoint tick mark
for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled
by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.
DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: DATA

Interactions:
The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note:
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive and must define a unique name within the procedure.
Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default" /></td>
<td><img src="image2" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

Interaction  This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Notes  If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip  This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default  OUTLINE

Interactions  Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element (<options>) | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default  GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default  The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

Default  THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default  The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

Interaction This option has no effect unless SEGLABEL is also specified.

Note When a segment-label format is specified with this option, the segment labels are formatted as specified by format. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ
frequency count

PCT | PERCENT
percentages between 0 and 100

Alias
PROPORTION
  proportions between 0 and 1
For bar charts with a RESPONSE= variable, the following values are valid:
SUM
  sum values for the response
MEAN
  mean values for the response

Defaults
  SUM when you also specify the RESPONSE= option.
  FREQ when do not specify the RESPONSE= option.

Interaction
  When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
  a space-separated list of unique chart roles enclosed in parentheses. The roles for TIP are CATEGORY, GROUP, and RESPONSE. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.

  Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
  suppresses the data tips from this plot.

Requirement
  You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
  
  ODS GRAPHICS / IMAGEMAP;

Interaction
  This option replaces all of the information that is displayed by default.

Tip
  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
  tip=(category response)

TIPFORMAT=(format-list)
  applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.
Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Note A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the **label-list** and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```sql
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

```sql
X2AXIS
```

assigns the category variable to the secondary (top) horizontal axis.

```sql
Y2AXIS
```

assigns the response variable to the secondary (right) vertical axis.

---

**VBARPARM Statement**

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

**Requirements:** Parameterized bar charts require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. This is the key distinction between VBARPARM and VBAR.

The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

**Interaction:** The VBARPARM statement can be combined only with other basic plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1628.

**Note:** The bars are sorted in data order based on the category values. The sort order cannot be changed. This arrangement of the bars differs from the VBAR statement, which by default sorts bars in alphabetical order based on the category values.

**Tip:** The VBARPARM statement can produce fill patterns for bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

**Example:** “About Bar Charts” on page 51

---

**Syntax**

```sql
VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable < / options>;
```
Summary of Optional Arguments

Appearance options

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set.

**BARWIDTH=numeric-value**
specifies the width of the bars as a ratio of the maximum possible width.

**BASELINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the baseline.

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**COLORRESPONSE=numeric-column**
specifies the numeric column that is used to map colors to a gradient legend.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all bars from the category midpoints.

**DISPLAYBASELINE=AUTO | ON | OFF**
specifies whether the baseline is displayed.

**FILL**
**NOFILL**
specifies whether the bars are filled.

**FILLATTRS=style-element<(options)> | (options)**
specifies the fill color and transparency.

**FILLENDCOLOR=color**
specifies a fill color that is applied to the chart at the baseline.

**FILLPATTERN**
enables the display of line fill patterns for the plot.

**FILLPATTERNATTRS=style-element<(options)> | (options)**
specifies the line-fill color and pattern.

**FILLTYPE=SOLID | GRADIENT | ALPHAGRADIENT**
specifies the fill type that is applied to the chart.

**NOZEROBARS**
suppresses zero-length bars.

**OUTLINE**
**NOOUTLINE**
specifies whether the bars have outlines.

**OUTLINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the bar outlines.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=value**
specifies the degree of transparency for the plot.

Axis options

**BASELINE=numeric-value**
specifies the response axis intercept for the baseline.

**X2AXIS**
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
Limit options

LIMITATTRS=style-element<(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default
width of the limit-bar cap (serif).

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines.

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines.

Plot options

MISSING
accepts a missing value as a valid category value.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are
selected.

Plot reference options

NAME=“text-string”
assigns a name to a plot statement.

Required Arguments

CATEGORY=category-variable
specifies the variable that categorizes the data. All values are treated as discrete
values. The input data for this variable should contain unique values. When the
category values are not unique, a warning is logged, and multiple bars are
superimposed at the duplicated category values. The CATEGORY axis is always
discrete.

Starting with SAS 9.4M3, interval bar charts are supported when the category
axis is set to TYPE=LINEAR.

RESPONSE=numeric-variable
specifies a numeric response variable. The input data is expected to be pre-
summarized computed values (sum, mean, and so on).

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You
specify this option only if you are using an attribute map to control visual
attributes of the graph.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The
maximum width is equal to the distance between the center of each bar and the
centers of the adjacent bars.
For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults

- .8
- 1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range

- 0.0 (narrowest) to 1.0 (widest)

Interaction

- When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

Tip

- When the GROUP option is specified and GROUPDISPLAY=CLUSTER, you can use the CLUSTERWIDTH= option to control the space between clusters. For example, to remove the space between clusters, set CLUSTERWIDTH=1.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

**Note:** This feature applies to SAS 9.4M1 and later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

![BASELINE=0](image)

**Default**

- 0

**Interaction**

- When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

**Tips**

- The appearance of the baseline is controlled by the BASELINEATTRS= option.
To suppress the baseline, specify DISPLAYBASELINE=OFF. Or, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

Note: This feature applies to **SAS 9.4M1** and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default**
The GraphAxisLines style element in the current style.

**Notes**
The baseline is always drawn by default.

When **style-element** is specified, only the style element's COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**
To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

**CLUSTERWIDTH=numeric-value**
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default**
0.8

**Interactions**
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

**STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  
```
colormodel=TwoColorRamp
```

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  
```
colormodel=(blue yellow green)
```

Default The ThreeColorRamp style element for filled bars. The ThreeColorAltRamp style element for unfilled bars.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  
“GRADLEGEND Statement” on page 925

“Using Gradient Color Legends” on page 1637

DATALABEL <=variable> displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.

  If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.

- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.
Interactions  When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

If you also specify LIMITLOWER or LIMITUPPER, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

This option is supported with the GROUP= option only when GROUPDISPLAY=CLUSTER is specified. Otherwise, the label is not drawn. Starting with SAS 9.4M5, the labels are shown if you also specify the DATALABELPOS= option.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default  GraphDataText style element attributes Color, FontFamily, FontSize, FontStyle, and FontWeight

Interactions  This option has no effect unless the DATALABEL option is also specified.

The STYLE= option is ignored when DATALABELPOS= is TOP or BOTTOM.

Examples  DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

NONE  does not rotate the bar labels. Labels that are too long overlap.

ROTATE  rotates the text 90 degrees, but only if collisions occur.

SPLIT  splits the labels at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default  The default split character is a space.
Tips Use the SPLITCHAR= option to specify a split character.
The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

SPLITALWAYS always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Tips Use the SPLITCHAR= option to specify a split character.
The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults ROTATE if the column is numeric.
SPLIT if the column is character.

Interaction This option has no effect unless DATALABEL= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label. Specify one of the following values:

DATA
places the label on the data primitives (at the upper boundary of the bars).

BOTTOM
places the label below the bars.

TOP
places the label above the bars.

Default DATA

Interactions This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

This option does not support the splitting or rotation of data labels.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work
best with lighter colors over a medium to large filled area. Specify one of the
following:

Table 10.54 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>🟢</td>
<td>🔴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>🟢</td>
<td>🔴</td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

DISPLAYBASELINE=AUTO | ON | OFF
specifies whether the baseline is displayed.

Note: This feature applies to SAS 9.4M5 and later releases.

Specify one of the following values:
AUTO

displays the baseline if the baseline intercept is within the response-axis range, excluding the minimum and maximum axis values. In that case, the graph shows both positive and negative bars. If the baseline intercept is equal to the response-axis minimum or maximum value, or is outside of the axis range, the baseline is not displayed.

ON

always displays the baseline.

OFF

hides the baseline.

---

**Tip**

To change the baseline position, use the BASELINE= option. To change the appearance of the baseline, use the BASELINEATTRS= option.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default   FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions This option has no effect if you specify the NOFILL option.
This suboption overrides the plot's TRANSPARENCY= option for the fill.

**FILLENDCOLOR=** *color*

specifies a fill color that is applied to the chart at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data.

Interactions

This option has no effect if you specify the NOFILL option.

This option has no effect unless FILLTYPE=GRADIENT.

**FILLPATTERN**

enables the display of line fill patterns for the plot.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction

If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

```plaintext
ods graphics / attrpriority=none;
```

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=** *style-element* *(options)* | *(options)*

specifies the line-fill color and pattern.

Note: This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

*options* can be one or both of the following:

**COLOR=** *style-reference* | *color*

specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=** `style-reference | line-pattern`

specifies the type of line pattern to use for the fill.

`line-pattern` is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 10.55 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="image1" alt="Example" /></td>
<td>R1</td>
<td><img src="image2" alt="Example" /></td>
<td>X1</td>
<td><img src="image3" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="image4" alt="Example" /></td>
<td>R2</td>
<td><img src="image5" alt="Example" /></td>
<td>X2</td>
<td><img src="image6" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="image7" alt="Example" /></td>
<td>R3</td>
<td><img src="image8" alt="Example" /></td>
<td>X3</td>
<td><img src="image9" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="image10" alt="Example" /></td>
<td>R4</td>
<td><img src="image11" alt="Example" /></td>
<td>X4</td>
<td><img src="image12" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="image13" alt="Example" /></td>
<td>R5</td>
<td><img src="image14" alt="Example" /></td>
<td>X5</td>
<td><img src="image15" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interactions**

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

**Accessibility note**

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

**FILLTYPE=** `SOLID | GRADIENT | ALPHAGRADIENT`

specifies the fill type that is applied to the chart.

**Note:** This feature applies to *SAS 9.4M2* and later releases.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.
GRADIENT

Prior to SAS 9.4M5, each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Starting with SAS 9.4M5, FILLTYPE=GRADIENT displays the color from the applied style at the end of the bar gradually changing to the color of the wall at the baseline of the bar. The option does not involve transparency. Only the color is affected.

Interactions To change the color of the wall, use the FILLENDCOLOR= option.

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip (Prior to SAS 9.4M5) Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

ALPHAGRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. The gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Note: This feature applies to SAS 9.4M5 and later releases.

Interaction Data skin SHEEN cannot be used when FILLTYPE=ALPHAGRADIENT is in effect. You can use one of the other data skins in that case.

Tips If your graph contains grid lines or reference lines, this option enables you to see those lines through the transparent portion of the bars.

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a
KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tips

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

When GROUP= is used with COLORRESPONSE= and FILL is enabled, use FILLPATTERN to distinguish the group values. See “Using Fill Patterns and Gradient-Color Fills” on page 1701.

**GROUPDISPLAY=STACK | CLUSTER**
specifies how to display grouped bars.

**STACK**
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphData style elements in the current style.

**CLUSTER**
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

**Note:** CLUSTER is supported only when the category axis is discrete.

**Default** STACK

**Interaction** This option is ignored unless GROUP= is specified.

**Tip** The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

**Default** DATA
Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip

The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

**LEGENDLABEL="text-string"**

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=style-element<(options)> | (options)**

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITCAPSCALE=positive-number**

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default: 1
Interaction  For this option to have any effect, either LIMITLOWER= or LIMITUPPER= must be specified.

Tip  The thickness (height) of the serif cap honors the line thickness specified in the LIMITATTRS= option. The cap pattern is always solid.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default  The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions  If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITLOWER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

Tip  To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default  The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions  If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

If you use the GROUP= option in the plot statement, the LIMITUPPER= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

Tip  To display limit labels, specify DATALABEL. Prior to SAS 9.4M5, limit labels are shown when you specify DATALABEL or DATALABEL=variable. Starting with SAS 9.4M5, limit labels are shown only when you specify DATALABEL (without a variable).

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.
**NAME="text-string"**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**  The text-string is case-sensitive and must define a unique name within the procedure.

**Tip**  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**

suppresses zero-length bars.

**Note:**  This feature applies to SAS 9.4M3 and later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Default" /></td>
<td><img src="image" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

**Interaction**  This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

**Notes**  If BASELINE= is specified, a zero-length bar value equals the baseline.

When this option is used, the bar is not drawn. However, other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

**Tip**  This option is useful when the bar chart baseline is suppressed.

**OUTLINE | NOOUTLINE**

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default**  OUTLINE

**Interactions**  Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651. Note, however, that you cannot specify a line pattern for the bar outline.

Default: GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction: This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See: Chapter 19, “Using Range Attribute Maps,” on page 1755
 “Overview of Attribute Maps” on page 1733

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to SAS 9.4M2 and later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element<options> | (options)

specifies the text properties of the bar segment label text.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to SAS 9.4M2 and later releases.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.
Note: This feature applies to SAS 9.4M2 and later releases.

**Default**
The segment-label format is derived from the format that is assigned to the response column or BEST6 if no format is assigned. The derived format retains the precision of the response-column format and, if necessary, increases the format width to accommodate the summarized value on the response axis.

**Interaction**
This option has no effect unless SEGLABEL is also specified.

**Note**
When a segment-label format is specified with this option, the segment labels are formatted as specified by `format`. The specified format is not automatically expanded to accommodate values that are too wide. If you want the segment-label format to expand automatically for the summarized values on the response axis, specify the format for the response column rather than in this option.

**SPLITCHAR=character-list**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

`character-list` is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

`SPLITCHAR=abc`

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
The default split character is a space.

**Interaction**
This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.
TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Note

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses.
This option provides a way to specify labels for the variable data that appears in
the data tips.
A one-to-one correspondence exists between the label-list and the variable-list
that is specified for the TIP= option. A label must be provided for each variable,
using the same order as the variable-list. If you do not want to apply a custom
label to a variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable
that is listed in the TIP= option. When AUTO is used, the label is
obtained from the variable.
Interaction This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of
variables.
Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you
specify applies to all aspects of the plot statement.
Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for
each plot element that is to have an active link.
Default By default, no HTML links are created.
Interaction This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1718.
This option has no effect unless you also specify IMAGemap in
the ODS GRAPHICS statement. For example, add the following
statement before your procedure:
ODS GRAPHICS / IMAGemap;
For more information, see “Using the ODS GRAPHICS Statement”
on page 1722.
Tip Use the DRILLTARGET= option in the ODS GRAPHICS statement
in order to specify the window that displays the drill-down output.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.
Y2AXIS assigns the response variable to the secondary (right) vertical axis.

VBOX Statement

Creates a vertical box plot that shows the distribution of your data.

Restriction: This plot has compatibility restrictions when used with other plots. See Table 13.2 on page 1630.

See: “Visual Description of Box Plot Percentile Boundaries” on page 1369

Example: “About Box Plots” on page 46

Syntax

VBOX numeric-analysis-variable <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
   specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
   specifies the width of the box.

CAPSCALE=numeric-value
   specifies a positive number to use as a multiplier for changing the default width of the whisker caps.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
   specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
   specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element <options> | (options)
   specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
   specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
   specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
   specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL

NOFILL
   specifies whether the boxes are filled with color.

FILLATTRS=style-element <options> | (options)
   specifies the fill color and transparency.
FILLPATTERN
   enables the display of line fill patterns for the plot.
FILLPATTERNATTRS=style-element <(options)> | (options)
   specifies the line-fill color and pattern.
INTBOXWIDTH=numeric-value
   specifies the box width when an interval category (X) variable is specified.
LINEATTRS=style-element<(options)> | (options)
   specifies the appearance of the box outlines.
MEANATTRS=style-element<(options)> | (options)
   specifies the appearance of the marker that represents the mean in the box.
MEDIANATTRS=style-element<(options)> | (options)
   specifies the appearance of the line that represents the median.
NOCAPS
   hides the cap lines for the whiskers.
NOMEAN
   hides the mean marker.
NOMEDIAN
   hides the median line.
NOOUTLIERS
   hides the outliers from the plot.
NOTCHES
   specifies that the boxes be notched.
OUTLIERATTRS=style-element<(options)> | (options)
   specifies the appearance of the marker that represents the outliers.
TRANSPARENCY=value
   specifies the degree of transparency for the plot.
WHISKERATTRS=style-element<(options)> | (options)
   specifies the appearance of the whisker and cap lines.
WHISKERPCT=number
   specifies the whisker length, in percentile units.

Axis options
X2AXIS
   assigns the category variable to the secondary (top) horizontal axis.
Y2AXIS
   assigns the analysis variable to the secondary (right) vertical axis.

Data tip options
TIP=(role-list) | NONE
   specifies the information to display when the cursor is positioned over a box or whisker in the box plot.
TIPFORMAT=(format-list)
   applies formats to the list of data tip roles that you specify in the TIP= option.
TIPLABEL=(label-list)
   applies labels to the list of data tip roles that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing.

**GROUP=** *variable*

specifies a variable that is used to group the data.

**GROUPDISPLAY=** CLUSTER | OVERLAY

specifies how to display grouped boxes.

**GROUPORDER=** DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

**Label options**

**DATALABEL <=** *variable>*

adds data labels for the outlier markers.

**DATALABELATTRS=** *style-element<<(options)>> | (options)*

specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**LABELFAR**

specifies that only the far outliers have data labels.

**LEGENDLABEL=** "*text-string>*

specifies a label that identifies the box plot in the legend.

**SPLITCHAR=** *"character-list>*

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**Plot options**

**CATEGORY=** *category-variable>*

specifies the category variable for the plot.

**DISPLAYSTATS <=** ALL | (statistics-list)>*

specifies statistics to be displayed for each box.

**FREQ=** *numeric-variable>*

specifies a variable for the frequency count for each observation in the input data.

**MISSING**

accepts a missing value as a valid category value.

**PERCENTILE=** 1 | 2 | 3 | 4 | 5

specifies a method for computing the percentiles for the plot.

**SPREAD**

relocates outlier points that have identical values to prevent overlapping.

**WEIGHT=** *numeric-variable>*

specifies a variable that contains values to be used as weights for the calculations.

**Plot reference options**

**NAME=** "*text-string>*

assigns a name to a plot statement.
Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

"Overview of Attribute Maps” on page 1733

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSCALE=numeric-value
specifies a positive number to use as a multiplier for changing the default width of the whisker caps. For example, CAPSCALE=2 doubles the default cap width and CAPSCALE=0.5 reduces the default cap width by half.

Note: This feature applies to SAS 9.4M5 and later releases.

Default 1

Interaction This option has no effect if NOCAPS is specified or if CAPSHAPE=NONE.

Tips The thickness (height) of a SERIF, LINE, or BRACKET cap honors the line thickness specified in the WHISKERATTRS= option. The cap pattern is always solid.

Use the CAPSHAPE= option to specify the line shape of the caps.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.
Default: SERIF

**CATEGORY=** category-variable

specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

The default ordering of the tick values is ascending formatted order of the category-variable. To change this ordering, you can use the DISCRETEORDER=DATA option in the category axis statement.

**CLUSTERWIDTH=** numeric-value

specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default: 0.7

Interaction: This option is applicable only when a GROUP is in effect and the category axis is discrete.

**CONNECT=** MEAN | MEDIAN | Q1 | Q3 | MIN | MAX

specifies that a connect line joins a statistic from box to box.

Interaction: This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip: You can use the CONNECTATTRS option to specify attributes for the connect line.

**CONNECTATTRS=** style-element<(options)> | (options)

specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default: GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interactions: This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples: CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:

CONNECTATTRS=GraphData3

**DATALABEL <=variable>**

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.
Note  This option has no effect unless the plot contains outlier points.

**DATALABELATTRS=**\texttt{style-element<(options)> | (options)}

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**  GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\texttt{n} style elements.

**Interaction**  This option has no effect unless the DATALABEL option is also specified.

**Examples**  

\texttt{DATALABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:

\texttt{DATALABELATTRS=GraphLabelText}

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

**Note:** This feature applies to \texttt{SAS 9.4M1} and later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 10.56</th>
<th>DATASKIN Options for Box Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image" alt="CRISP" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="MATTE" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image" alt="PRESSED" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

Though the figure shows horizontal boxes, the data skin for vertical boxes is identical.

**Default**  NONE

**Restriction**  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number
is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

See

"Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default 0.0 (no offset)

DISPLAYSTATS <=ALL | (statistics-list)>
specifies statistics to be displayed for each box.

Note: This feature applies to SAS 9.4M5 and later releases.

DISPLAYSTATS
When DISPLAYSTATS is specified without any argument, the plot displays N, MEAN, and STD.

DISPLAYSTATS=ALL
This option displays all available statistics. (See the statistics-list.)

DISPLAYSTATS=(statistics-list)
statistics-list is a space-separated list of one or more of the following statistics, enclosed in parentheses:

DATAMAX maximum data value that includes not only the maximum whisker values but also the maximum outlier values. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

DATAMIN minimum data value that includes not only the minimum whisker values but also the minimum outlier values. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

IQR interquartile range (Q3–Q1).

MAX maximum data value below the box upper fence.

MEAN mean data value for the box.

MEDIAN median data value for the box.

MIN minimum data value above the box lower fence.

N number of observations for the box.

Q1 lower quartile (25th percentile) for the box.

Q3 upper quartile (75th percentile) for the box.

RANGE range of the data (MAX–MIN).

STD standard deviation of the data for the box.
SUMWGT  sum of the weights for the box.

Example  displaystats=(mean median)

Restriction  This option is ignored if the GROUP= option is also specified.

Note  The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.

EXTREME  specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

FILL | NOFILL  specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default  FILL

FILLATTRS=style-element <(options)> | (options)  specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Defaults  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Transparency is the same as the setting for the plot’s TRANSPARENCY= option.

Interactions  This option has no effect if you specify the NOFILL option.

This suboption overrides the plot’s TRANSPARENCY= option for the fill.

FILLPATTERN  enables the display of line fill patterns for the plot.

Note:  This feature applies to SAS 9.4M5 and later releases.

Interaction  If you specify a group, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement. Example:

ods graphics / attrpriority=none;

Accessibility note  This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.
Tips

Use the FILLPATTERNATTRS= option to specify the appearance of the fill pattern.

Use the NOFILL option to suppress the plot’s fill color.

**FILLPATTERNATTRS=**style-element <(options)> | (options)
specifies the line-fill color and pattern.

**Note:** This feature applies to SAS 9.4M5 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**options** can be one or both of the following:

**COLOR=**style-reference | color
specifies a color to use for the fill lines. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

**PATTERN=**style-reference | line-pattern
specifies the type of line pattern to use for the fill.

**line-pattern** is a two-character specification that consists of a line-direction prefix (R for right, L for left, and X for cross hatch) and a line-identification number, 1–5. The following table shows the patterns for each of the possible combinations.

**Table 10.57 Fill Patterns**

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td><img src="L1" alt="Example" /></td>
<td>R1</td>
<td><img src="R1" alt="Example" /></td>
<td>X1</td>
<td><img src="X1" alt="Example" /></td>
</tr>
<tr>
<td>L2</td>
<td><img src="L2" alt="Example" /></td>
<td>R2</td>
<td><img src="R2" alt="Example" /></td>
<td>X2</td>
<td><img src="X2" alt="Example" /></td>
</tr>
<tr>
<td>L3</td>
<td><img src="L3" alt="Example" /></td>
<td>R3</td>
<td><img src="R3" alt="Example" /></td>
<td>X3</td>
<td><img src="X3" alt="Example" /></td>
</tr>
<tr>
<td>L4</td>
<td><img src="L4" alt="Example" /></td>
<td>R4</td>
<td><img src="R4" alt="Example" /></td>
<td>X4</td>
<td><img src="X4" alt="Example" /></td>
</tr>
<tr>
<td>L5</td>
<td><img src="L5" alt="Example" /></td>
<td>R5</td>
<td><img src="R5" alt="Example" /></td>
<td>X5</td>
<td><img src="X5" alt="Example" /></td>
</tr>
</tbody>
</table>

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.
Interactions

For ODS styles that use color-priority attribute rotation, such as HTMLBlue, to change the fill pattern for each group value, specify ATTRPRIORITY=NONE in an ODS GRAPHICS statement. See “ATTRPRIORITY=COLOR | NONE” on page 99.

For this option to take effect, the FILLPATTERN option must be specified.

Accessibility note

This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

FREQ=variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped boxes.

CLUSTER

the boxes are drawn adjacent to each other.

OVERLAY

all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData variable style elements in the current style.

Defaults

CLUSTER for a discrete category axis

OVERLAY for a linear axis

Interaction

This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.
DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

Restriction The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example proc sgplot data=sashelp.class;
   vbox weight / category=height intboxwidth=20 ;
   xaxis type=linear;
   run;

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.
LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=style-element<options>| (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default  GraphDataDefault style element in the current style for ungrouped data.
         GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MEANATTRS=style-element<options>| (options)
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default  GraphBoxMean style element in the current style for ungrouped data.
         GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element<options>| (options)
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default  GraphBoxMedian style element in the current style for ungrouped data.
         GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction  This option is ignored if the NOMEDIAN option is also specified.

MISSING
accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOCAPS**

hides the cap lines for the whiskers.

**Interaction** Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

**NOMEAN**

hides the mean marker.

**NOMEDIAN**

hides the median line.

**NOOUTLIERS**

hides the outliers from the plot.

**NOTCHES**

specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \left( \frac{\text{IQR}}{N^{\frac{1}{2}}} \right)
\]

For a visual description of the parts of a box plot, see “Details” on page 1369.

**OUTLIERATTRS=style-element<(options)> | (options)**

specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.

Default GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**PERCENTILE=1 | 2 | 3 | 4 | 5**

specifies a method for computing the percentiles for the plot.

Default 5 (empirical distribution function with averaging)

See “Calculating Percentiles” on page 1370

**SPLITCHAR=“character-list”**

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Interactions** This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP** specifies that the split characters are included in the displayed value.

**Interaction** This option has no effect unless SPLITCHAR= is also specified.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=LEFT | CENTER | RIGHT** specifies the horizontal alignment of the value text that is being split.

**Interaction** This option has no effect unless you specify the SPLITCHAR= option.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPREAD** relocates outlier points that have identical values to prevent overlapping.

**Note** This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

**TIP=(role-list) | NONE** specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(**role-list**) a space-separated list of unique box plot roles enclosed in parentheses. The roles for TIP are CATEGORY, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Specify one or more of these roles in role-list. Data tips are displayed using the data obtained from the specified roles.
NONE
suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement
You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

```
tip=(mean median)
```

**TIPFORMAT=(format-list)**
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Note**
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

**Tip**
Use the TIPLABEL option to assign labels to the list of roles.

**See**
[SAS Formats and Informats: Reference](#)

```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.
Requirement  A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of roles.

Example  

```plaintext
tylabel=(auto "Class Weight")
```

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**  0.0

**Range**  0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Note:** This feature applies to SAS 9.4M1 and later releases.

**Requirement**  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**WHISKERATTRS=**

specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**  GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interaction**  This option is ignored if the NOMEDIAN option is also specified.

**WHISKERPCT=number**

specifies the whisker length, in percentile units.

**Note:** This feature applies to SAS 9.4M2 and later releases.

When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
10  specifies the 10th percentile low and the 90th percentile high
25  specifies the 25th percentile low and the 75th percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range  0–25

Notes  When this option is specified, fences and far outliers are not drawn. When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

**X2AXIS**
assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the analysis variable to the secondary (right) vertical axis.

## Details

### Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

### Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.
Figure 10.9  Parts of a Box Plot

In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5\text{IQR}$). Outliers that are beyond upper and lower far fences ($\pm 3\text{IQR}$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let $n$ be the number of nonmissing values for a variable, and let $X_1, X_2, ..., X_n$ represent the ordered values of the variable. $X_1$ is the smallest value, $X_2$ is the next smallest, and $X_n$ is the largest value. Let the $r$th percentile be $y$, set:

$$p = \frac{r}{100}$$

and let:

$$np = j + g$$
when PERCENTILE=1, 2, 3, or 5, or let:

\[(n + 1)p = j + g\]

when PERCENTILE=4, where \(j\) is the integer part of \(np\), and \(g\) is the fractional part of \(np\). Then the PERCENTILE= option defines the \(r\)th percentile, \(y\), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at (X_{np})</td>
<td>(y = (1 - g)x_j + gx_j + 1)</td>
<td>(x_0) is taken to be (x_1)</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to (np)</td>
<td>(y = x_j)</td>
<td>Used when (g &lt; \frac{1}{2}) or when (g = \frac{1}{2}) and (j) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g = \frac{1}{2}) and (j) is odd or when (g &gt; \frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>(y = x_j)</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g &gt; 0)</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at (x_{(n+1)p})</td>
<td>(y = (1 - g)x_j + gx_j + 1)</td>
<td>(x_{n+1}) is taken to be (x_n)</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>(y = \frac{1}{2}(x_j + x_j + 1))</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_j + 1)</td>
<td>Used when (g &gt; 0)</td>
</tr>
</tbody>
</table>

**VECTOR Statement**

Creates a vector plot that draws arrows from a point of origin to each data point.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Vector Plots” on page 39

**Syntax**

VECTOR X=numeric-variable Y=numeric-variable <options>;
Summary of Optional Arguments

**Appearance options**

ARROWDIRECTION=IN | OUT | BOTH
specifies the location of the arrowheads for the vectors.

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the vector line.

NOARROWHEADS
removes the arrowheads from the vectors.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Axis options**

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Group options

GROUP=variable
  specifies a variable that is used to group the data.

NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
  displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
  specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
  specifies a label that identifies the vector plot in the legend.

SPLITCHAR="character-list"
  splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Plot options

XORIGIN=numeric-value | numeric-variable
  specifies the X coordinate of the origin for the vectors.

YORIGIN=numeric-value | numeric-variable
  specifies the Y coordinate of the origin for the vectors.

Plot reference options

NAME="text-string"
  assigns a name to a plot statement.

Required Arguments

X=numeric-variable
  specifies a numeric variable for the X axis.

Y=numeric-variable
  specifies numeric variable for the Y axis.

Optional Arguments

ARROWDIRECTION=IN | OUT | BOTH
  specifies the location of the arrowheads for the vectors. Specify one of the following:

  IN
    places the arrowheads at the origin of the vector.
OUT
places the arrowheads at the ending point of the vector.

BOTH
places arrowheads at both the origin and ending point of the vector.

Default OUT

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors. Specify one of the following:

OPEN
resembles the letter "V".

CLOSED
an outline of a triangle.

FILLED
a solid triangle.

BARBED
a solid triangle with an indent at the base.

Default OPEN

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp
(color-list) 
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element  

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column  
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

Interaction  When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  “GRADLEGEND Statement” on page 925  
“Using Gradient Color Legends” on page 1637

DATALABEL <=variable>  
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element<(options)> | (options)  
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults  GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction  This option has no effect unless the DATALABEL option is also specified.
Examples

DATALABELATR = (Color = Green Family = "Arial" Size = 8 Style = Italic Weight = Bold)

Here is an example that specifies a style element:

DATALABELATR = GraphLabelText

**DATALABELPOS** = *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN** = NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

---

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 10.58** DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**See**

"Using Data Skins" on page 1685
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Note When GROUP= is used with COLORRESPONSE=, only a gradient color legend is generated automatically. In that case, include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step to add a discrete legend and a gradient color legend.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL=“text-string”
specifies a label that identifies the vector plot in the legend. By default, the label of the Y variable or the group value for each plot element is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the vector line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME=“text-string”
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOARROWHEADS
removes the arrowheads from the vectors.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.
**RATTRID=** *character-value*

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755

“Overview of Attribute Maps” on page 1733

**SPLITCHAR=** *"character-list"*

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

*"character-list"* is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**

Values are not split.

**Interactions**

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

---

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

---

**SPLITJUSTIFY=** *LEFT | CENTER | RIGHT*

specifies the horizontal alignment of the value text that is being split.
Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**THICKMAX=** dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

---

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**Default** Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

**Interactions** The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

**THICKMAXRESP=** numeric-value
specifies the response value that corresponds to the maximum line thickness.

---

**Note:** This feature applies to **SAS 9.4M3** and later releases.

**Default** The maximum value in the response column that is specified in the THICKRESP= option.

**Interactions** The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKRESP=** numeric-variable
specifies a response variable that is used to map a line thickness to each group value.
Note: This feature applies to SAS 9.4M3 and later releases.

Default

The GraphDataDefault style element LineThickness attribute.

Restriction

The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions

When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See

“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1544 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement

You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Note**
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**
Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**Restriction**
The specified transparency is not applied to missing values. Missing values are always opaque.

**X2AXIS**
Assigns the X variable to the secondary (top) horizontal axis.
XORIGIN=numeric-value | numeric-variable
specifies the X coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default 0

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YORIGIN=numeric-value | numeric-variable
specifies the Y coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default 0

VLINE Statement

Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR statement to create a bar-line chart.

Restrictions:
The VLINE statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Axes” on page 1634.

When category plots are overlaid, all of the plots must use the same category variable.

See:
“Marker Fills and Outlines” on page 1645
“Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Examples:
“About Line Charts” on page 60
“Example 10: Creating a Bar-Line Chart” on page 1542

Syntax

VLINE category-variable </options>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete category values.
LINEATTRS=\texttt{style-element}\langle\texttt{options}\rangle\ | \ (\texttt{options}) \\
\begin{itemize}
  \item specifies the appearance of the lines in the line plot.
\end{itemize}

TRANSPARENCY=\texttt{value} \\
\begin{itemize}
  \item specifies the degree of transparency for the plot.
\end{itemize}

\textbf{Axis options}

\texttt{X2AXIS} \\
\begin{itemize}
  \item assigns the category variable to the secondary (top) horizontal axis.
\end{itemize}

\texttt{Y2AXIS} \\
\begin{itemize}
  \item assigns the response variable to the secondary (right) vertical axis.
\end{itemize}

\textbf{Data tip options}

\texttt{TIP=(variable-list) | NONE} \\
\begin{itemize}
  \item specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
\end{itemize}

\texttt{TIPFORMAT=(format-list)} \\
\begin{itemize}
  \item applies formats to the list of data tip variables that you specify in the TIP= option.
\end{itemize}

\texttt{TIPLABEL=(label-list)} \\
\begin{itemize}
  \item applies labels to the list of data tip variables that you specify in the TIP= option.
\end{itemize}

\textbf{Group options}

\texttt{CLUSTERWIDTH=numeric-value} \\
\begin{itemize}
  \item specifies the width of the group clusters as a fraction of the midpoint spacing.
\end{itemize}

\texttt{GROUP=variable} \\
\begin{itemize}
  \item specifies a variable that is used to group the data.
\end{itemize}

\texttt{GROUPDISPLAY=CLUSTER | OVERLAY} \\
\begin{itemize}
  \item specifies how to display grouped lines.
\end{itemize}

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING} \\
\begin{itemize}
  \item specifies the ordering of the groups within a category.
\end{itemize}

\textbf{Label options}

\texttt{CURVELABEL \langle="text-string"\rangle} \\
\begin{itemize}
  \item adds a label for the line plot.
\end{itemize}

\texttt{CURVELABELATTRS=\texttt{style-element}\langle\texttt{options}\rangle\ | \ (\texttt{options})} \\
\begin{itemize}
  \item specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
\end{itemize}

\texttt{CURVELABELLOC=OUTSIDE | INSIDE} \\
\begin{itemize}
  \item specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
\end{itemize}

\texttt{CURVELABELPOS=AUTO | END | MAX | MIN | START} \\
\begin{itemize}
  \item specifies the location of the curve label.
\end{itemize}

\texttt{DATALABEL \langle=variable\rangle} \\
\begin{itemize}
  \item displays a label for each data point.
\end{itemize}

\texttt{DATALABELATTRS=\texttt{style-element}\langle\texttt{options}\rangle\ | \ (\texttt{options})} \\
\begin{itemize}
  \item specifies the appearance of the labels in the plot when you use the DATALABEL= option.
\end{itemize}

\texttt{DATALABELPOS=DATA | BOTTOM | TOP} \\
\begin{itemize}
  \item specifies the location of the data label.
\end{itemize}

\texttt{LEGENDLABEL="text-string"}
specifies the label that identifies the line plot in the legend.

`SPLITCHAR="character-list"`

specifies one or more characters used to split the text used for curve and data labels into multiple lines.

`SPLITCHARNODROP`

specifies that the split characters are included in the displayed value.

`SPLITJUSTIFY=LEFT | CENTER | RIGHT`

specifies the horizontal alignment of the value text that is being split.

`STATLABEL`

`NOSTATLABEL`

specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

`LIMITATTRS=style-element<(options)> | (options)`

specifies the appearance of the limit lines in the plot.

`LIMITCAPSCALE=positive-number`

specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif).

`LIMITS=BOTH | LOWER | UPPER`

adds limit lines to the plot.

`LIMITSTAT=CLM | STDDEV | STDERR`

specifies the statistic for the limit lines.

`NOLIMITCAPS`

suppresses the serif cap on limit lines, if limit lines are displayed.

`NUMSTD=n`

specifies the number of standard units for the limit lines, when you specify `LIMITSTAT=STDDEV` or `LIMITSTAT=STDERR`.

Marker options

`FILLEDOUTLINEDMARKERS`

specifies that markers have a fill and an outline.

`MARKERATTRS=style-element<(options)> | (options)`

specifies the appearance of the markers in the plot.

`MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)`

specifies the color of the marker fill.

`MARKEROUTLINEATTRS=style-element<(options)> | (options)`

specifies the appearance of the marker outlines.

`MARKERS`

adds markers to the plot.

Plot options

`ALPHA=numeric-value`

specifies the confidence level for the confidence limits.

`CATEGORYORDER=RESPASC | RESPDESC`

specifies the order in which the categories are arranged.

`FREQ=numeric-variable`

specifies a variable for the frequency count for each observation in the input data.

`MISSING`

accepts a missing value as a valid category value.
[RESPONSE=]response-variable
  specifies a numeric response variable for the plot.
[URL=]character-variable
  specifies an HTML page to be displayed when parts of the plot are selected.
[WEIGHT=]numeric-variable
  specifies a variable that contains values to be used as weights for the calculations.

Plot reference options
[NAME="text-string"]
  assigns a name to a plot statement.

Statistics options
[STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM]
  specifies the statistic for the vertical axis.

Required Argument
category-variable
  specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments
[ALPHA=]numeric-value
  specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).
  Default .05
  Interactions This option has no effect if you do not specify LIMITSTAT=CLM.
  If your plot is overlaid with other categorization plots, then the first ALPHA= value that you specify is used for all of the plots.

[ATTRID=]character-value
  specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
  See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
  "Overview of Attribute Maps” on page 1733

BREAK
  breaks the line whenever the computed statistic for a category value is missing.
  For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.
Note  The observation is excluded from the graph when there is a missing value for the FREQ variable.

**CATEGORYORDER=RESPASC | RESPDESC**
specifies the order in which the categories are arranged. By default, the plot is sorted in ascending order based on the category values. You can change the order so that it is based on the response values.

Specify one of the following values:

- **RESPASC** sorts by the response values in ascending order.
- **RESPDESC** sorts by the response values in descending order.

Default  The plot is sorted in ascending order based on the category values.

Restrictions This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes Starting with SAS 9.4M1, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

**CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default  0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.
**CURVELABEL <"text-string" >**

adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

**Interactions**

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

By default, CURVELABEL removes a plot from an automatic legend because the curve label is considered redundant information. However, you can override that behavior by specifying the NAME= option in the plot statement. Then include the plot name in a KEYLEGEND statement. If your procedure has more than one plot statement, do this for each plot that you want included in the legend.

**CURVELABELATTRS=style-element<options> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family="Arial" Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default**

INSIDE

**CURVELABELPOS=AUTO | END | MAX | MIN | START**

specifies the location of the curve label. Specify one of the following values:

**AUTO**

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**

This value takes effect only when CURVELABELLOC=OUTSIDE.
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X-axis value.

MIN
places the label at the part of the curve closest to the minimum X-axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point.

- If you specify a variable, then the values of that variable are used for the data labels.
  If the values of the label variable are not the same for each category, then the rendered label is indeterminate. In that case, either the first or last-occurring values are displayed. With CAS data, the minimum values are displayed.
- If you do not specify a variable, then the values of the calculated response are used for the data labels. If you do not specify a response variable, then the frequency counts of the category variable are displayed.

Interactions When DISCRETEOFFSET= and DATALABELPOS= are both specified, the DISCRETEOFFSET= option has no effect on the data labels. Only the plot is offset. If you remove DATALABELPOS= from the plot statement, the data labels are offset.

If you also specify LIMITS or LIMITSTAT, then the limit labels are also shown. Prior to SAS 9.4M5, limit labels are shown when you use DATALABEL or DATALABEL=variable with the limit options. Starting with SAS 9.4M5, limit labels are shown only when you use DATALABEL (without a variable).

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults
Label font: style element GraphDataText attributes FontFamily, FontSize, FontStyle, and FontWeight.
Label color: for ungrouped data, style element GraphDataText attribute color. For grouped data, style element GraphData1...GraphDataN attribute contrastColor when
DATALABELPOS=DATA. Otherwise, style element GraphDataText attribute color.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**

```plaintext
DATALABELATTRS=(Color=Green Family="Arial" Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

**DATALABELPOS=DATA | BOTTOM | TOP**
specifies the location of the data label. Specify one of the following values:

- **DATA**
  places the label at the data points of the lines.

- **BOTTOM**
  places the label below the lines.

- **TOP**
  places the label above the lines.

**Default**
DATA

**Interactions**
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

When you specify a value of TOP or BOTTOM for this option, the splitting of data labels (using the SPLITCHAR= option) is not supported.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**Note:** This feature applies to SAS 9.4M1 and later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 10.59  DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 10.60  DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
<tr>
<td></td>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See "Using Data Skins" on page 1685

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the category axis is discrete.

FILLEDDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored. See marker symbols on page 1656.

Interactions: This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions: If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
If the value is not an integer, only the integer portion is used.

Interactions

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

When FREQ= and MISSING are both specified, the MISSING option has no effect.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Restriction

If you specify a group variable in a category chart, and the procedure contains more than one category chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the category charts, then an error is generated.

Interaction

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 17, “Using Attribute Maps to Control Visual Attributes,” on page 1733.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\textsubscript{n} style elements in the current style.

Default

OVERLAY

Interaction

This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to SAS 9.4M3 and later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.
DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS CAS data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip The category order can be changed using the DISCRETEORDER= option in the axis statement for the category axis.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element<|options> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITCAPSCALE=positive-number
specifies a positive number to use as a multiplier for changing the default width of the limit-bar cap (serif). For example, LIMITCAPSCALE=2 doubles the default cap width and LIMITCAPSCALE=0.5 reduces the default cap width by half.
Note: This feature applies to SAS 9.4M5 and later releases.

**Default**

- **1**

**Interaction**

For this option to have any effect, either **LIMITS**= or **LIMITSTAT**= must be specified.

**Tip**

- The thickness (height) of the serif cap honors the line thickness specified in the **LIMITATTRS**= option. The cap pattern is always solid.

**LIMITS=BOTH | LOWER | UPPER**

- Adds limit lines to the plot. Specify one of the following values:
  - **BOTH** adds lower and upper limit lines to the plot.
  - **LOWER** adds lower limit lines to the plot.
  - **UPPER** adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the **LIMITSTAT**= option, then the default is BOTH.

**Interaction**

- Limit lines are displayed only when you specify **STAT**= MEAN.

**Tip**

- To display limit labels, specify **DATALABEL**. Prior to SAS 9.4M5, limit labels are shown when you specify **DATALABEL** or **DATALABEL=variable**. Starting with SAS 9.4M5, limit labels are shown only when you specify **DATALABEL** (without a variable).

**LIMITSTAT=CLM | STDDEV | STDERR**

- Specifies the statistic for the limit lines. Specify one of the following statistics:
  - **CLM**
    - Confidence limits
  - **STDDEV**
    - Standard deviation
  - **STDERR**
    - Standard error

**Default**

- If you specify the **LIMITS**= option, then the default for **LIMITSTAT**= is CLM. Otherwise, there is no default.

**Interaction**

- If you specify the **LIMITSTAT**= option, then the default value for the **LIMITS**= option is BOTH.

**Tip**

- To display limit labels, specify **DATALABEL**. Prior to SAS 9.4M5, limit labels are shown when you specify **DATALABEL** or **DATALABEL=variable**. Starting with SAS 9.4M5, limit labels are shown only when you specify **DATALABEL** (without a variable).

**LINEATTRS=**

- Specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element<options>  | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction  This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element<COLOR=color>  | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions  This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip  You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See  For usage information and an example, see "Marker Fills and Outlines" on page 1645.

MARKEROUTLINEATTRS=style-element<options>  | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

MARKERS adds markers to the plot.

MISSING accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

Interaction This option has no effect when FREQ= is specified.

NAME=“text-string” assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLIMITCAPS suppresses the serif cap on limit lines, if limit lines are displayed.

Note: This feature applies to SAS Viya 3.5 and later releases.

Interaction The appearance of the limit lines is controlled by the LIMITATTRS= option.

NUMSTD=n specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.
SPLITCHAR="character-list"
 specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.
Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.
Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to SAS 9.4M1 and later releases.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)
**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Note**
A syntax error might be generated if you specify the format using the `w.d` SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
[SAS Formats and Informats: Reference](#)

**Example**
tipformat=(auto F5.2)

---

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

---

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)
**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**  

**Default**  
By default, no HTML links are created.

**Interactions**  
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGemap in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

Starting with SAS 9.4M5, if your categorical chart is overlaid with other categorical charts, each chart can specify its own URL variable. The URL variable specified for each chart overlay is honored. This capability affects the following charts: DOT, HBAR, HLINE, VBAR, VLINE.

**Tip**  
Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

**WEIGHT=numeric-variable**

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**  
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Interaction**  
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

**X2AXIS**

assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the response variable to the secondary (right) vertical axis.

---

**WATERFALL Statement**

Creates a waterfall chart computed from input data.
A waterfall chart accumulates response values in data order. Any change in the order of the X-axis values from the data order can adversely affect the waterfall chart. For example, the X-axis value order can change when the waterfall chart is overlaid with other plots.

See: “Plot Compatibility” on page 1630 for information about overlaying this plot with other plot types

Example: “About Waterfall Charts” on page 63

## Syntax

```
WATERFALL CATEGORY=variable RESPONSE=numeric-variable <options>;
```

## Summary of Optional Arguments

### Appearance options

- **ATTRID=**character-value
  - specifies the value of the ID variable in a discrete attribute map data set.
- **BARWIDTH=**numeric-value
  - specifies the width of the bars as a ratio of the maximum possible width.
- **BASELINEATTRS=**style-element <(options)> | (options)
  - specifies the appearance of the baseline.
- **COLORGROUP=**variable
  - specifies a variable that is used to discretely color the bars.
- **COLORMODEL=**style-element | (color-list)
  - specifies a color ramp that is to be used with the COLORRESPONSE=
    option.
- **COLORRESPONSE=**numeric-column
  - specifies the numeric column that is used to map colors to a gradient legend.
- **DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  - specifies a special effect to be used on the plot.
- **FILL**
  - **NOFILL**
    - specifies whether the bars are filled.
- **FILLATTRS=**style-element | (COLOR=color)
  - specifies the color of the fill for the bars.
- **OUTLINE**
  - **NOOUTLINE**
    - specifies whether the bars have outlines.
- **RATTRID=**character-value
  - specifies the value of the ID variable in a range attribute map data set.
- **TRANSPARENCY=**value
  - specifies the degree of transparency for the plot.

### Axis options

- **X2AXIS**
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Final bar options

FINALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the final bar.

FINALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the final bar, if displayed.

Initial bar options

INITIALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the initial bar, if displayed.

INITIALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the initial bar, if displayed.

INITIALBARVALUE=number
specifies the value of the initial bar.

Label options

DATALABEL
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

Plot options

MISSING
accepts a missing value as a valid category value.

STAT=MEAN | SUM
specifies the statistic for the response axis.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.
Required Arguments

**CATEGORY=variable**
specifies the variable for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.

**RESPONSE=numeric-variable**
specifies the variable for the response values.

Optional Arguments

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

**BARWIDTH=numeric-value**
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default .8

**BASELINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the baseline.

---

Note: This feature applies to SAS 9.4M1 and later releases.

---

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**COLORGROUP=variable**
specifies a variable that is used to discretely color the bars. Once the variable values are found, the transaction bar colors are taken from the GraphData1 ... GraphData*n* style elements in the current style. If the transaction bars are filled,
then the COLOR attribute is used for the fill. The CONTRASTCOLOR attribute is used for the transaction bar outlines.

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to SAS 9.4M3 and later releases.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example: `colormodel=TwoColorRamp`

**(color-list)**
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660. The list can contain a mix of style attribute references, color names, and color codes.

Requirement: The list of colors must be enclosed in parentheses.

Example: `colormodel=(blue yellow green)`

**Default** The ThreeColorRamp style element

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

The fill colors are assigned according to the legend gradient.

**Interaction** When the COLORGROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

**Tip** The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See** “GRADLEGEND Statement” on page 925
“Using Gradient Color Legends” on page 1637

**DATALABEL**
displays a label for each data point. The values of the calculated response are used for the data labels.

**DATALABELATTRS=** `style-element<(options)> | (options)`
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Default**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 10.61 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![NONE]</td>
<td>![CRISP]</td>
<td>![GLOSS]</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td>![MATTE]</td>
<td>![PRESSED]</td>
<td>![SHEEN]</td>
</tr>
</tbody>
</table>

**Default**
NONE

**Restriction**
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In SAS 9.4M1 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
Interactions This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1675.

If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1685

**FILL | NOFILL**
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interaction Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=** *style-element | (COLOR=**color**)*
specifies the color of the fill for the bars.

You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Here is an example that specifies a style element: FILLATTRS=GraphData3

Here is an example that specifies a color name: FILLATTRS=(COLOR= "Very light red")

Default For ungrouped data, the default color is specified by the Color attribute of the GraphDataDefault style element in the current style. For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction This option has no effect if you also specify the NOFILL option.

**FINALBARATTRS=** *style-element | (COLOR=**color**)*
specifies the appearance of the final bar. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The default color is specified by the Color attribute of the GraphFinal style element in the current style.

Interaction This option has no effect if you specify the NOFILL option.

**FINALBARTICKVALUE=** *text-string*
specifies the tick value used on the X axis for the final bar, if displayed.
INITIALBARATTRS=style-element | (COLOR=color)

specifies the appearance of the initial bar, if displayed. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default

The default color is specified by the Color attribute of the GraphInitial style element in the current style.

Interactions

This option has no effect if you specify the NOFILL option.

This option has no effect unless INITIALBARVALUE is also specified.

INITIALBARTICKVALUE="text-string"

specifies the tick value used on the X axis for the initial bar, if displayed.

Default

"Initial"

Interaction

This option has no effect unless INITIALBARVALUE is also specified.

INITIALBARVALUE=number

specifies the value of the initial bar. When specified, the first transaction bar to be drawn starts at that initial value instead of zero.

Default

If the INITIALBARVALUE option is not specified, the initial bar is not included in the chart and the first transaction bar is drawn from zero.

MISSING

accepts a missing value as a valid category value. By default, observations with missing values are ignored. If more than one chart is specified in the procedure, the MISSING option affects the calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default

OUTLINE

Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.
**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

**STAT=MEAN | SUM**
specifies the statistic for the response axis. Specify one of the following statistics:

MEAN
the mean of the response variable.

SUM
the sum of the response variable.

Default \( \text{SUM} \)

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\((variable-list)\)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the \textit{format-list} and the \textit{variable-list} that is specified for the TIP= option. A format must be provided for each variable, using the same order as the \textit{variable-list}. If you do not want to apply a format to a variable, use the AUTO keyword instead.
Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Note: A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F2.0

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example: https://www.sas.com/en_us/home.html

Default: By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see "Specifying ODS Destinations" on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP;
```

For more information, see "Using the ODS GRAPHICS Statement" on page 1722.

Tip

Use the DRILLTARGET= option in the ODS GRAPHICS statement in order to specify the window that displays the drill-down output.

X2AXIS

assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS

assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

---

XAXIS Statement

Specifies the axis options for the X axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
XAXIS options;
```

Summary of Optional Arguments

Appearance options

- `COLORBANDS=NONE | EVEN | ODD`
  specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- `COLORBANDSATTRS=style-element<(options)> | (options)`
  specifies the fill appearance of the color band.

- `DISPLAY=ALL | NONE | (options)`
  specifies which features of the axis are displayed.

- `GRID`
  creates grid lines at each tick on the axis.

- `GRIDATTRS=style-element <(options)> | (options)`
  specifies the appearance of the grid lines.
MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=\texttt{style-element <\texttt{(options)}> | \texttt{(options)}}
specifies the appearance of the minor grid lines.

TICKSTYLE=\texttt{OUTSIDE} | \texttt{INSIDE} | \texttt{ACROSS} | \texttt{INBETWEEN}
specifies the placement of the major tick marks in relation to the axis line.

**Axis options**

DISCRETEORDER=\texttt{DATA} | \texttt{FORMATTED} | \texttt{UNFORMATTED}
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=\texttt{time-interval}
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=\texttt{LINEAR} | \texttt{LOGEXPAND} | \texttt{LOGEXponent}
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=\texttt{EXPANDED} | \texttt{EXPONENT}
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=\texttt{numeric-value}
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=\texttt{numeric-value}
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=\texttt{numeric-value}
specifies the number of minor tick marks for the axis.

MINORINTERVAL=\texttt{time-interval}
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=\texttt{numeric-value}
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=\texttt{numeric-value}
specifies an offset that precedes the lowest data value on the axis.

RANGES=(\texttt{start–end <start2–end2 startN–endN ...>})
specifies the ranges for a broken axis.

REFTICKS <=\texttt{(options)}>
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=\texttt{numeric-value}
Specifies a threshold for displaying one more tick mark at the high end of the axis.
THRESHOLDMIN=numeric-value
   Specifies a threshold for displaying one more tick mark at the low end of
   the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
   specifies the type of axis.

Text options

FITPOLICY=policy-value
   specifies the method that is used to fit tick mark values on a horizontal
   axis when there is not enough room to draw them normally.

LABEL=“text-string”
   specifies a label for the axis.

LABELATTRS=style-element<(options)> | (options)
   specifies the appearance of the axis labels.

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT
   specifies the position of the axis label.

SPLITCHAR=“character-list”
   splits the text for tick mark values at the specified character(s) when there
   is not enough room to display the text normally.

SPLITCHARNODROP
   specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
   specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element<(options)> | (options)
   specifies the appearance of the axis tick value labels.

VALUES=(values-list) | (“string-list”)
   specifies the values for the ticks on an axis.

VALUESDISPLAY=
   specifies the text that is to be displayed for the tick values that are defined
   in the VALUES= option.

VALUESFORMAT=DATA | SAS-format
   specifies how to format the values for major tick marks.

VALUESHINT
   specifies that the minimum and maximum axis values are determined
   independently of the values that you specify in the VALUES= option.

VALUESROTATE=DIAGONAL | DIAGONAL2 | VERTICAL
   specifies how the tick values are rotated on the axis.

Optional Arguments

COLORBANDS=None | EVEN | ODD
   specifies the display of alternating wall-color bands corresponding to the discrete
   axis bins. The following images show the results of ODD and EVEN settings:

| COLORBANDS=ODD | COLORBANDS=EVEN |
Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDSATTRS= option to customize the color bands.

COLORBANDSATTRS=style-element<(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

Note: This value is not supported with CAS data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:
NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the wall border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

ROTATE
rotates the value text diagonally.

TIP Use VALUESROTATE= to specify how the tick values are rotated on the axis.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

ROTATEALWAYS
always rotates the value text, even when there is enough room to draw them normally.

Note This feature applies to SAS 9.4M7 and later releases.

ROTATETHIN
attempts to use ROTATE, and then THIN to fit the values.
Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**SPLIT**
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default: The default split character is a space.

Interaction: This option has no effect unless the axis is discrete.

Tip: You can specify the split character using the SPLITCHAR= option.

**SPLITALWAYS**
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default: The default split character is a space.

Interaction: This option has no effect unless the axis is discrete.

Tip: You can specify the split character using the SPLITCHAR= option.

Example: “Fit Policies for Axes” on page 1644

**SPLIT ROTATE**
Attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

**STACKEDALWAYS**
stacks the values vertically regardless of tick value collision.

Interaction: This option works only with a discrete axis.

Note: This feature applies to SAS 9.4M5 and later releases.

**STACKEDALWAYSTHIN**
stacks the values vertically regardless of tick value collision. If a collision is detected after stacking, then THIN as needed.
This option works only with a discrete axis.

Note: This feature applies to SAS 9.4M5 and later releases.

STAGGER
shifts the values up and down.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERROTATE
attempts to use STAGGER, and then ROTATE to fit the values.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

Interaction: When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults: SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction: This option does not affect logarithmic axes.

See: “Fit Policies for Axes” on page 1644

GRID
creates grid lines at each tick on the axis.

Interaction: Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip: You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element *(options)*
specifies the appearance of the grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default**

GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

**Interaction**

This option has no effect unless GRID is also specified.

**Examples**

GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

GRIDATTRS=GraphAxisLines

**INTEGER**

specifies that only integers are used for tick mark values. This option affects only linear axes.

**INTERVAL=time-interval**

specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

**Default** AUTO

**Tip** If unwanted thinning of tick marks occurs when you specify INTERVAL=, try using minor intervals instead. For example, you might specify MINOR MINORINTERVAL=MONTH instead of INTERVAL=MONTH. As a result, in the example monthly tick marks are displayed even though the major values are thinned.

**LABEL="text-string"**
specifies a label for the axis.

**LABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults** GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Examples**

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

**LABELPOS=**CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.
CENTER
centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.

LEFT
positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT
positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X-axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the LEFT and RIGHT positions for the same axis labels.

Default CENTER
LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 10.33 on page 1420.

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 10.34 on page 1420.

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 10.35 on page 1420.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your
preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

**EXPANDED**
the values are interpreted as integer powers of the base (decimal numbers).

**EXPONENT**
the values are interpreted as integer exponents of the base.

Default **EXPANDED**

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.
MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction This option has no effect on discrete axes.

Interaction This option has no effect if you specify the VALUES= option.

Tip Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction This option applies to linear and log axes only.

Note Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Note: This feature applies to SAS 9.4M2 and later releases.

Interaction This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

**Default**
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

**Interaction**
This option has no effect unless MINORGRID is also specified.

**Tip**
You can use GRIDATTRS= to change the appearance of the major grid lines.

**Examples**
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

**MINORINTERVAL=time-interval**
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 10.135 on page 1417.

**Default**
AUTO

**Restriction**
This option applies to time axes only.

**Note**
This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**NOTIMESPLIT**
prevents a time axis from splitting the time, date, or datetime values into two rows.

**Restriction**
This option applies to time axes only.

**OFFSETMAX=numeric-value**
specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

**Default**
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**OFFSETMIN=numeric-value**
specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.
The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default  The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**RANGES=(start–end <start2–end2 startN–endN ...>)**
specifies the ranges for a broken axis.

Note: This feature applies to **SAS 9.4M2** and later releases.

**start**
specifies the start of a range. **start** can be one of the following:
- a number (linear axis only).
- the keyword MIN specifies the minimum data value.
- a SAS time, date, or date-time constant (time axis only).

**end**
specifies the end of a range. **end** can be one of the following:
- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**  This option is valid for linear and time axes only.
Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**

All of the ranges must be enclosed in parentheses.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with SAS 9.4M3, when a range is specified, the data label font size is not scaled during label placement.

**Notes**

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

**Tip**

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

**Examples**

```plaintext
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS <=(options)>**

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

**LABEL**

in addition to the tick marks, displays the axis label.

**VALUES**

in addition to the tick marks, displays the values that are represented by the tick marks.

**Note**

This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.
**SPLITCHAR=**"character-list"

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Restriction**
This option has no effect unless the axis is discrete.

**Interactions**
This option has no effect unless **FITPOLICY=** is specified as either **SPLIT**, **SPLITALWAYS**, or **SPLITROTATE**. **SPLITROTATE** is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify **SPLITCHARNODROP**.

You can specify the justification of the text by using the **SPLITJUSTIFY=** option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**
"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless **SPLITCHAR=** is also specified.

**See**
"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643

**SPLITJUSTIFY=****LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Default**
**CENTER**

**See**
"Fit Policies for Axis Tick Values, Curve Labels, and Data Labels" on page 1643
THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
   Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.
   Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
   For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
   Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.
   Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
   For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of the major tick marks in relation to the axis line.

Note: This feature applies to SAS 9.4M5 and later releases.

The figure shows the tick display for each value.
OUTSIDE
displays the major tick marks outside of the axis frame.

INSIDE
displays the major tick marks inside the axis frame.

ACROSS
displays the major tick marks across the axis line.

INBETWEEN
displays the major tick marks between the discrete data values and outside of the axis frame.

Interaction This value is available only with discrete axes. The option is ignored if specified with other axis types.

Default OUTSIDE

Restriction This option applies to the major tick marks only. It does not affect the minor tick marks.

Interaction This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

Note This option has no effect on the placement of the tick values, which are always outside the axis frame.

Tip You can use the SG annotation facility to draw inside minor tick marks in your graph. See Chapter 20, “Annotating ODS Graphics,” on page 1767. The post Creating an axis in GTL with both major and minor tick marks shown inside on the Graphics Programming community page provides an example for the SGPLOT procedure.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with SAS 9.4M3, bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.
Restriction  A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element<options> | (options) specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

VALUEATTRS=GraphTitleText

VALUES=(values-list ) | ("string-list") specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

VALUES=(values-list ) specifies tick values for linear, time, and logarithmic axes.

VALUES=("string-list") specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list )

For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.
Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\[ \text{<value \ldots value-n> value-1 TO value-2 BY increment-value <value \ldots value-n>} \]
creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.

For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at -5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple \( n \) values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
- values=(2 to 10 by 2)
- values=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

values=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

\[ \text{value <...value-n>} \]
creates ticks for specific values. For example, VALUES=("25MAY08"d "04JUL08"d "23AUG08"d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\[ \text{value-1 TO value-2 BY increment-value} \]
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=("01JAN08"d to "01MAY08"d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions  This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions  For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

### Table 10.63  Axis with Specified Character Values

```
proc sgplot data=sashelp.cars;
xaxis values=("GMC" "Honda" "Hyundai")
 offsetmin=0.2 offsetmax=0.2;
scatter x=make y=mpg_city;
run;
```

Restrictions  
This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes  
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

Tip  
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples  
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```
values=("Sedan" "Sports" "Wagon" "SUV")
```
The following example specifies the axis tick values 10, 20, 30, and 40:

```
values=('10' '20' '30' '40')
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')
```

**TIP**  
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**  
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

**Restriction**  
This option applies only to discrete and linear axes.

**Interaction**  
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

**Example**  
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')
```

**VALUESFORMAT=DATA | SAS-format**  
specifies how to format the values for major tick marks.

---

**Note:** Starting with SAS 9.4M3, this option supports discrete and logarithmic axes.

**DATA**  
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**  
specifies a format to apply to the major tick values.

**Restriction**  
This option currently honors most, but not every, SAS format. For more information, see "Format Support in ODS Graphics" in *SAS Graph Template Language: Reference*.

**Notes**  
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.
A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F5.1

Restriction  For discrete axes, only character formats are supported.

Interactions  This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE =LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE =LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT  specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. Tick values specified by the VALUES= option are treated as suggestions for the tick values that actually appear, so that the actual data range of the axis is preserved. If the values-list contains values that are less than the data minimum, or greater than the data maximum, then those values are ignored.

Interaction  This option has no effect unless you also specify the VALUES= option.

VALUESROTATE=DIAGONAL | DIAGONAL2 | VERTICAL  specifies how the tick values are rotated on the axis.

Note: This feature applies to SAS 9.4M3 and later releases.

DIAGONAL  rotates the tick values diagonally.

DIAGONAL2  rotates the tick values to a reverse diagonal angle.

Note: This feature applies to SAS 9.4M5 and later releases.

VERTICAL  rotates the tick values vertically. The values are always drawn from bottom to top.
This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

X2AXIS Statement

Specifies the axis options for the X2 axis, which is displayed on the top side of the graph. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

X2AXIS options;

Summary of Optional Arguments

Appearance options

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

COLORBANDSATTRS=style-element<(options)> | (options)
specifies the fill appearance of the color band.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of the major tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis.
This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

**INTERVAL=** *time-interval*

specifies the tick interval for a time axis.

**LOGBASE=** 2 | 10 | e

specifies the base value for the logarithmic scale.

**LOGSTYLE=** LINEAR | LOGEXPAND | LOGEXPONENT

specifies how to scale and format the values for the major tick marks for logarithmic axes.

**LOGVTYPE=** EXPANDED | EXPONENT

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

**MAX=** *numeric-value*

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**MIN=** *numeric-value*

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

**MINOR**

adds minor tick marks to a linear, log, or time axis.

**MINORCOUNT=** *numeric-value*

specifies the number of minor tick marks for the axis.

**MINORINTERVAL=** *time-interval*

specifies the time interval between minor ticks.

**NOTIMESPLIT**

prevents a time axis from splitting the time, date, or datetime values into two rows.

**OFFSETMAX=** *numeric-value*

specifies an offset that follows the highest data value on the axis.

**OFFSETMIN=** *numeric-value*

specifies an offset that precedes the lowest data value on the axis.

**RANGES=(** *start*–*end* < *start2*–*end2* *startN*–*endN* … >)**

specifies the ranges for a broken axis.

**REFTICKS <=(** *options*) >**

adds tick marks to the axis that is opposite from the specified axis.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**THRESHOLDMAX=** *numeric-value*

Specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN=** *numeric-value*

Specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE=** DISCRETE | LINEAR | LOG | TIME

specifies the type of axis.

**Text options**

**FITPOLICY=** *policy-value*

specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

**LABEL=** "*text-string*"

specifies a label for the axis.
LABELATTRS=\texttt{style-element}\texttt{(options)} | \texttt{(options)}
specifies the appearance of the axis labels.

LABELPOS=\texttt{CENTER} | \texttt{DATACENTER} | \texttt{LEFT} | \texttt{RIGHT}
specifies the position of the axis label.

SPLITCHAR="\texttt{character-list}"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=\texttt{LEFT} | \texttt{CENTER} | \texttt{RIGHT}
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=\texttt{style-element}\texttt{(options)} | \texttt{(options)}
specifies the appearance of the axis tick value labels.

VALUES=\texttt{(values-list)} | \texttt{("string-list")}
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=\texttt{DATA} | \texttt{SAS-format}
specifies how to format the values for major tick marks.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE=\texttt{DIAGONAL} | \texttt{DIAGONAL2} | \texttt{VERTICAL}
specifies how the tick values are rotated on the axis.

Optional Arguments

COLORBANDS=\texttt{NONE} | \texttt{EVEN} | \texttt{ODD}
specifies the display of alternating wall-color bands corresponding to the discrete axis bins. The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>Alice</td>
<td>James</td>
</tr>
<tr>
<td>James</td>
<td>Joyce</td>
</tr>
<tr>
<td>Joyce</td>
<td></td>
</tr>
</tbody>
</table>

Weight (Sum)

Default \texttt{NONE}

Restriction This option applies to discrete axes only.

Interaction Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half
of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

**Tip**
Use the `COLORBANDSATTRS=` option to customize the color bands.

```
COLORBANDSATTRS=style-element<options> | (options)
```

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

**Interaction**
This option has no effect unless `COLORBANDS=` is also specified.

**DISCRETEORDER=**

```
DATA | FORMATTED | UNFORMATTED
```

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

- **DATA**
  places the values in the order in which they appear in the data.

  Note: This value is not supported with CAS data.

- **FORMATTED**
  sorts the formatted values in ascending character order.

- **UNFORMATTED**
  sorts the unformatted values in ascending character order.

**Default**
UNFORMATTED

**DISPLAY=**

```
ALL | NONE | (options)
```

specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. `options` can be one or more of the following:

- **NOLABEL**
  hides the axis label

- **NOLINE**
  hides the axis line

**Tips**
This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the wall border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the `BASELINEATTRS=` option to set the line thickness to 0.

- **NOTICKS**
  hides the tick marks on the axis

- **NOVALUES**
  hides the tick mark values on the axis
Default: ALL

Example: DISPLAY=(NOTICKS NOVALUES)

**FITPOLICY=**`policy-value`

specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

**NONE**

does not split the values.

**ROTATE**

rotates the value text diagonally.

![Diagram of rotated tick values]

**TIP** Use VALUESROTATE= to specify how the tick values are rotated on the axis.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**ROTATEALWAYS**

always rotates the value text, even when there is enough room to draw them normally.

Note: This feature applies to SAS 9.4M7 and later releases.

**ROTATETHIN**

attempts to use ROTATE, and then THIN to fit the values.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**SPLIT**

splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default: The default split character is a space.

Interaction: This option has no effect unless the axis is discrete.

Tip: You can specify the split character using the SPLITCHAR= option.
SPLITALWAYS
always splits the values at the character or characters specified in the 
SPLITCHAR= option. If the value does not contain any of the specified split 
characters, a split does not occur.

Default The default split character is a space.
Interaction This option has no effect unless the axis is discrete.
Tip You can specify the split character using the SPLITCHAR= 
option.
Example "Fit Policies for Axes" on page 1644

SPLITROTATE
attempts to use SPLIT, and then ROTATE to fit the values. This is the default 
for discrete axes.

Note: This option has no effect on time axes.

STACKEDALWAYS
stacks the values vertically regardless of tick value collision.

Interaction This option works only with a discrete axis.
Note This feature applies to SAS 9.4M5 and later releases.

STACKEDALWAYSTHIN
stacks the values vertically regardless of tick value collision. If a collision is 
detected after stacking, then THIN as needed.

Interaction This option works only with a discrete axis.
Note This feature applies to SAS 9.4M5 and later releases.

STAGGER
shifts the values up and down.

Interaction When used with a time axis, this option has no effect unless you 
also specify NOTIMESPLIT in the axis statement.
STAGGERROTATE
attempts to use STAGGER, and then ROTATE to fit the values.

Interaction When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

Interaction When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction This option does not affect logarithmic axes.

See "Fit Policies for Axes" on page 1644

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction This option has no effect unless GRID is also specified.

Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines
INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=\textit{time-interval}
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 10.64  \textit{Time Intervals}

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>
Tip: If unwanted thinning of tick marks occurs when you specify INTERVAL=, try using minor intervals instead. For example, you might specify MINOR MINORINTERVAL=MONTH instead of INTERVAL=MONTH. As a result, in the example monthly tick marks are displayed even though the major values are thinned.

**LABEL=“text-string”**

specifies a label for the axis.

**LABELATTRS=style-element**(options)** | (options)**

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData

**Examples**

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LABELPOS=** CENTER | DATACENTER | LEFT | RIGHT

specifies the position of the axis label.

**CENTER**

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

**DATACENTER**

centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.

**LEFT**

positions the label to the left of the axis area. The label is centered vertically in the axis area.

**RIGHT**

positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X-axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.
The next figure shows the LEFT and RIGHT positions for the same axis labels.

**LEFT**

**RIGHT**

**Default** CENTER

**LOGBASE=2 | 10 | e**

specifies the base value for the logarithmic scale.

Default 10

**Interaction** This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT**

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

**LOGEXPAND**

places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 10.36 on page 1444.
LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified \( \text{LOGBASE}=10 \), the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 10.37 on page 1444.

Figure 10.14  An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify \( \text{LOGBASE}=10 \), then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 10.38 on page 1444.

Figure 10.15  An Axis with LINEAR

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.

Default  EXPANDED
Interaction  This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.
Tip
This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples
The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

**MIN=numeric-value**
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.
Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

**MINOR**
adds minor tick marks to a linear, log, or time axis.

**Restriction**
This option has no effect on discrete axes.

**Interaction**
This option has no effect if you specify the VALUES= option.

**Tip**
Use MINORCOUNT= to specify the number of tick marks.

**MINORCOUNT=numeric-value**
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

**Restriction**
This option applies to linear and log axes only.

**Note**
Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**MINORGRID**
creates grid lines at each minor tick on the axis.

**Note:** This feature applies to SAS 9.4M2 and later releases.

**Interaction**
This option has no effect unless GRID is also specified for the axis.

**MINORGRIDATTRS=style-element <(options)> | (options)**
specifies the appearance of the minor grid lines.

**Note:** This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data.

**Interaction**
This option has no effect unless MINORGRID is also specified.

**Tip**
You can use GRIDATTRS= to change the appearance of the major grid lines.

**Examples**
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORINTERVAL=\texttt{time-interval}

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select \texttt{AUTO}, \texttt{SECOND}, \texttt{MINUTE}, or \texttt{HOUR}.

For information about the intervals that you can select, see Table 10.137 on page 1441.

Default \hspace{2em} \texttt{AUTO}

Restriction \hspace{2em} This option applies to time axes only.

Note \hspace{2em} This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction \hspace{2em} This option applies to time axes only.

OFFSETMAX=\texttt{numeric-value}

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default \hspace{2em} The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

OFFSETMIN=\texttt{numeric-value}

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default \hspace{2em} The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

RANGES=(\texttt{start–end <start2–end2 startN–endN …>})

specifies the ranges for a broken axis.

Note: \hspace{2em} This feature applies to \texttt{SAS 9.4M2} and later releases.

\begin{itemize}
  \item \texttt{start} specifies the start of a range. \texttt{start} can be one of the following:
    \begin{itemize}
      \item a number (linear axis only).
      \item the keyword \texttt{MIN} specifies the minimum data value.
    \end{itemize}
\end{itemize}
a SAS time, date, or date-time constant (time axis only).

end specifies the end of a range. end can be one of the following:

- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**

This option is valid for linear and time axes only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**

All of the ranges must be enclosed in parentheses.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.
When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with SAS 9.4M3, when a range is specified, the data label font size is not scaled during label placement.

Notes

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples

```
ranges=(10-500 1000-5000 10000-50000)
```

```
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS <=**(options)**>**

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

**LABEL**

in addition to the tick marks, displays the axis label.

**VALUES**

in addition to the tick marks, displays the values that are represented by the tick marks.

Note This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR=**"character-list"

plits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.
Interactions

This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  
“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default CENTER

See

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THRESHOLDMAX=numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips

If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.
**THRESHOLDMIN=numeric-value**

Specifies a threshold for displaying one more tick mark at the low end of the axis.

- **Default**: 0.30
- **Range**: 0 to 1
- **Restriction**: This option applies to linear axes only.
- **Tips**: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

**TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN**

specifies the placement of the major tick marks in relation to the axis line.

---

**Note**: This feature applies to SAS 9.4M5 and later releases.

The figure shows the tick display for each value.

---

**Note**: Although the figure shows tick displays for the primary axes, the same placement in relation to the axis applies when secondary axes are used.

---

<table>
<thead>
<tr>
<th>OUTSIDE</th>
<th>INSIDE</th>
<th>ACROSS</th>
<th>INBETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Outside Diagram" /></td>
<td><img src="image2" alt="Inside Diagram" /></td>
<td><img src="image3" alt="Across Diagram" /></td>
<td><img src="image4" alt="Inbetween Diagram" /></td>
</tr>
</tbody>
</table>

**OUTSIDE**

displays the major tick marks outside of the axis frame.

**INSIDE**

displays the major tick marks inside the axis frame.

**ACROSS**

displays the major tick marks across the axis line.

**INBETWEEN**

displays the major tick marks between the discrete data values and outside of the axis frame.
Interaction  This value is available only with discrete axes. The option is ignored if specified with other axis types.

Default   OUTSIDE

Restriction  This option applies to the major tick marks only. It does not affect the minor tick marks.

Interaction  This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

Note  This option has no effect on the placement of the tick values, which are always outside the axis frame.

Tip  You can use the SG annotation facility to draw inside minor tick marks in your graph. See Chapter 20, “Annotating ODS Graphics,” on page 1767. The post Creating an axis in GTL with both major and minor tick marks shown inside on the Graphics Programming community page provides an example for the SGPLOT procedure.

**TYPE=DISCRETE | LINEAR | LOG | TIME**

specifies the type of axis. Specify one of the following values:

**DISCRETE**

specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

**Note:** Starting with SAS 9.4M3, bar charts support a linear category axis.

**LINEAR**

specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

**LOG**

specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction  A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions  Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

**TIME**

specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

**VALUEATTRS=style-element< (options)> | (options)**

specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples

Here is an example that specifies a style element:

```
VALUESATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

VALUES=(values-list) | ("string-list")

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- VALUES=(values-list) specifies tick values for linear, time, and logarithmic axes.
- VALUES=("string-list") specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)

For values on a linear axis, the values list can be one of the following:

- `value <...value-n>`
  - creates ticks for specific values. For example, `VALUES=(0 50 100)` places tick marks at 0, 50, and 100.

- `value-1 TO value-2 BY increment-value`
  - creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks. For example, `VALUES=(0 to 100 by 50)` creates tick marks at 0, 50, and 100.

---

**Note:** If you omit the `increment-value`, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

```
<value ... value-n>value-1 TO value-2 BY increment-value <value ... value-n>
```

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks.

For example, `VALUES=|--5 10 to 50 by 20 75|` creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple `n` values can be separated by blanks or commas. Here are some examples:
VALUES=(2 4 6)
VALUES=(6,4,2)
VALUES=(2 to 10 by 2)
VALUES=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:
VALUES=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

\[
value < \ldots value-n>
\]
creates ticks for specific values. For example, VALUES=("25MAY08"d "04JUL08"d "23AUG08"d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\[
value-1 \text{ TO } value-2 \text{ BY increment-value}
\]
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=("01JAN08"d to "01MAY08"d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions
This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions
For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tips
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")
For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks. Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.
The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

**Table 10.65  Axis with Specified Character Values**

```plaintext
proc sgplot data=sashelp.cars;
 xaxis values=("GMC" "Honda" "Hyundai")
 offsetmin=0.2 offsetmax=0.2;
 scatter x=make y=mpg_city;
run;
```

**Restrictions**

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

**Notes**

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

**Tip**

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

**Examples**

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```plaintext
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```plaintext
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

**TIP**

Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.
VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the
VALUES= option. The list of values must be enclosed in parentheses. Each
value must be enclosed in quotation marks and separated from adjacent values
by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction  
This option applies only to discrete and linear axes.

Interaction
This option should be used with the VALUES= option. The number
of items in the list for this option should equal the number of items
in the list for the VALUES= option.

Example
The following example specifies numeric values of 14 and 15, and
then displays them as fourteen and fifteen:
values=(*14* "15")  valuesdisplay=(*fourteen* "fifteen")

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note:  Starting with SAS 9.4M3, this option supports discrete and logarithmic
axes.

DATA
uses the format that has been assigned to the column that is contributing to
the axis (or BEST6 if no format is assigned) in order to control the formatting
of the major tick values.

SAS-format
specifies a format to apply to the major tick values.

Restriction
This option currently honors most, but not every, SAS format.
For more information, see "Format Support in ODS Graphics" in
SAS Graph Template Language: Reference.

Notes
If you specify a format that significantly reduces precision, then,
because of tick-value rounding, the plot data elements might not
align properly with the axis tick values. In that case, specify a
tick-value format with a higher precision.

A syntax error might be generated if you specify the format
using the w.d SAS format. To avoid this error condition, insert an
F in front of the format name. Example: F5.1

Restriction
For discrete axes, only character formats are supported.

Interactions  
This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE =LOGEXPAND, this option is honored for the
base 10 and base 2 logarithmic scales, and is ignored for the base
E scale.

When LOGSTYLE =LINEAR, this option is honored for the base
10, base 2, and base E logarithmic scales.

VALUESHINT
specifies that the minimum and maximum axis values are determined
independently of the values that you specify in the VALUES= option. Tick values
specified by the VALUES= option are treated as suggestions for the tick values
that actually appear, so that the actual data range of the axis is preserved. If the values-list contains values that are less than the data minimum, or greater than the data maximum, then those values are ignored.

**Interaction**  This option has no effect unless you also specify the VALUES= option.

**VALUESROTATE=DIAGONAL | DIAGONAL2 | VERTICAL**

Specifies how the tick values are rotated on the axis.

**Note:** This feature applies to **SAS 9.4M3** and later releases.

- **DIAGONAL**
  Rotates the tick values diagonally.

- **DIAGONAL2**
  Rotates the tick values to a reverse diagonal angle.

**Note:** This feature applies to **SAS 9.4M5** and later releases.

- **VERTICAL**
  Rotates the tick values vertically. The values are always drawn from bottom to top.

<table>
<thead>
<tr>
<th>DIAGONAL</th>
<th>DIAGONAL2</th>
<th>VERTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="" /></td>
<td><img src="image2.png" alt="" /></td>
<td><img src="image3.png" alt="" /></td>
</tr>
</tbody>
</table>

**Default**  **DIAGONAL**

**Interactions**  This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

---

**XAXISTABLE Statement**

Creates a basic plot that displays data values at specific locations along the horizontal axis. The data values can be placed inside or outside of the axis. The SGPLOT procedure can contain multiple axis table statements.
Requirements: At least one other plot statement must be used in the procedure. This other plot becomes the primary plot. The primary plot provides the default placement of values along the axis table's horizontal axis.

For the axis table, you must specify at least one variable. This variable determines which values are displayed in the axis table.

Interactions: You can specify a variable for the X= option to identify the locations along the axis where the values are displayed. If you do not specify X=, the locations are determined by the X variable in the primary plot. When the primary plot is a categorical chart (bar, line, or dot), the category variable from the chart is used. With the exception of that X (or category) variable and any group variable that might be specified, axis tables are separate plots and are unaware of the options specified in the accompanying plots.

When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with an XAXISTABLE statement, the XAXISTABLE statement is rejected with a message.

Axis tables cannot be used when the primary plot is one of the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. The axis table requires at least one other plot statement that is not one of these types. Otherwise, the axis table is not created and an error is written to the log.

Syntax

XAXISTABLE variable <...variable-n> <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable

specifies a variable that is used to determine the color of the table values.

DROPONMIsSING

specifies that the entire axis table is dropped when all of the values are missing.

INDENT=dimension<unit>

specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

INDENTWEIGHT=numeric-variable

specifies the indentation weight (multiplier) for each observation.

LOCATION=OUTSIDE | INSIDE

specifies whether the axis table is placed outside or inside the axis area.

NOMISSINGCHAR

suppresses the display of the MISSING character (.) for missing numeric values.

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the table border.
POSITION=BOTTOM | TOP
    specifies the position of the axis table at the bottom or top of the graph.

SEPARATOR
    creates a separating line between the axis table or axis tables and the plot.

TEXTGROUP=attribute-map-group-variable
    specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
    specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element<(options)> | (options)
    specifies the appearance of the axis table values.

Axis options

X2AXIS
    assigns the table to the secondary (top) horizontal axis.

Class options

CLASS=variable
    creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
    specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the order in which the class values are displayed.

NOMISSINGCLASS
    specifies that missing values of the class variable are not included in the table.

Label options

LABELATTRS=style-element<(options)> | (options)
    specifies the color and font attributes of the axis table label.

LABEL | NOLABEL | LABEL="text-string"
    specifies whether the table label is shown or hidden.

LABELPOS=LEFT | RIGHT
    specifies the position of the labels at the left or right side of the axis table.

STATLABEL
NOSTATLABEL
    specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
    specifies the statistic for the axis table.

X=variable
    Specifies the X variable to use to align the table values to the X or X2 axis.

Plot reference options

NAME="text-string"
    assigns a name to a plot statement.

Title options
TITLE="text-string"
specifies a title for the axis table.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title for the axis table.

Required Argument

\textit{variable} <\ldots variable-n>
specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are stacked one on the other. Any options that you add to the statement apply to all the variables that are specified in that statement.

Note When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

Optional Arguments

\textbf{ATTRID=character-value}
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737

“Overview of Attribute Maps” on page 1733

\textbf{CLASS=variable}
creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction If NOLABEL is also specified, then the class labels are removed.

Tips Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

\textbf{CLASSDISPLAY=STACK | CLUSTER}
specifies how the class values are displayed.

\textbf{Note:} This feature applies to \textit{SAS 9.4M2} and later releases.

\textbf{STACK}
dispaly the class values vertically at each midpoint value on the X axis.
CLUSTER
displays the class values horizontally at each midpoint value on the X axis.

Restriction The CLASSDisplay=CLUSTER option applies only when the axis table is on a discrete axis.

Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSOrder=Data | REVERSEData | Ascending | Descending
specifies the order in which the class values are displayed.

Note: This feature applies to SAS 9.4M3 and later releases.

Data
displays the class values in the order in which they occur in the data.

ReverseData
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

Ascending
displays the class values in ascending order.

Descending
displays the class values in descending order.

Default Data

Restriction This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

Interaction For this option to have any effect, the CLASS= option must be specified.

ColorGroup=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphDataN style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Restriction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless variable is used in the accompanying chart.

Note This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DropOnMissing
specifies that the entire axis table is dropped when all of the values are missing.
Note: This feature applies to SAS 9.4M2 and later releases.

Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

**INDENT=**<code>dimension<unit></code>

specifies a value to be used with the **INDENTWEIGHT=** option to determine the indentation for each text value.

Note: This feature applies to SAS 9.4M3 and later releases.

The default units for <code>dimension</code> are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

**Default:** 1/8 inch

**Restriction**

Axis table indentation is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARM, VBARPARM, SERIES, or SCATTER.

**Interaction**

The **INDENTWEIGHT=** option must be specified for this option to have any effect.

**INDENTWEIGHT=**<code>numeric-variable</code>

specifies the indentation weight (multiplier) for each observation.

Note: This feature applies to SAS 9.4M3 and later releases.

**Restriction**

Axis table indentation is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARM, VBARPARM, SERIES, or SCATTER.

**Interaction**

For each observation, the **INDENT=** option value is multiplied by the value of the column specified by this option to determine the indentation for that observation’s value.

**Note**

If the axis-table values are numeric and a user-defined format is applied to the values, then indentation might not work well, especially if the format results in long strings.

**LABEL | NO LABEL | LABEL=**<code>"text-string"</code>

specifies whether the table label is shown or hidden. If you specify **LABEL=**, then you can also specify a text string for the label.

Note: The ability to specify a text string applies to SAS 9.4M3 and to later releases.

**Defaults**

**LABEL**
If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

Tip Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

**LABELATTRS=**<style-element>(options)> | (options)  
specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults  
For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

**LABELPOS=**LEFT | RIGHT  
specifies the position of the labels at the left or right side of the axis table.

Default LEFT

**LOCATION=**OUTSIDE | INSIDE  
specifies whether the axis table is placed outside or inside the axis area.

Default OUTSIDE

**NAME=**"text-string"  
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCHAR**  
suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.
Note: This feature applies to SAS 9.4M3 and later releases.

**NOMISSINGCLASS**
specifies that missing values of the class variable are not included in the table.

Note: This feature applies to SAS 9.4M3 and later releases.

**Interaction** For this option to have any effect, the CLASS= option must be specified.

**PAD=**
| (pad-options) 
specifies the amount of extra space that is added inside the table border.

Note: This feature applies to SAS 9.4M3 and later releases.

dimension  
specifies a dimension to use for the extra space at the table border relative to the axis.

(pad-options)  
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

**TOP=**
| dimension  
specifies the amount of extra space added to the top.

Default 0 px

**BOTTOM=**
| dimension  
specifies the amount of extra space added to the bottom.

Default 0 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

**POSITION=**
| BOTTOM | TOP  
specifies the position of the axis table at the bottom or top of the graph.

Defaults BOTTOM when the primary horizontal axis is used for the plot.

TOP when the secondary (X2AXIS) horizontal axis is specified for the plot.

**SEPARATOR**  
creates a separating line between the axis table or axis tables and the plot.
Interaction  This option has no effect unless LOCATION=INSIDE is also specified.

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**

specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

**FREQ**
the frequency of the axis table variable.

**Interactions** For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the FREQ value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of a response (analysis) variable when computing the frequency. The FREQ value is the frequency of the categorical variable.

**MEAN**
the mean of the axis table variable.

**MEDIAN**
the median of the axis table variable.

**Interactions** For this value to take effect, the graph must use a category plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, this value is ignored when the axis table variable is the same as the categorical variable of the primary plot. In that case, the FREQ statistic is used and a message is written to the SAS log.

**PERCENT**
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

**Alias** PCT

**Interactions** For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the PERCENT value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of as a response (analysis) variable when computing the percentage. Therefore, the PERCENT value is calculated as a percentage of frequency instead of a percentage of the sum.
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

**Note** If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**

the sum of the axis table variable.

**Defaults** SUM

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, FREQ is the default.

**Restrictions**

The STAT= option is applied only to numeric variables.

Only SUM and MEAN are supported for non-categorical plots.

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, only FREQ and PERCENT are supported.

**Interaction**

Any STAT= value specified in the primary plot has no effect on the axis table statistic.

**STATLABEL | NOSTATLABEL**

specifies whether the variable statistic is displayed in the table’s label.

**STATLABEL**

forces the statistic to be displayed in the label.

**Note** This feature applies to SAS 9.4M2 and later releases.

**NOSTATLABEL**

removes the statistic from the label.

**Defaults**

The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

**Interaction**

This option has no effect unless the STAT= option is also specified in the axis table statement.

**TEXTGROUP=attribute-map-group-variable**

specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.
Note: This feature applies to SAS 9.4M1 and later releases.

Interactions

The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP= option is ignored.

When this option is specified, the COLORGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TEXTGROUPID=attribute-map-id

specifies an attribute ID for the TEXTGROUP= option.

Note: This feature applies to SAS 9.4M1 and later releases.

Default If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

TITLE="text-string"

specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element<(options)> | (options)

specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying text options. If you specify a style element, you can also specify text options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDatan style elements.

Interactions This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:

```
TITLEATTRS=GraphTitleText
```

**VALUEATTRS=style-element<options> | (options)**

specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

**Defaults**

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

**Examples**

```
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
VALUEATTRS=GraphTitleText
```

**X=variable**

Specifies the X variable to use to align the table values to the X or X2 axis.

**Default**

When this option is not specified, the X variable of the primary plot is used by default.

**Interaction**

This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

**X2AXIS**

assigns the table to the secondary (top) horizontal axis.

---

**Example: XAXISTABLE Statements**

This example shows a table of values along the X axis of a scatter plot that plots student weight.
Here are the noteworthy features:

- The first axis table statement displays the age (in red) of each student above the X axis. The `LOCATION= INSIDE` option locates the axis table within the plot axes. The ages appear on different rows because the `CLASS= AGE` option is used.

- The second axis table statement specifies two variables, height and weight, and is located below the X axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;

proc sgplot data=sashelp.class (where=(age < 13));
 scatter x=name y=height;
 xaxistable age / class=age title="Student Age" location=inside
 valueattrs=(color=red) labelattrs=(color=red) titleattrs=(color=red);
 xaxistable weight height / valueattrs=(color=blue);
run;
```

For an example that shows vertical axis tables, see "Example: YAXISTABLE Statements" on page 1526.

---

**YAXIS Statement**

Specifies the axis options for the Y axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).
Syntax

YAXIS options;

Summary of Optional Arguments

Appearance options

COLORBANDS=NONE | EVEN | ODD
  specifies the display of alternating wall-color bands corresponding to the
discrete axis bins.

COLORBANDSATTRS=style-element<(options)> | (options)
  specifies the fill appearance of the color band.

DISPLAY=ALL | NONE | (options)
  specifies which features of the axis are displayed.

GRID
  creates grid lines at each tick on the axis.

GRIDATTRS=style-element<(options)> | (options)
  specifies the appearance of the grid lines.

MINORGRID
  creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element<(options)> | (options)
  specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
  specifies the placement of the major tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
  specifies the order in which discrete tick values are placed on the axis.
  This option affects any plot with a discrete axis.

INTEGER
  specifies that only integers are used for tick mark values.

INTERVAL=time-interval
  specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
  specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
  specifies how to scale and format the values for the major tick marks for
logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
  specifies the scale that is used when interpreting the values in the
VALUES option and the MIN and MAX options.

MAX=numeric-value
  specifies the maximum data value to include in the display (the value
might be adjusted by the threshold calculation).

MIN=numeric-value
  specifies the minimum data value to include in the display (the value
might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

**MINORCOUNT=** *numeric-value*

specifies the number of minor tick marks for the axis.

**MINORINTERVAL=** *time-interval*

specifies the time interval between minor ticks.

**NOTIMESPLIT**

prevents a time axis from splitting the time, date, or datetime values into two rows.

**OFFSETMAX=** *numeric-value*

specifies an offset that follows the highest data value on the axis.

**OFFSETMIN=** *numeric-value*

specifies an offset that precedes the lowest data value on the axis.

**RANGES=**(start–end <start2–end2 startN–endN ...>)

specifies the ranges for a broken axis.

**REFTICKS** <=(options)> 

adds tick marks to the axis that is opposite from the specified axis.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**THRESHOLDMAX=** *numeric-value*

specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN=** *numeric-value*

specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE=** DISCRETE | LINEAR | LOG | TIME

specifies the type of axis.

**Text options**

**FITPOLICY=** NONE | SPLIT | SPLITALWAYS | THIN

specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

**LABEL=** "*text-string*"

specifies a label for the axis.

**LABELATTRS=** *style-element*(options) | (options)

specifies the appearance of the axis labels.

**LABELPOS=** BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.

**SPLITCHAR=** "*character-list*"

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**VALUEATTRS=** *style-element*(options) | (options)

specifies the appearance of the axis tick value labels.

**VALUES=**(values-list) | ("string-list")

specifies the values for the ticks on an axis.

**VALUESDISPLAY=**

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.
VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

Optional Arguments

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins. The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Thomas</td>
</tr>
<tr>
<td>Alice</td>
<td>Alice</td>
</tr>
<tr>
<td>James</td>
<td>James</td>
</tr>
<tr>
<td>Joyce</td>
<td>Joyce</td>
</tr>
<tr>
<td>Weight (Sum)</td>
<td>Weight (Sum)</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDSATTRS= option to customize the color bands.

COLORBANDSATTRS=style-element<(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:
DATA
places the values in the order in which they appear in the data.

Note: This value is not supported with CAS data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:

NOLABEL
hidesthe axis label

NOLINE
hidesthe axis line

Tips
This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the wall border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
hidesthe tick marks on the axis

NOVALUES
hidesthe tick mark values on the axis

Default: ALL

Example
DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.
The default split character is a space.

Restriction: This option has no effect unless the axis is discrete.

Tip: You can specify the split character using the SPLITCHAR= option.

**SPLITALWAYS**
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

**Default**
The default split character is a space.

**Restriction**
This option has no effect unless the axis is discrete.

**Tip**
You can specify the split character using the SPLITCHAR= option.

**Example**
“Fit Policies for Axes” on page 1644

**THIN**
removes some of the values from the axis.

**Default**
THIN

**See**
“Fit Policies for Axes” on page 1644

**GRID**
creates grid lines at each tick on the axis.

**Interaction**
Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

**Tip**
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

**GRIDATTRS=**<style-element> <(options)> | (options)
specifies the appearance of the grid lines.

**Note:** This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default**
GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

**Interaction**
This option has no effect unless GRID is also specified.

**Examples**
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTXS=GraphAxisLines

**INTEGER**
specifies that only integers are used for tick mark values. This option affects only linear axes.

**INTERVAL=** *time-interval*
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

**Table 10.66  Time Intervals**

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>
Default: AUTO

Tip: If unwanted thinning of tick marks occurs when you specify
INTERVAL=, try using minor intervals instead. For example, you might
specify MINOR MINORINTERVAL=MONTH instead of
INTERVAL=MONTH. As a result, in the example monthly tick marks are
displayed even though the major values are thinned.

LABEL=\"text-string\"
specifies a label for the axis.

LABELATTRS=\<style-element\>(options)\> | (options)
specifies the appearance of the axis labels. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults: GraphLabelText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current
style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of the
GraphData1...GraphData\textsubscript{n} style elements.

Examples: LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS= BOTTOM | CENTER | DATACENTER | TOP
specifies the position of the axis label.

BOTTOM
positions the label at the bottom of the axis area. The label is oriented
horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for
the Y2 axis. If there is not sufficient room in the axis area to display the label,
the label grows to the right for the Y axis and to the left for the Y2 axis.

CENTER
centers the axis label in the axis area (including any offsets). The label is
oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the
right of the axis values for the Y2 axis.

DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The
label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the
right of the axis values for the Y2 axis.

TOP
positions the label at the top of the axis area. The label is oriented
horizontally (unrotated).
The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

The following figure shows the CENTER and DATACENTER positions for the red Y-axis label "Age Group." An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Center Example" /></td>
<td><img src="image2.png" alt="DataCenter Example" /></td>
</tr>
</tbody>
</table>

The next figure shows the TOP and BOTTOM positions for the same axis labels.

<table>
<thead>
<tr>
<th>TOP</th>
<th>BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Top Example" /></td>
<td><img src="image4.png" alt="Bottom Example" /></td>
</tr>
</tbody>
</table>

Default CENTER

**LOGBASE=2 | 10 | \(e\)** specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXponent** specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:
LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 10.39 on page 1478.

Figure 10.16 Graph Axes with LOGEXPAND

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 10.40 on page 1478.

Figure 10.17 An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 10.41 on page 1478.

Figure 10.18 An Axis with LINEAR

Default LOGEXPAND

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.

Default EXPANDED
**Interaction**

This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

**Tip**

This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

**Examples**

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**

This option affects linear, log, and time axes only.

**Interactions**

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

**Tip**

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

**MIN=numeric-value**

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**

This option affects linear, log, and time axes only.

**Interactions**

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip: The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

**MINOR**

adds minor tick marks to a linear, log, or time axis.

**Restriction:** This option has no effect on discrete axes.

**Interaction:** This option has no effect if you specify the VALUES= option.

**Tip:** Use MINORCOUNT= to specify the number of tick marks.

**MINORCOUNT=numeric-value**

specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

**Restriction:** This option applies to linear and log axes only.

**Note:** Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**MINORGRID**

creates grid lines at each minor tick on the axis.

**Note:** This feature applies to SAS 9.4M2 and later releases.

**Interaction:** This option has no effect unless GRID is also specified for the axis.

**MINORGRIDATTEar~=style-element ~(options)~ | (options)**

specifies the appearance of the minor grid lines.

**Note:** This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**Default:** GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData~n~ style elements in the current style for grouped data.

**Interaction:** This option has no effect unless MINORGRID is also specified.

**Tip:** You can use GRIDATTRS= to change the appearance of the major grid lines.
Examples  MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 10.139 on page 1475.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.
**RANGES** = (start–end <start2–end2 startN–endN …>)

specifies the ranges for a broken axis.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

---

**start**

specifies the start of a range. *start* can be one of the following:

- a number (linear axis only).
- the keyword MIN specifies the minimum data value.
- a SAS time, date, or date-time constant (time axis only).

**end**

specifies the end of a range. *end* can be one of the following:

- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Ranges Not Specified" /></td>
<td><img src="image2.png" alt="Ranges Specified" /></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**

This option is valid for linear and time axes only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.
Requirements

All of the ranges must be enclosed in parentheses.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with SAS 9.4M3, when a range is specified, the data label font size is not scaled during label placement.

Notes

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples

ranges=(10-500 1000-5000 10000-50000)

ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

REFTICKS <=(options)>

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

LABEL

in addition to the tick marks, displays the axis label.

VALUES

in addition to the tick marks, displays the values that are represented by the tick marks.

Note

This option has no effect if the target axis already contains data.

REVERSE

specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.

Interactions This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default RIGHT

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THRESHOLDMAX=numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying \texttt{THRESHOLDMIN}=0 and \texttt{THRESHOLDMAX}=0 prevents the tick marks from extending beyond the data range.

Specifying \texttt{THRESHOLDMIN}=1 and \texttt{THRESHOLDMAX}=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the \texttt{THRESHOLDMIN}= option and the \texttt{THRESHOLDMAX}= option to 0.

\textbf{\texttt{THRESHOLDMIN}}=\texttt{numeric-value}

Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying \texttt{THRESHOLDMIN}=0 and \texttt{THRESHOLDMAX}=0 prevents the tick marks from extending beyond the data range.

Specifying \texttt{THRESHOLDMIN}=1 and \texttt{THRESHOLDMAX}=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the \texttt{THRESHOLDMIN}= option and the \texttt{THRESHOLDMAX}= option to 0.

\textbf{\texttt{TICKSTYLE}=OUTSIDE | INSIDE | ACROSS | INBETWEEN}

specifies the placement of the major tick marks in relation to the axis line.

\textbf{Note:} This feature applies to \texttt{SAS 9.4M5} and later releases.

The figure shows the tick display for each value.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{OUTSIDE} & \textbf{INSIDE} & \textbf{ACROSS} & \textbf{INBETWEEN} \\
\hline
\includegraphics[width=0.2\textwidth]{outside.png} & \includegraphics[width=0.2\textwidth]{inside.png} & \includegraphics[width=0.2\textwidth]{across.png} & \includegraphics[width=0.2\textwidth]{inbetween.png} \\
\hline
\end{tabular}
\end{table}

\textbf{OUTSIDE} displays the major tick marks outside of the axis frame.

\textbf{INSIDE} displays the major tick marks inside the axis frame.

\textbf{ACROSS} displays the major tick marks across the axis line.
INBETWEEN

displays the major tick marks between the discrete data values and outside of the axis frame.

**Interaction**  
This value is available only with discrete axes. The option is ignored if specified with other axis types.

**Default**  
OUTSIDE

**Restriction**  
This option applies to the major tick marks only. It does not affect the minor tick marks.

**Interaction**  
This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

**Note**  
This option has no effect on the placement of the tick values, which are always outside the axis frame.

**Tip**  
You can use the SG annotation facility to draw inside minor tick marks in your graph. See Chapter 20, “Annotating ODS Graphics,” on page 1767. The post Creating an axis in GTL with both major and minor tick marks shown inside on the Graphics Programming community page provides an example for the SGPLOT procedure.

**TYPE=**DISCRETE | LINEAR | LOG | TIME

specifies the type of axis. Specify one of the following values:

**DISCRETE**

specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

**Note:** Starting with SAS 9.4M3, bar charts support a linear category axis.

**LINEAR**

specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

**LOG**

specifies a logarithmic scale for the axis. This axis type is never a default.

**Restriction**  
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

**Interactions**  
Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

**TIME**

specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.
VALUEATTRS=\texttt{style-element(\textit{options})} | \texttt{(\textit{options})}

specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

**Examples**

\texttt{VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:

\texttt{VALUEATTRS=GraphTitleText}

\texttt{VALUES=\{values-list\} | \{"string-list"\}}

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- \texttt{VALUES=}\{values-list\} specifies tick values for linear, time, and logarithmic axes.
- \texttt{VALUES=}\{"string-list"\} specifies tick values for discrete axes. The values can be character or numeric.

**VALUES=\{values-list\}**

For values on a linear axis, the values list can be one of the following:

- \texttt{value \textit{\ldots} value-n}
  
creates ticks for specific values. For example, \texttt{VALUES=\{0 50 100\}} places tick marks at 0, 50, and 100.

- \texttt{value-1 TO value-2 BY increment-value}
  
creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=\{0 to 100 by 50\}} creates tick marks at 0, 50, and 100.

\begin{Verbatim}
\texttt{Note:} If you omit the \texttt{increment-value}, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.
\end{Verbatim}

\texttt{<value \ldots value-n>\textit{value-1 TO value-2 BY increment-value} <value \ldots value-n>}

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks.

For example, \texttt{VALUES=\{-5 10 to 50 by 20 75\}} creates tick marks at –5, 10, 30, 50, and 75.
Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple n values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
- values=(2 to 10 by 2)
- values=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

values=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

- value <...value-n>
  creates ticks for specific values. For example, VALUES=(*25MAY08* "04JUL08* "23AUG08* ) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

- value-1 TO value-2 BY increment-value
  creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(01JAN08* to "01MAY08* by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions
This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions
For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tips
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data
values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

**Table 10.67  Axis with Specified Character Values**

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMC</td>
<td>Honda</td>
</tr>
<tr>
<td>Honda</td>
<td>Hyundai</td>
</tr>
</tbody>
</table>

```sql
proc sgplot data=sashelp.cars;
xaxis values="GMC" "Honda" "Hyundai"
 offsetmin=0.2 offsetmax=0.2;
scatter x=make y=mpg_city;
run;
```

**Restrictions**

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

**Notes**

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

**Tip**

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

**Examples**

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

values="Sedan" "Sports" "Wagon" "SUV"

The following example specifies the axis tick values 10, 20, 30, and 40:

values="10" "20" "30" "40"

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values="14" "15" valuesdisplay="fourteen" "fifteen"
TIP  Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction  This option applies only to discrete and linear axes.

Interaction  This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example  The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=("14" "15") valuesdisplay=("fourteen" "fifteen")

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note:  Starting with SAS 9.4M3, this option supports discrete and logarithmic axes.

DATA
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format
specifies a format to apply to the major tick values.

Restriction  This option currently honors most, but not every, SAS format. For more information, see “Format Support in ODS Graphics” in SAS Graph Template Language: Reference.

Notes  If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

A syntax error might be generated if you specify the format using the w.d SAS format. To avoid this error condition, insert an F in front of the format name. Example: F5.1

Restriction  For discrete axes, only character formats are supported.

Interactions  This option is ignored when LOGSTYLE=LOGEXPONENT.
When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

**VALUESHALIGN=** LEFT | CENTER | RIGHT

specifies the horizontal alignment for all of the tick values that are displayed on the axis.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

---

**VALUESHINT**

specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. Tick values specified by the VALUES= option are treated as suggestions for the tick values that actually appear, so that the actual data range of the axis is preserved. If the values-list contains values that are less than the data minimum, or greater than the data maximum, then those values are ignored.

---

**Default** RIGHT

**Interaction**

This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

---

**VALUESHINT**

This option has no effect unless you also specify the VALUES= option.

---

**Y2AXIS Statement**

Specifies the axis options for the Y2 axis, which is displayed on the right side of the graph. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

---

**Syntax**

```
Y2AXIS options;
```

---

**Summary of Optional Arguments**

**Appearance options**

**COLORBANDS=** NONE | EVEN | ODD

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.
COLORBANDSATTRS=style-element<(options)> | (options)
specifies the fill appearance of the color band.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.
GRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.
MINORGRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of the major tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis.
This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=time-interval
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=numeriac-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeriac-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeriac-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeriac-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeriac-value
specifies an offset that precedes the lowest data value on the axis.

RANGES=(start–end <start2–end2 startN–endN …>)
specifies the ranges for a broken axis.

**REFTICKS** <=*(options)*>
  adds tick marks to the axis that is opposite from the specified axis.

**REVERSE**
specifies that the tick values are displayed in reverse (descending) order.

**THRESHOLDMAX**=*numeric-value*
  Specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN**=*numeric-value*
  Specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE**=DISCRETE | LINEAR | LOG | TIME
  specifies the type of axis.

**Text options**

**FITPOLICY**=NONE | SPLIT | SPLITALWAYS | THIN
  specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

**LABEL**="*text-string*
  specifies a label for the axis.

**LABELATTRS**=style-element*(options)* | (options)
  specifies the appearance of the axis labels.

**LABELPOS**=BOTTOM | CENTER | DATACENTER | TOP
  specifies the position of the axis label.

**SPLITCHAR**="*character-list"
  splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
  specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY**=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

**VALUEATTRS**=style-element*(options)* | (options)
  specifies the appearance of the axis tick value labels.

**VALUES**=*(values-list)* | (*"string-list")
  specifies the values for the ticks on an axis.

**VALUESDISPLAY**=
  specifies the text that is to be displayed for the tick values that are defined in the **VALUES**= option.

**VALUESFORMAT**=DATA | SAS-format
  specifies how to format the values for major tick marks.

**VALUESHALIGN**=LEFT | CENTER | RIGHT
  specifies the horizontal alignment for all of the tick values that are displayed on the axis.

**VALUESHINT**
  specifies that the minimum and maximum axis values are determined independently of the values that you specify in the **VALUES**= option.
Optional Arguments

COLORBANDS=NONE | EVEN | ODD

specifies the display of alternating wall-color bands corresponding to the discrete axis bins. The following images show the results of ODD and EVEN settings:

COLORBANDS=ODD

COLORBANDS=EVEN

Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDSATSRRS= option to customize the color bands.

COLORBANDSATSRRS=style-element<(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1655.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA

places the values in the order in which they appear in the data.

Note: This value is not supported with CAS data.

FORMATTED

sorts the formatted values in ascending character order.
UNFORMATTED sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:

NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips This value hides the axis line but has no effect on the graph’s wall border, part of which occupies the same area as the axis line. To hide the wall border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATRGS= option to set the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=None | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.
SPLITALWAYS
always splits the values at the character or characters specified in the
SPLITCHAR= option. If the value does not contain any of the specified split
characters, a split does not occur.

Default  The default split character is a space.

Restriction  This option has no effect unless the axis is discrete.

Tip  You can specify the split character using the SPLITCHAR= option.

Example  "Fit Policies for Axes" on page 1644

THIN
removes some of the values from the axis.

Default  THIN

See  "Fit Policies for Axes" on page 1644

GRID
creates grid lines at each tick on the axis.

Interaction  Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip  You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

---

Note:  This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default  GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

Interaction  This option has no effect unless GRID is also specified.

Examples  GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.
**INTERVAL=time-interval**
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select **AUTO, SECOND, MINUTE, or HOUR**.

Specify one of the following values:

**Table 10.68  Time Intervals**

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

**Default**  AUTO

**Tip**  If unwanted thinning of tick marks occurs when you specify INTERVAL=, try using minor intervals instead. For example, you might
specify MINOR MINORINTERVAL=MONTH instead of INTERVAL=MONTH. As a result, in the example monthly tick marks are displayed even though the major values are thinned.

**LABEL="text-string"**
specifies a label for the axis.

**LABELATTRS=style-element<(options)> | (options)**
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

**Examples**
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

**LABELPOS=**

**BOTTOM** positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

**CENTER** centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

**DATACENTER** centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

**TOP** positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

The following figure shows the CENTER and DATACENTER positions for the red Y-axis label "Age Group." An axis offset is applied to the maximum end of the
axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

```
CENTER
```

```
DATACENTER
```

The next figure shows the TOP and BOTTOM positions for the same axis labels.

```
TOP
```

```
BOTTOM
```

Default CENTER

**LOGBASE=2 | 10 | e**

specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT**

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

**LOGEXPAND**

places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 10.42 on page 1500.
LOGEXPONENT

places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 10.43 on page 1500.

LINEAR

places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 10.44 on page 1500.

LOGVTYPE=EXPANDED | EXPONENT

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED

the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT

the values are interpreted as integer exponents of the base.

LOGVTYPE=EXPANDED

This option has no effect unless you also specify TYPE=LOG.
This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

**Tip**

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

**MIN=numeric-value**

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.
Tip  The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR  adds minor tick marks to a linear, log, or time axis.

Restriction  This option has no effect on discrete axes.

Interaction  This option has no effect if you specify the VALUES= option.

Tip  Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value  specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction  This option applies to linear and log axes only.

Note  Starting with SAS 9.4M2, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID  creates grid lines at each minor tick on the axis.

Note: This feature applies to SAS 9.4M2 and later releases.

Interaction  This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)  specifies the appearance of the minor grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interaction  This option has no effect unless MINORGRID is also specified.

Tip  You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples  MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORINTERVAL=\textit{time-interval}

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as \textit{TIME}, \textit{DATE}, or \textit{DATETIME}. For example, if the axis data is in \textit{TIME} units, you must select \textit{AUTO}, \textit{SECOND}, \textit{MINUTE}, or \textit{HOUR}.

For information about the intervals that you can select, see Table 10.141 on page 1497.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=\textit{numeric-value}

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

OFFSETMIN=\textit{numeric-value}

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

RANGES=(\textit{start}–\textit{end} <\textit{start2}–\textit{end2} \textit{startN}–\textit{endN} \ldots>)

specifies the ranges for a broken axis.
Note: This feature applies to **SAS 9.4M2** and later releases.

**start**
- specifies the start of a range. *start* can be one of the following:
  - a number (linear axis only).
  - the keyword MIN specifies the minimum data value.
  - a SAS time, date, or date-time constant (time axis only).

**end**
- specifies the end of a range. *end* can be one of the following:
  - a number (linear axis only).
  - the keyword MAX specifies the maximum data value.
  - a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph 1" /></td>
<td><img src="image2.png" alt="Graph 2" /></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**
- This option is valid for linear and time axes only.

  Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

  If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

  When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**
- All of the ranges must be enclosed in parentheses.
You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with SAS 9.4M3, when a range is specified, the data label font size is not scaled during label placement.

**Notes**

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

**Tip**

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

**Examples**

```
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS <(options)>**

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

- **LABEL**
  in addition to the tick marks, displays the axis label.

- **VALUES**
  in addition to the tick marks, displays the values that are represented by the tick marks.

**Note**

This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR="character-list"**

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Restriction: This option has no effect unless the axis is discrete.

Interactions: This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default: LEFT

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default: 0.30

Range: 0 to 1

Restriction: This option applies to linear axes only.

Tips: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

**THRESHOLDMIN=** *numeric-value*

Specifies a threshold for displaying one more tick mark at the low end of the axis.

**Default**  
0.30

**Range**  
0 to 1

**Restriction**  
This option applies to linear axes only.

**Tips**  
If the threshold is set to 0, the potential tick mark is never displayed.  
If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

**TICKSTYLE=** OUTSIDE | INSIDE | ACROSS | INBETWEEN

specifies the placement of the major tick marks in relation to the axis line.

**Note:** This feature applies to SAS 9.4M5 and later releases.

The figure shows the tick display for each value.

**Note:** Although the figure shows tick displays for the primary axes, the same placement in relation to the axis applies when secondary axes are used.

<table>
<thead>
<tr>
<th>OUTSIDE</th>
<th>INSIDE</th>
<th>ACROSS</th>
<th>INBETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="OUTSIDE.png" alt="Diagram" /></td>
<td><img src="INSIDE.png" alt="Diagram" /></td>
<td><img src="ACROSS.png" alt="Diagram" /></td>
<td><img src="INBETWEEN.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

OUTSIDE  

displays the major tick marks outside of the axis frame.
INSIDE  
   displays the major tick marks inside the axis frame.

ACROSS   
   displays the major tick marks across the axis line.

INBETWEEN   
   displays the major tick marks between the discrete data values and outside of 
   the axis frame.

Interaction  This value is available only with discrete axes. The option is 
   ignored if specified with other axis types.

Default   OUTSIDE

Restriction  This option applies to the major tick marks only. It does not affect 
   the minor tick marks.

Interaction  This option has effect only if the DISPLAY= option setting includes 
   tick marks, which it does by default.

Note  This option has no effect on the placement of the tick values, which 
   are always outside the axis frame.

Tip  You can use the SG annotation facility to draw inside minor tick 
   marks in your graph. See Chapter 20, “Annotating ODS Graphics,” 
   on page 1767. The post Creating an axis in GTL with both major 
   and minor tick marks shown inside on the Graphics Programming 
   community page provides an example for the SGPLOT procedure.

\textbf{TYPE=DISCRETE | LINEAR | LOG | TIME}  
 specifies the type of axis. Specify one of the following values:

\textbf{DISCRETE}  
 specifies an axis with discrete values. If a character variable is assigned to an 
 axis, then the default type for that axis is discrete. In addition, all 
 categorization plots use a discrete axis for the category variable.

\textbf{Note:} Starting with SAS 9.4M3, bar charts support a linear category axis.

\textbf{LINEAR}  
 specifies a linear scale for the axis. This is the default axis type for numeric 
 variables, except when the data is discrete, or when the numeric variable has 
 a date or time format.

\textbf{LOG}  
 specifies a logarithmic scale for the axis. This axis type is never a default.

\textbf{Restriction} A logarithmic scale cannot be used with linear regression plots 
 (REG statement where DEGREE=1).

\textbf{Interactions} Use the LOGSTYLE= option to specify the scale and format for 
 the tick values.

   Use the LOGBASE= option to specify the base value.

   Use the LOGVTYPE= option to specify how the values that are 
   provided in the VALUES= option and the MIN= and MAX= 
   options are interpreted.
TIME

specifies a time scale for the axis. If the variable assigned to an axis has a
time, date, or datetime format associated with it, then time is the default axis
type.

VALUEATTRS=\texttt{style-element}(options) | (options)

specifies the appearance of the axis tick value labels. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults

GraphValueText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current
style (ungrouped data). For grouped data, the color changes to
match the group color derived from the ContrastColor attribute of the
GraphData1...GraphData style elements.

Examples

\texttt{VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)}

Here is an example that specifies a style element:

\texttt{VALUEATTRS=GraphTitleText}

VALUES=(values-list) | ("string-list")

specifies the values for the ticks on an axis. The syntax for this option varies
depending on the type of axis.

- VALUES=(values-list) specifies tick values for linear, time, and logarithmic
  axes.
- VALUES=("string-list") specifies tick values for discrete axes. The values can
  be character or numeric.

VALUES=(values-list)

For values on a linear axis, the values list can be one of the following:

\texttt{value <...value-n>}

creates ticks for specific values. For example, VALUES=(0 50 100) places
tick marks at 0, 50, and 100.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is
specified by value-1 and the end of the range is specified by value-2. The
increment-value specifies the interval between the ticks. For example,
VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

\textbf{Note:} If you omit the increment-value, the procedure generates the first
tick value, but does not increment beyond that value. The result can be
unpredictable output.

\texttt{<value ... value-n>value-1 TO value-2 BY increment-value <value ... value-n>}

creates ticks for specific values, and also creates ticks for a range of
values. The start of the value range is specified by value-1 and the end of
the range is specified by value-2. The increment-value specifies the
interval between the ticks.
For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at 
-5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple n values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
- values=(2 to 10 by 2)
- values=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

values=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

- value
  <...value-n>
  creates ticks for specific values. For example, VALUES=('25MAY08' '04JUL08' '23AUG08') places tick marks at 25MAY08, 04JUL08, and 23AUG08.

- value-1 TO value-2 BY increment-value
  creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=('01JAN08' to '01MAY08' by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

  For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions
This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions
For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tips
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

  For graphs such as histograms, the final bin might be truncated at the maximum data value. If you need to expand the axis in order to show all of the data, use the VALUESHINT option.

VALUES=("string-list")
For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.
Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

### Table 10.69  Axis with Specified Character Values

```plaintext
proc sgplot data=sashelp.cars;
 xaxis values=("GMC" "Honda" "Hyundai")
 offsetmin=0.2 offsetmax=0.2;
 scatter x=make y=mpg_city;
 run;
```

### Restrictions

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

### Notes

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

If a numeric variable has an associated format, the specified values must use the same format.

### Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

### Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```plaintext
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```plaintext
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```
**TIP**  Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

**Restriction**  This option applies only to discrete and linear axes.

**Interaction**  This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

**Example**  The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=(*14* *15*) valuesdisplay=(*fourteen* *fifteen*)
```

**VALUESFORMAT=DATA | SAS-format**
specifies how to format the values for major tick marks.

**Note:** Starting with SAS 9.4M3, this option supports discrete and logarithmic axes.

**DATA**  uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**  specifies a format to apply to the major tick values.

**Restriction**  This option currently honors most, but not every, SAS format. For more information, see “Format Support in ODS Graphics” in *SAS Graph Template Language: Reference*.

**Notes**  If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

A syntax error might be generated if you specify the format using the *w.d* SAS format. To avoid this error condition, insert an F in front of the format name. Example: F5.1

**Restriction**  For discrete axes, only character formats are supported.

**Interactions**  This option is ignored when LOGSTYLE=LOGEXPONENT.
When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

---

Note: This feature applies to SAS 9.4M3 and later releases.

---

Default: LEFT
Interaction: This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. Tick values specified by the VALUES= option are treated as suggestions for the tick values that actually appear, so that the actual data range of the axis is preserved. If the values-list contains values that are less than the data minimum, or greater than the data maximum, then those values are ignored.

Interaction: This option has no effect unless you also specify the VALUES= option.

---

YAXISTABLE Statement

Creates a basic plot that displays data values at specific locations along the vertical axis. The data values can be placed inside or outside of the axis. The SG PLOT procedure can contain multiple axis table statements.

Requirements:
At least one other plot statement must be used in the procedure. This other plot becomes the primary plot. The primary plot provides the default placement of values along the axis table's vertical axis.

For the axis table, you must specify at least one variable. This variable determines which values are displayed in the axis table.

Interactions:
You can specify a variable for the Y= option to identify the locations along the axis where the values are displayed. If you do not specify Y=, the locations are determined by the Y variable in the primary plot. When the primary plot is a categorical chart (bar, line, or dot), the category variable from the chart is used. With the exception of that Y (or category) variable and any group variable that might be specified, axis tables are separate plots and are unaware of the options specified in the accompanying plots.

When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has a VBAR
statement along with a YAXISTABLE statement, the YAXISTABLE statement is rejected
with a message.
Axis tables cannot be used when the primary plot is one of the following plot types:
BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. The axis table requires at least
one other plot statement that is not one of these types. Otherwise, the axis table is not
created and an error is written to the log.

Syntax

YAXISTABLE variable <...variable-n> <options>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are
missing.

INDENT=dimension<unit>
specifies a value to be used with the INDENTWEIGHT= option to
determine the indentation for each text value.

INDENTWEIGHT=numeric-variable
specifies the indentation weight (multiplier) for each observation.

LOCATION=OUTSIDE | INSIDE
specifies whether the axis table is placed outside or inside the axis area.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric
values.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.

POSITION=LEFT | RIGHT
specifies the position of the axis table at the left or right side of the graph.

SEPARATOR
creates a separating line between the axis table or axis tables and the
plot.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data
set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element<(options)> | (options)
specifies the appearance of the axis table values.

VALUEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the axis table values relative to the column width in the table.

\texttt{VALUEJUSTIFY=LEFT | CENTER | RIGHT}

specifies the justification of the axis table values relative to the column width in the table.

**Axis options**

\texttt{Y2AXIS}

assigns the table to the secondary vertical axis.

**Class options**

\texttt{CLASS=variable}

creates a separate axis table for each unique value of the specified variable.

\texttt{CLASSDISPLAY=STACK | CLUSTER}

specifies how the class values are displayed.

\texttt{CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}

specifies the order in which the class values are displayed.

\texttt{NOMISSINGCLASS}

specifies that missing values of the class variable are not included in the table.

**Label options**

\texttt{LABELATTRS=style-element\langle\textit{options}\rangle | \langle\textit{options}\rangle}

specifies the color and font attributes of the axis table label.

\texttt{LABELHALIGN=LEFT | CENTER | RIGHT}

specifies the horizontal alignment of the column labels, when displayed.

\texttt{LABELJUSTIFY=LEFT | CENTER | RIGHT}

specifies the justification of the labels.

\texttt{LABEL | NOLABEL | LABEL=\"text-string\"}

specifies whether the table label is shown or hidden.

\texttt{LABELPOS=BOTTOM | TOP}

specifies the position of the labels at the bottom or top of the axis table.

\texttt{STATLABEL}

\texttt{NOSTATLABEL}

specifies whether the variable statistic is displayed in the table’s label.

**Plot options**

\texttt{STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM}

specifies the statistic for the axis table.

\texttt{Y=variable}

Specifies the variable to use to align the table values to the Y or Y2 axis.

**Plot reference options**

\texttt{NAME="text-string"}

assigns a name to a plot statement.

**Title options**

\texttt{TITLE="text-string"}

specifies a title for the axis table.

\texttt{TITLEATTRS=style-element\langle\textit{options}\rangle | \langle\textit{options}\rangle}

specifies the appearance of the appearance of the title for the axis table.
TITLEALIGN=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the axis table title bounding box relative to the axis table width.

TITLEJUSTIFY=LEFT | CENTER | RIGHT
  specifies the justification of the lines of a multiline title in the title bounding box. The justification is relative to the axis table width.

Required Argument

variable <...variable-n>
  specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.

Note: When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

Optional Arguments

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 18, “Using Discrete Attribute Maps,” on page 1737
  "Overview of Attribute Maps" on page 1733

CLASS=variable
  creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction: The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction: If NOLABEL is also specified, then the class labels are removed.

Tips: Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER
  specifies how the class values are displayed.

Note: This feature applies to SAS 9.4M2 and later releases.
STACK
displays the class values horizontally at each midpoint value on the Y axis.

CLUSTER
displays the class values vertically at each midpoint value on the Y axis.

Restriction The CLASSDISPLAY=CLUSTER option applies only when the axis table is on a discrete axis.

Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

Note: This feature applies to SAS 9.4M3 and later releases.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default DATA

Restriction This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

Interaction For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphDataN style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Restriction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless variable is used in the accompanying chart.

Note This option is used only to color the table values. If you want to set additional text attributes, use the TEXTGROUP= option instead.
DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing.

Note: This feature applies to SAS 9.4M2 and later releases.

Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

INDENT=dimension<unit>
specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

Note: This feature applies to SAS 9.4M3 and later releases.

The default units for dimension are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Default 1/8 inch

Restriction Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARM, VBARPARM, SERIES, or SCATTER.

Interaction The INDENTWEIGHT= option must be specified for this option to have any effect.

INDENTWEIGHT=numeric-variable
specifies the indentation weight (multiplier) for each observation.

Note: This feature applies to SAS 9.4M3 and later releases.

Restriction Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARM, VBARPARM, SERIES, or SCATTER.

Interaction For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indentation for that observation’s value.

Note If the axis-table values are numeric and a user-defined format is applied to the values, then indentation might not work well, especially if the format results in long strings.

Tip When using the INDENTWEIGHT= option, specify VALUEHALIGN=LEFT to ensure correct indentation. Otherwise, the indentation might not be as expected.

LABEL | NOLABEL | LABEL=“text-string”
specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.
Note: The ability to specify a text string applies to SAS 9.4M3 and to later releases.

Defaults LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

Tip Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

**LABELATTRS=style-element<options>| (options)**
specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1658.

Defaults For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

**LABELHALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the column labels, when displayed.

Note: This feature applies to SAS 9.4M2 and later releases.

Default Uses the effective value of the LABELJUSTIFY= option.

Interaction This option has no effect if NOLABEL is also specified.

**LABELJUSTIFY=LEFT | CENTER | RIGHT**
specifies the justification of the labels.

Note: This feature applies to SAS 9.4M2 and later releases.

Default Uses LEFT for text values or RIGHT for numeric values.
**Interaction**  This option has no effect if NOLABEL is also specified.

**LABELPOS=**BOTTOM | TOP  
specifies the position of the labels at the bottom or top of the axis table.

Default  TOP

**LOCATION=**OUTSIDE | INSIDE  
specifies whether the axis table is placed outside or inside the axis area.

Default  OUTSIDE

**NAME=**"text-string"  
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

*Note*  The text-string is case-sensitive and must define a unique name within the procedure.

*Tip*  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCHAR**  
suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

*Note:*  This feature applies to SAS 9.4M3 and later releases.

**NOMISSINGCLASS**  
specifies that missing values of the class variable are not included in the table.

*Note:*  This feature applies to SAS 9.4M3 and later releases.

*Interaction*  For this option to have any effect, the CLASS= option must be specified.

**PAD=**dimension | (pad-options)  
specifies the amount of extra space that is added inside the table border.

*Note:*  This feature applies to SAS 9.4M3 and later releases.

*dimension*  specifies a dimension to use for the extra space at the table border relative to the axis.

*pad-options*  a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

**LEFT=**dimension  
specifies the amount of extra space added to the left side.

Default  4 px

**RIGHT=**dimension  
specifies the amount of extra space added to the right side.
Default 4 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

POSITION=LEFT | RIGHT
specifies the position of the axis table at the left or right side of the graph.

Defaults RIGHT when the primary vertical axis is used for the plot.

LEFT when the secondary (Y2AXIS) vertical axis is specified for the plot.

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

Interaction This option has no effect unless LOCATION=INSIDE is also specified.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ
the frequency of the axis table variable.

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the FREQ value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of a response (analysis) variable when computing the frequency. The FREQ value is the frequency of the categorical variable.

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

Interactions For this value to take effect, the graph must use a category plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, this value is ignored when the axis table variable is the same as the categorical variable of
the primary plot. In that case, the FREQ statistic is used and a message is written to the SAS log.

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

Starting with the SAS 9.4M5 release, the PERCENT value has a different effect when the axis table variable is the same as the categorical variable of the primary plot. In that case, the axis table variable is treated as a category (class) variable instead of as a response (analysis) variable when computing the percentage. Therefore, the PERCENT value is calculated as a percentage of frequency instead of a percentage of the sum.

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SG PLOT statement.

You can use the PCTNDEC= option in the SG PLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Defaults SUM

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, FREQ is the default.

Restrictions The STAT= option is applied only to numeric variables.

Only SUM and MEAN are supported for non-categorical plots.

Starting with the SAS 9.4M5 release, when used with a categorical plot and the axis table variable is the same as the categorical variable, only FREQ and PERCENT are supported.

Interaction Any STAT= value specified in the primary plot has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

STATLABEL
forces the statistic to be displayed in the label.
Note: This feature applies to SAS 9.4M2 and later releases.

**NOSTATLABEL**
removes the statistic from the label.

Defaults
The statistic is displayed for the variable.
When a custom label is assigned to the variable, the statistic is not displayed.

Interaction
This option has no effect unless the STAT= option is also specified in the axis table statement.

**TEXTGROUP=attribute-map-group-variable**
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.

Note: This feature applies to SAS 9.4M1 and later releases.

**TEXTGROUPID=attribute-map-id**
specifies an attribute ID for the TEXTGROUP= option.

Note: This feature applies to SAS 9.4M1 and later releases.

Default
If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1752

**TITLE=“text-string”**
specifies a title for the axis table. If the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip
Use the TITLEATTRS= option to modify the title text attributes.

**TITLEATTRS=style-element<(options)> | (options)**
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying text options. If you specify
For a description of the text options, see “Text Attributes” on page 1658.

**Defaults**

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interactions**

This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

**Examples**

```
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
TITLEATTRS=GraphTitleText
```

**TITLEALIGN=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the axis table title bounding box relative to the axis table width.

**Note:** This feature applies to SAS 9.4M3 and later releases.

This option applies only to Y-axis tables.

**Default**

LEFT

**Interaction**

This option takes effect only when TITLE= is also specified.

**Tip**

For a multiline title, use TITLEJUSTIFY= to justify the title text lines in the title bounding box.

**TITLEJUSTIFY=LEFT | CENTER | RIGHT**

specifies the justification of the lines of a multiline title in the title bounding box.

The justification is relative to the axis table width.

**Note:** This feature applies to SAS 9.4M3 and later releases.

This option applies only to Y-axis tables.

**Default**

LEFT

**Restriction**

The title must wrap to multiple lines for this option to have any effect.

**Interaction**

This option takes effect only when TITLE= is also specified.

**Tip**

Use TITLEALIGN= to align the title bounding box.
VALUEATTRS=\texttt{style-element<(options)> | (options)}

specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1658.

Defaults

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textit{n} style elements.

Interaction

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples

\begin{verbatim}
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
\end{verbatim}

Here is an example that specifies a style element:

\begin{verbatim}
VALUEATTRS=GraphTitleText
\end{verbatim}

VALUEHALIGN=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the axis table values relative to the column width in the table.

\begin{verbatim}
Note: This feature applies to SAS 9.4M2 and later releases.
\end{verbatim}

This option aligns the text within the column based on the longest string.

Default

Uses the effective value of the VALUEJUSTIFY= option.

VALUEJUSTIFY=LEFT | CENTER | RIGHT

specifies the justification of the axis table values relative to the column width in the table.

\begin{verbatim}
Note: This feature applies to SAS 9.4M2 and later releases.
\end{verbatim}

This option horizontally aligns the table values center, left, or right relative to the column width.

Default

LEFT for text values or RIGHT for numeric values.

\texttt{Y=variable}

Specifies the variable to use to align the table values to the Y or Y2 axis.

Default

When this option is not specified, the Y variable of the primary plot is used by default.
Interaction

This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

**Y2AXIS**

assigns the table to the secondary vertical axis.

---

**Example: YAXISTABLE Statements**

This example shows a table of values along the Y axis of a scatter plot that plots student weight.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Weight</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>William</td>
<td></td>
<td>112</td>
<td>60.5</td>
</tr>
<tr>
<td>Ronald</td>
<td></td>
<td>103</td>
<td>67</td>
</tr>
<tr>
<td>Philip</td>
<td></td>
<td>150</td>
<td>72</td>
</tr>
<tr>
<td>Mary</td>
<td>15</td>
<td>112.5</td>
<td>62.5</td>
</tr>
<tr>
<td>Judy</td>
<td>14</td>
<td>90</td>
<td>64.3</td>
</tr>
<tr>
<td>Janet</td>
<td>15</td>
<td>112.5</td>
<td>62.5</td>
</tr>
<tr>
<td>Henry</td>
<td>14</td>
<td>102.5</td>
<td>63.5</td>
</tr>
<tr>
<td>Carol</td>
<td>14</td>
<td>102.5</td>
<td>62.6</td>
</tr>
<tr>
<td>Alfred</td>
<td>14</td>
<td>117.5</td>
<td>66</td>
</tr>
</tbody>
</table>

Here are the noteworthy features:

- The first axis table statement displays the age (in red) of each student. The **LOCATION=** option locates the axis table within the plot axes.
- The second axis table statement specifies two variables, height and weight, and is located to the right of the Y axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;
proc sgplot data=sashelp.class (where=(age > 13));
scatter y=name x=height;
yaxistable age / location=inside position=right
 valueattrs=(color=red)
 labelattrs=(color=red);
yaxistable weight height / valueattrs=(color=blue)
 labelattrs=(color=blue);
run;
```
For an example that shows horizontal axis tables, see "Example: XAXISTABLE Statements" on page 1468.

Examples: SGPLOT Procedure

About the SGPLOT Procedure Examples

Examples in This Section

This section provides basic examples of how to use the SGPLOT procedure. The following examples are provided:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Example 1: Grouping a Scatter Plot” (p. 1531)</td>
<td>Shows how to use the SCATTER statement to create a simple scatter plot with grouped data.</td>
</tr>
<tr>
<td>“Example 2: Clustering a Grouped Scatter Plot” (p. 1532)</td>
<td>Shows how to use the SCATTER statement with the GROUPDISPLAY= and CLUSTERWIDTH= options to create a scatter plot with grouped data that is clustered.</td>
</tr>
<tr>
<td>“Example 3: Plotting Three Series” (p. 1533)</td>
<td>Shows how to use multiple SERIES statements to create an overlay series plot.</td>
</tr>
<tr>
<td>“Example 4: Adding Prediction and Confidence Bands to a Regression Plot” (p. 1534)</td>
<td>Shows how to use the REG statement to create a regression plot with prediction and confidence limits.</td>
</tr>
<tr>
<td>“Example 5: Adding a Prediction Ellipse to a Scatter Plot” (p. 1535)</td>
<td>Shows how to use the SCATTER and ELLIPSE statements to create a scatter plot with a prediction ellipse.</td>
</tr>
<tr>
<td>“Example 6: Creating Lines and Bands from Pre-Computed Data” (p. 1537)</td>
<td>Shows how to use the BAND, SCATTER, and SERIES statements to create a scatter plot, fit line, and confidence bands from pre-computed data.</td>
</tr>
<tr>
<td>“Example 7: Adding Statistical Limits to a Dot Plot” (p. 1539)</td>
<td>Shows how to use the DOT statement to create a dot plot with a response variable and statistical limits.</td>
</tr>
</tbody>
</table>
### Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Example 8: Combining Histograms with Density Plots” (p. 1540)</td>
<td>Shows how to use the HISTOGRAM and DENSITY statements to create a histogram combined with two density plots.</td>
</tr>
<tr>
<td>“Example 9: Creating a Horizontal Box Plot” (p. 1541)</td>
<td>Shows how to use the HBOX statement to create a horizontal box plot.</td>
</tr>
<tr>
<td>“Example 10: Creating a Bar-Line Chart” (p. 1542)</td>
<td>Shows how to use the VBAR and VLINE statements to create a bar-line chart.</td>
</tr>
<tr>
<td>“Example 11: Creating a High-Low Chart” (p. 1543)</td>
<td>Shows how to use the HIGHLow statement to create a high-low plot of stock prices.</td>
</tr>
<tr>
<td>“Example 12: Series Plot with Line-Thickness Response and Arrowheads” (p. 1544)</td>
<td>Shows how to use the SERIES statement to create a grouped series plot with line-thickness response and arrowheads.</td>
</tr>
</tbody>
</table>

### Additional Examples in This Book

Additional examples exist elsewhere in this book for most of the SGPLOT procedure statements. The following table lists these examples by statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>“About Band Plots” (p. 17)</td>
</tr>
<tr>
<td>BLOCK</td>
<td>“About Block Plots” (p. 18)</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>“Example 1: Creating a Basic Bubble Plot” on page 874</td>
</tr>
<tr>
<td></td>
<td>“Example 2: Enhancing a Bubble Plot” on page 874</td>
</tr>
<tr>
<td>DENSITY</td>
<td>“About Density Plots” (p. 48)</td>
</tr>
<tr>
<td>DOT</td>
<td>“About Dot Plots” (p. 58)</td>
</tr>
<tr>
<td>DROPLINE</td>
<td>“About Drop Lines” on page 26</td>
</tr>
<tr>
<td></td>
<td>“Example” on page 905</td>
</tr>
<tr>
<td>ELLIPSE</td>
<td>“About Ellipse Plots” (p. 41)</td>
</tr>
<tr>
<td>ELLIPSEPARM</td>
<td>“Example” (p. 918)</td>
</tr>
<tr>
<td>FRINGE</td>
<td>“About Fringe Plots” (p. 20)</td>
</tr>
<tr>
<td>Statement</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GRADLEGEND</td>
<td>“Example” (p. 928)</td>
</tr>
<tr>
<td>HBAR</td>
<td>“About Bar Charts” (p. 51)</td>
</tr>
<tr>
<td>HBARBASIC</td>
<td>“About Bar Charts” (p. 51)</td>
</tr>
<tr>
<td>HBARPARM</td>
<td>“About Bar Charts” (p. 51)</td>
</tr>
<tr>
<td>HBOX</td>
<td>“About Box Plots” (p. 46)</td>
</tr>
<tr>
<td>HEATMAP</td>
<td>“About Heat Maps” (p. 21)</td>
</tr>
<tr>
<td>HEATMAPPARM</td>
<td>“About Heat Maps” (p. 21)</td>
</tr>
<tr>
<td>HIGHLOW</td>
<td>“About High-Low Plots” (p. 23)</td>
</tr>
<tr>
<td>HISTOGRAM</td>
<td>“About Histograms” (p. 50)</td>
</tr>
<tr>
<td>HLINE</td>
<td>“About Line Charts” (p. 60)</td>
</tr>
<tr>
<td>INSET</td>
<td>“About Text Insets” (p. 37)</td>
</tr>
<tr>
<td>KEYLEGEND</td>
<td>“Example 1: Legend for Two Ellipses” on page 1091</td>
</tr>
<tr>
<td></td>
<td>“Example 2: Legend with a Position Specified inside the Axis Area” on page 1092</td>
</tr>
<tr>
<td>LEGENDITEM</td>
<td>“Example” (p. 1098)</td>
</tr>
<tr>
<td>LINEPARM</td>
<td>“About Parameterized Lines” (p. 27)</td>
</tr>
<tr>
<td>LOESS</td>
<td>“LOESS Statement” (p. 429)</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>“About Needle Plots” (p. 29)</td>
</tr>
<tr>
<td>PBSPLINE</td>
<td>“About Penalized B-Spline Plots” (p. 43)</td>
</tr>
<tr>
<td>POLYGON</td>
<td>“Example 1: Create a Single Filled Hexagon” on page 1162</td>
</tr>
<tr>
<td></td>
<td>“Example 2: Use a Polygon to Highlight Data in a Scatter Plot” on page 1162</td>
</tr>
<tr>
<td>REFLINE</td>
<td>“About Reference Lines” (p. 25)</td>
</tr>
<tr>
<td>REG</td>
<td>“About Regression Plots” (p. 44)</td>
</tr>
<tr>
<td>SCATTER</td>
<td>“About Scatter Plots” (p. 30)</td>
</tr>
<tr>
<td>SERIES</td>
<td>“About Series Plots” on page 32</td>
</tr>
<tr>
<td></td>
<td>“Example 1: Using Group Options with or without an Attribute Map” on page 1223</td>
</tr>
</tbody>
</table>
### Examples Available Online

You can find more examples on the Graphically Speaking blog. On the blog page, search for SGPLOT in the Search Graphically Speaking search box to find the SGPLOT procedure examples.

You can also find examples on support.sas.com at the following URL: https://support.sas.com/sassamples/graphgallery/PROC_SGPLOT.html.
Example 1: Grouping a Scatter Plot

Features:
- SCATTER statement
- Sample library member: SGPLSCT

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a simple scatter plot with grouped data.

Output

Program

Create the scatter plot. In the SCATTER statement, the GROUP= option groups the data by the SEX variable.

```sas
proc sgplot data=sashelp.class;
 scatter x=height y=weight / group=sex;
run;
```
Example 2: Clustering a Grouped Scatter Plot

Features:
- **SCATTER statement**
- **GROUPDISPLAY option**
- **CLUSTERWIDTH option**

Sample library member: SGPLCLU

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a simple scatter plot with grouped data that is clustered.

Output

![Clustered Scatter Plot](image)

Program

Create the scatter plot. In the SCATTER statement, the **GROUP=** option groups the data by the TYPE variable. The **GROUPDISPLAY=** option specifies that the grouped markers are clustered. The **CLUSTERWIDTH=** option specifies the width of the group clusters.

```sas
proc sgplot data=sashelp.revhub2;
scatter x=hub y=revenue / group=type groupdisplay=cluster clusterwidth=0.5;
xaxis type=discrete;
```
Example 3: Plotting Three Series

Features:

- SERIES statement

Sample library member:

SGPLSER

Note:

For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a series plot with three series on the Y axis.

Output

![Stock Trend graph showing three series on the Y axis.

Program

```sas
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2000"d and stock = "IBM"));
title "Stock Trend";
 series x=date y=close;
 series x=date y=low;
 series x=date y=high;
run;
title;
```
Program Description

Specify the data set and the title.

```sas
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2000"d and stock = "IBM"));
title "Stock Trend";
```

Create the series plots.

```sas
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
```

Cancel the title.

```sas
title;
```

Example 4: Adding Prediction and Confidence Bands to a Regression Plot

Features:
- REG statement

Sample library member:
- SGPLREG

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a regression plot with prediction and confidence limits.
Create the regression plot. The CLM on page 1175 option adds confidence limits for the mean predicted values. The CLI on page 1173 option adds confidence limits for the individual predicted values.

```sas
proc sgplot data=sashelp.class;
 reg x=height y=weight / CLM CLI;
run;
```

Example 5: Adding a Prediction Ellipse to a Scatter Plot

Features:
- SCATTER statement
- ELLIPSE statement
- KEYLEGEND statement

Sample library member:
- SGPLELI

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a scatter plot with a prediction ellipse.
Program

```sas
proc sgplot data=sashelp.iris;
 title "Iris Petal Dimensions";
 scatter x=petallength y=petalwidth;
 ellipse x=petallength y=petalwidth;
 keylegend / location=inside position=bottomright;
run;
 title;
```

Program Description

**Set the title and create the scatter plot.**

```sas
proc sgplot data=sashelp.iris;
 title "Iris Petal Dimensions";
 scatter x=petallength y=petalwidth;
```

**Create the ellipse.**

```sas
ellipse x=petallength y=petalwidth;
```

**Position the Legend.** The `LOCATION=` on page 1087 option places the legend inside the plot area. The `POSITION=` on page 1088 option places the legend at the bottom right.

```sas
keylegend / location=inside position=bottomright;
run;
```

**Cancel the title.**
Example 6: Creating Lines and Bands from Pre-Computed Data

Features:
- BAND statement
- KEYLEGEND statement
- SCATTER statement
- SERIES statement

Sample library member: SGPLBND

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows how to use pre-computed data to create a scatter plot, fit line, and confidence bands. The data set was created by the REG procedure. This technique is useful for more complex fit models.

Output

Program

```sas
proc sgplot data=sashelp.classfit;
 title "Fit and Confidence Band from Precomputed Data";
 band x=height lower=lower upper=upper /
```
Program Description

Set the title and create the first band plot. The LEGENDLABEL= option in the BAND statement specifies the label for the band plot in the legend.

```sas
proc sgplot data=sashelp.classfit;
 title "Fit and Confidence Band from Precomputed Data";
 band x=height lower=lower mean=upper /
 legendlabel="95% CLI" name="band1";
```

Create the second band plot. The LEGENDLABEL= option specifies the label for the band plot in the legend. The FILLATTRS= option specifies the style element for the fill.

```sas
band x=height lower=lowermean upper=uppermean /
 fillattrs=GraphConfidence2
 legendlabel="95% CLM" name="band2";
```

Create the scatter and series plots. The LINEATTRS= option in the SERIES statement specifies the style attribute for the series plot. The LEGENDLABEL= option in the SERIES statement specifies the legend label for the series plot.

```sas
scatter x=height y=weight;
series x=height y=predict / lineattrs=GraphPrediction
 legendlabel="Predicted Fit" name="series";
```

Create a legend for the graph. The quoted strings specify the names of the plots that you want to include in the legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend in the bottom right corner of the graph.

```sas
keylegend "series" "band1" "band2" / location=inside
 position=bottomright;
run;
```

Cancel the title.

```sas
title;
```
Example 7: Adding Statistical Limits to a Dot Plot

Features:
DOT statement
Sample library member: SGPLDOT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a dot plot with a response variable and statistical limits. Each dot represents the mean for each value of the category variable, and bands represent the standard deviation.

Output

Program

Create the dot plot. The RESPONSE= on page 896 option specifies the response variable. The STAT= on page 951 option specifies that the mean statistic is used to analyze the graph. The LIMITSTAT= on page 894 option specifies that the limit statistic is the standard deviation. The NUMSTD= on page 895 option specifies that one standard deviation is used.

```sas
proc sgplot data=sashelp.class(where=(age<16));
 dot age / response=height stat=mean
 limitstat=stddev numstd=1;
run;
```
Example 8: Combining Histograms with Density Plots

Features:
- HISTOGRAM statement
- DENSITY statement
- KEYLEGEND statement

Sample library member:
SGPLHST

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a histogram combined with two density plots. One density plot uses a normal density estimate and the other density plot uses a kernel density estimate.

Output

Program

```sas
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution";
 histogram cholesterol;
 density cholesterol;
 density cholesterol / type=kernel;
```
Program Description

Set the title, set a label for the X axis, and create the histogram.

```
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution";
 histogram cholesterol;
run;
```

Create the density plots. The `TYPE=` option specifies which density equation is used.

```
density cholesterol;
 density cholesterol / type=kernel;
```

Position the Legend The `LOCATION=` option places the legend inside the plot area. The `POSITION=` option places the legend at the top right.

```
keylegend / location=inside position=topright;
run;
```

Cancel the title.

```
title;
```

Example 9: Creating a Horizontal Box Plot

Features:

- HBOX statement

Sample library member:

- SGPLBOX

Note:

For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a horizontal box plot.
**Program**

Create the box plot. The `CATEGORY=` on page 1000 option specifies the category variable.

```sas
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution by Weight Class";
 hbox cholesterol / category=weight_status;
run;
```

**Example 10: Creating a Bar-Line Chart**

- **Features:**
  - VBAR statement
  - VLINE statement

- **Sample library member:** SGPLBAR

- **Notes:**
  For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

  You can also combine the HBAR and HLINE statements to create a horizontal bar-line chart.

  This example creates a bar-line chart.
Output

![Graph showing stock volume vs. close over time]

Program

**Create the Bar-line Chart.** The **Y2AXIS on page 1400** option assigns the line plot to the **Y2** axis.

```sas
proc sgplot data=sashelp.stocks (where=(date >= "01jan2000"d and date <= "01jan2001"d and stock = "IBM")); title "Stock Volume vs. Close"; vbar date / response=volume; vline date / response=close y2axis; run;
title;
```

**Example 11: Creating a High-Low Chart**

**Features:**
- **HIGHLOW statement**

**Sample library member:**
- SGPLHIL0

**Note:**
For information about the SAS Sample Library, see “About the SASHelp and the SAS Sample Library” on page 138.

This example shows the high, low, and closing stock prices for a company during the year 2005.
Program

Create the high-low chart. The HIGH= on page 1037, LOW= on page 1037, and CLOSE= on page 1038 options specify the variables that are used in the HIGHLOW statement. In addition, the WHERE on page 135 statement subsets the data by year and by company.

```
title "Stock High, Low, and Close";
proc sgplot data=sashelp.stocks;
 where Date >= '01JAN2005'd and stock='IBM';
 highlow x=date high=high low=low
 / close=close;
run;
title;
```

Example 12: Series Plot with Line-Thickness Response and Arrowheads

Features: SERIES statement

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.
Starting with **SAS 9.4M3**, you can specify a response variable to control the thickness of the lines in your grouped series plot. You can also add arrowheads to one or both ends of your grouped or ungrouped series lines.

This example creates a grouped series plot that shows the monthly closing price for IBM, Intel, and Microsoft stock in 2002. The mean volume is computed for each stock and is used to control the thickness of the series line for each stock. The maximum line width is set to 7px. A barbed arrowhead, scaled to 1.25, is positioned at the end of each series line. In order to position the arrowheads properly, the data must be sorted in ascending order by date.

**Output**

**Stock Trends in 2002**

**Program**

```sas
data stocks;
set sashelp.stocks(where=(date between "1jan02"d and "31dec02"d));
volume = volume / 1000000;
format date MONNAME3. volume 6.2;
```
run;
proc means data=stocks noprint;
   by stock notsorted;
   var volume;
   output out=meanvolume(keep=stock meanvolume) mean=meanvolume;
run;
data stocks;
   merge stocks meanvolume;
   by stock;
run;
proc sort data=stocks;
   by date;
run;
title "Stock Trends in 2002";
proc sgplot data=stocks;
series x=date y=close / group=stock
   thickresp=meanvolume thickmax=7px
   arrowheadpos=end arrowheadshape=barbed
   arrowheadscale=1.25;
run;
title;

Program Description

Extract the 2002 data from SASHELP.STOCKS and convert volume to millions.

data stocks;
   set sashelp.stocks(where=
      (date between "1jan02"d and "31dec02"d));
   volume = volume / 1000000;
   format date MONNAME3. volume 6.2;
run;

Compute the average volume for each stock.

proc means data=stocks noprint;
   by stock notsorted;
   var volume;
   output out=meanvolume(keep=stock meanvolume) mean=meanvolume;
run;

Merge the average volume data with the stock data.

data stocks;
   merge stocks meanvolume;
   by stock;
run;

Sort the data by date.

proc sort data=stocks;
   by date;
run;

Create the series plot.
title "Stock Trends in 2002";
proc sgplot data=stocks;
series x=date y=close / group=stock
  thickresp=meanvolume thickmax=7px
  arrowheadpos=end arrowheadshape=barbed
  arrowheadscale=1.25;
run;
title;
Overview: SGRENDER Procedure

What Does the SGRENDER Procedure Do?

The SGRENDER procedure produces graphical output from templates that are created with the Graph Template Language (GTL). The templates are referred to as StatGraph templates. The GTL is a comprehensive language for creating statistical graphics, which can be used to create customized layouts and graphs that are beyond the scope of the ODS Graphics procedures. For more information about the GTL, see the SAS Graph Template Language: Reference and the SAS Graph Template Language: User’s Guide.

The SGRENDER procedure can also produce graphical output from SAS ODS Graphics Editor files. For more information about the editor, see the SAS ODS Graphics Editor: User’s Guide.
Supported Statements:

BY, FORMAT, LABEL, ODS GRAPHICS, WHERE

PROC SGRENDER <option(s)>;
DATTVAR variable-assignment(s);
DYNAMIC variable-assignment(s);

PROC SGRENDER Statement

Identifies the data set that contains the plot variables and the StatGraph template. You can also render a graph from a SAS ODS Graphics Editor (SGE) file. The statement also gives you the option to specify the name of the output object and the label for the output object.

Requirement: Requires an input data set and a template, or an SGE file.

Syntax

PROC SGRENDER TEMPLATE=statgraph-template <option(s)>
PROC SGRENDER SGE=fileref | "file-name" <option(s)>

Summary of Optional Arguments

Render options

DATA=input-data-set
specifies the SAS data set that contains the variables to process.

DATTRMAP=discrete-attr-map-data-set
specifies a map data set that contains discrete attribute map descriptions.

OBJECT=object-name
specifies a name for the ODS output object.

OBJECTLABEL="text-string"
specifies a description for the output image.

SGANNO=annotation-data-set
specifies the name of a SAS data set that contains annotation instructions.

SGE=fileref | "file-name"
specifies the SAS ODS Graphics Editor (SGE) file to render.
Required Argument

**TEMPLATE=statgraph-template**

specifies a StatGraph template that defines one or more graphs. The SGRENDER procedure applies the StatGraph template to your data to create the output graphs.

**Interaction**

This argument is required except when you use the SGE= option.

**Note**

Specifying a template that is not a StatGraph template is not supported. If you specify a non-StatGraph template, then the SGRENDER procedure might produce unpredictable results.

Optional Arguments

**DATA=input-data-set**

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

**DATTRMAP=discrete-attr-map-data-set**

specifies a map data set that contains discrete attribute map descriptions. The attribute map descriptions are read from the data set and are rendered in the graph output. Use this option when the discrete attribute map is defined in a SAS data set rather than in a DISCRETEATTRMAP block in the StatGraph template to be rendered.

**Restriction**

Discrete attribute maps that are stored in CAS in-memory tables are not supported.

**Requirements**

Do either one of the following:

- specify the attribute map ID variable by using the DATTRVAR statement in the SGRENDER procedure.
- specify the attribute map ID variable using the DISCRETEATTRVAR variable in the StatGraph template.

If neither of these requirements is met, the descriptions in the attribute map data set are ignored.

The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

**Interactions**

If both the DATTRVAR and DISCRETEATTRVAR statements are used, then the DISCRETEATTRVAR statement takes precedence.

If the ID value in the data set has the same identifier as an existing DISCRETEATTRMAP statement’s NAME= option in the template, the definition in the template is used.

**See**

“Defining a Discrete Attribute Map” in *SAS Graph Template Language: Reference*

“Key Concepts for Using Attribute Maps” in *SAS Graph Template Language: Reference*
OBJECT=object-name
specifies a name for the ODS output object.

Alias   NAME=

Default  SGRender

Note   To specify the filename of the output image, use the IMAGENAME= option in the ODS GRAPHICS statement.

OBJECTLABEL="text-string"
specifies a description for the output image. The description identifies the image in the following locations:
- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGRENDER Procedure”.

Alias   DES=, DESCRIPTION=

SGANNO=annotation-data-set
specifies the name of a SAS data set that contains annotation instructions. You specify this option only if you are rendering a template that contains one or more ANNOTATE statements. During rendering, when the ANNOTATE statement is encountered in the template, the annotation instructions are read from the annotation data set and are rendered in the current context in the graph. If the template does not include the ANNOTATE statement, the annotations in the annotation data set are ignored.

Restriction   Annotation instructions that are stored in CAS in-memory tables are not supported.

See   “ANNOTATE Statement” in SAS Graph Template Language: Reference

   “About the GTL Annotation Facility” in SAS Graph Template Language: Reference

SGE=fileref | "file-name"
specifies the SAS ODS Graphics Editor (SGE) file to render. Specify a fileref or a filename for the SGE file. This option enables you to render an SGE file to any supported ODS destination. The output type depends on the OUTPUTFMT option of the ODS GRAPHICS statement and the open ODS destination.

When you use this option to render an input SGE file, ODS does not produce an output SGE file even if the SGE=ON option is specified in the ODS statement.

For an example, see “Creating a Graph That Can Be Edited” on page 1729. For information about generating and editing SGE files, see the SAS ODS Graphics Editor: User’s Guide.

Restrictions   Starting with SAS 9.4M8, the ODS Graphics Editor is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
This procedure is not available in SAS Viya.

Starting with SAS 9.4M5, you can generate map output using the SGMAP procedure. SGE files that contain map content from SGMAP are generated with a different rendering technology and are not supported by the SGRENDER procedure. In these cases, blank output is produced and a message is written to the log.

Similarly, SGE output that is generated from the SGPIE procedure cannot be rendered using the SGRENDER procedure. The SGPIE procedure is new with SAS 9.4M6.

**Requirement**

Although SGE rendering does not require a data set, the SGRENDER procedure requires a data reference. You might need to specify DATA=_NULL_ in the SGRENDER procedure if the _LAST_ data set variable has not been set by the SAS system. This typically happens at the beginning of a SAS session, before the creation of a data set.

## DATTRVAR Statement

Specifies one or more input variables to be associated with an attribute map at run time.

**Interactions:**

This statement is used in conjunction with the DATTRMAP= option in the PROC SGRRENDER statement to associate a discrete attribute map with the StatGraph template.

If the template that is specified in the SGRENDER statement's TEMPLATE= option uses a DISCRETEATTRVAR statement, the DISCRETEATTRVAR statement takes precedence over the DATTRVAR statement.

**Note:**

You can specify multiple instances of this statement in the SGRENDER procedure. The variable-assignment(s) pairs from all of the DATTRVAR statements are accumulated.

## Syntax

```
DATTRVAR variable-assignment(s);
```

**Required Argument**

`variable-assignment(s)`

specifies the values for one or more variables. When multiple variable assignments are specified, separate each with a space.

Each variable assignment takes the following form:

```
group-variable-name="attrid"
```

`group-variable-name` is a group variable to be associated with an attribute map at run time. The variable must exist in the data set that you specify with the DATA= option in the PROC SGRENDER statement.
The variable can be character or numeric, but the values must match the type of values that are specified in the attribute map. For numeric variables, all values are treated as discrete values.

"attrid"

an identifier for the attribute map. The attrid value must exist in the attribute map data set. This value must be a quoted string.

Note If a group-variable-name is not found or is of the wrong type for the attribute map, the group-variable-name="attrid" pair is ignored.

Details

The StatGraph template does not need to reference the discrete attribute map. Instead, the SGRENDER procedure statement associates the template with the attribute map.

The SGRENDER procedure does the following:

- specifies the name of the attribute map data set using the DATTRMAP= option
- in the DATTRVAR statement, associates the group variable with the attribute map ID

Example

This example shows how to associate a StatGraph template with a discrete attribute map that is specified in a SAS data set.

In this example, the SGRENDER procedure does the following:

- specifies the name of the attribute map data set using DATTRMAP= on page 1551 MYATTRMAP
associates the group variable (SEX) with the attribute map ID (MYID) in the DATTRVAR on page 1553 statement

/* Create the attribute map data set */
data myAttrMap;
  length markersymbol $13;
  retain ID "myid";
  input value $ markersymbol $ markercolor $;
  datalines;
   F DiamondFilled blue
   M CircleFilled red
 ;
run;

/* Create a StatGraph template, and specify a group variable for the plot */
proc template;
  define statgraph noattrmap;
    begingraph;
      layout overlay;
        scatterplot x=height y=weight / name="scatter"
          group=sex;
        discretelegend "scatter";
      endlayout;
    endgraph;
  end;

/* Render the graph */
proc sgrender data=sashelp.class template=noattrmap dattrmap=myAttrMap;
dattrvar sex="myid";
run;

---

**DYNAMIC Statement**

Defines the values for dynamic variables in your StatGraph template code.

**See:** "Example 2: Defining Dynamic Variables" on page 1559

---

**Syntax**

```
DYNAMIC variable-assignment(s);
```

**Required Argument**

*variable-assignment(s)*

specifies the values for one or more dynamic variables. The variables that you assign must also be declared in a DYNAMIC statement within the StatGraph template.
You can specify either a numeric value or a quoted text string. For example, the following statement defines one string variable and one numeric variable:

dynamic region="Europe" limit=3000;

Details

Description

The DYNAMIC statement defines values for dynamic variables that are used in your StatGraph template.

You can either specify variables on multiple DYNAMIC statements, or specify all of your variables on a single DYNAMIC statement.

Note: If your template uses a dynamic variable to specify a required attribute, such as a variable name, and the name is misspelled or not provided in the SGRENDER procedure, then a warning is issued and the respective plot statement drops out of the final graph. A graph is produced, but it might be a blank graph, or it might show the results of all statements except those that are in error.

Special Dynamic Variables

Some special dynamic variables can be declared and referenced in a StatGraph template and do not need to be assigned in the DYNAMIC statement of the SGRENDER procedure. The following table describes those dynamic variables.

Table 11.1 Special Dynamic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>LIBNAME</em></td>
<td>Represents the name of the library that contains the data set.</td>
</tr>
<tr>
<td><em>MEMNAME</em></td>
<td>Represents the name of the library member that contains the data set.</td>
</tr>
<tr>
<td><em>BYLINE</em></td>
<td>Represents the complete BY line, when you specify a BY statement.</td>
</tr>
<tr>
<td><em>BYFOOTNOTE</em></td>
<td>When the BYLINE=FOOTNOTE option is specified in the ODS Graphics statement, the BY line information is set in this dynamic. Typically, you use this dynamic with the ENTRYFOOTNOTE statement in your template.</td>
</tr>
<tr>
<td><em>BYTITLE</em></td>
<td>When the BYLINE=TITLE option is specified in the ODS Graphics statement, the BY line information is set in this dynamic. Typically, you use this dynamic with the ENTRYTITLE statement in your template.</td>
</tr>
<tr>
<td><em>BYVAR</em></td>
<td>Represents the name of the first BY variable, when you specify a BY statement.</td>
</tr>
</tbody>
</table>
Examples: SGRENDER Procedure

About the SGRENDER Procedure Examples

Examples in This Section

This section provides basic examples of how to use the SGRENDER procedure. The following examples are provided:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Example 1: Generating a Graph from a Simple GTL Template” (p. 1558)</td>
<td>Shows how to create and render a template for a surface plot.</td>
</tr>
<tr>
<td>“Example 2: Defining Dynamic Variables” (p. 1559)</td>
<td>Shows how to use dynamic variables in a template.</td>
</tr>
</tbody>
</table>

Examples in the SAS Graph Template Language Documentation

You will find many more examples in the Graph Template Language (GTL) documentation:

- SAS Graph Template Language: User’s Guide
- SAS Graph Template Language: Reference

_BYVARn_ Represents the name of the nth BY variable, when you specify a BY statement with multiple variables.

_BYVAL_ Represents the first BY value, when you specify a BY statement.

_BYVALn_ Represents the value of the nth BY variable, when you specify a BY statement with multiple variables.
Examples Available Online

You can find more examples on the Graphically Speaking blog. On the blog page, search for GTL or SGRENDER in the Search Graphically Speaking search box to find the GTL and SGRENDER procedure examples.

You can also find examples on support.sas.com at the following URL: https://support.sas.com/sassamples/graphgallery/PROC_SGRENDER.html.

Example 1: Generating a Graph from a Simple GTL Template

Features:
- GTL template

Sample library member:
- SGRENDR

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example creates a simple StatGraph template by using Graph Template Language and then generates a graph from the template by using the SGRENDER procedure.

Output

![Graphical Output](image-url)
Program

```
proc template;
 define statgraph surface;
 begingraph;
 layout overlay3d;
 surfaceplotparm x=height y=weight z=density;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.gridded template=surface;
run;
```

Program Description

Create the Statgraph Template.

```
proc template;
 define statgraph surface;
 begingraph;
 layout overlay3d;
 surfaceplotparm x=height y=weight z=density;
 endlayout;
 endgraph;
end;
run;
```

Generate the graphics output from the template.

```
proc sgrender data=sashelp.gridded template=surface;
run;
```

Example 2: Defining Dynamic Variables

Features:
- DYNAMIC Statement
- Sample library member: SGREND1
- Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example uses dynamic variables to set values within the StatGraph template. By using dynamic variables to set the variable names, variable labels, and other parameters, the StatGraph template can be used with different data sets. The first PROC SGRENDER statement generates a graph for the SASHHELP.HEART data set. The second PROC SGRENDER statement generates multiple graph for the CARS data set by using BY grouping.
Output with Heart Data

![Framingham Heart Study](image)

Program Template and Heart Data

```proc template;
 define statgraph distribution;
 dynamic VAR VARLABEL TITLE NORMAL _BYLINE_;
 begingroup;
 entrytitle TITLE;
 entrytitle _BYLINE_;
 layout lattice / columns=1 rows=2 rowgutter=2px
 rowweights=(.9 .1) columndatarange=union;
 columnaxes;
 columnaxis / label=VARLABEL;
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.035);
 layout gridded / columns=2 border=true autoalign=(topleft
topright);
 entry halign=left "Nobs";
 entry halign=left eval(strip(put(n(VAR),8.)));
 entry halign=left "Mean";
 entry halign=left eval(strip(put(mean(VAR),8.2)));
 entry halign=left "StdDev";
 entry halign=left eval(strip(put(stddev(VAR),8.3)));
 endlayout;
 histogram VAR / scale=percent;
 if (exists(NORMAL))
 densityplot VAR / normal();
 endif;
 fringeplot VAR / datatransparency=.7;
 endlayout;
 boxplot y=VAR / orient=horizontal;
```
Program Description

Create the Statgraph template.

proc template;
define statgraph distribution;
dynamic VAR VARLABEL TITLE NORMAL _BYLINE_;
begingraph;
entrytitle TITLE;
entrytitle _BYLINE_;
layout lattice / columns=1 rows=2 rowgutter=2px rowweights=(.9 .1) columndatarange=union;
columnaxes;
columnaxis / label=VARLABEL;
endcolumnaxes;
layout overlay / yaxisopts=(offsetmin=.035);
layout gridded / columns=2 border=true autoalign=(topleft topright);
entry halign=left "Nobs";
entry halign=left eval(strip(put(n(VAR),8.)));
entry halign=left "Mean";
entry halign=left eval(strip(put(mean(VAR),8.2)));
entry halign=left "StdDev";
entry halign=left eval(strip(put(stddev(VAR),8.3)));
endlayout;
histogram VAR / scale=percent;
if (exists(NORMAL))
densityplot VAR / normal( );
endif;
fringeplot VAR / datatransparency=.7;
endlayout;
boxplot y=VAR / orient=horizontal;
endlayout;
endgraph;
end;
run;

Generate the first graphics output from the template using the SASHELP.HEART data set. The DYNAMIC on page 1555 statement defines dynamic variables in the template.

proc sgrender data=sashelp.heart template=distribution;
dynamic var="cholesterol" varlabel="Cholesterol (LDL)" normal="yes" title="Framingham Heart Study";
run;
Output with Grouped Cars Data

Program for Grouped Cars Data

```sas
proc sort data=sashelp.cars out=cars;
 by origin;
run;

proc sgrender data=cars template=distribution;
 by origin;
 dynamic var="weight" varlabel="Weight in LBS"
 title="Distribution of Vehicle Weight";
run;

```

Program Description

**Sort the SASHHELP.CARS data set.** The data set must be sorted by the same variable that the following PROC SGRENDER block uses in its BY statement.

```
proc sort data=sashelp.cars out=cars;
 by origin;
run;
```

Generate the second graphics output from the template using the WORK.CARS data set. The BY statement generates multiple graphs
for each value of the BY variable. The \texttt{DYNAMIC on page 1555} statement defines dynamic variables in the template.

```plaintext
proc sgrender data=cars template=distribution;
 by origin;
 dynamic var="weight" varlabel="Weight in LBS"
 title="Distribution of Vehicle Weight";
run;

title;
```
Overview: SGSCATTER Procedure

What Does the SGSCATTER Procedure Do?

The SGSCATTER procedure creates a paneled graph of scatter plots for multiple combinations of variables, depending on the plot statement that you use. You can use options to overlay fit plots and ellipses on your scatter plots.

Here are examples of some types of graphs that the SGSCATTER procedure can create.
The following code creates a paneled graph of scatter plots:

```
proc sgscatter data=sashelp.cars;
 plot mpg_highway*weight msrp*horsepower / group=type;
run;
```

The following code creates a paneled graph of scatter plots with shared axes:

```
proc sgscatter data=sashelp.cars;
 compare y=mpg_highway x=(weight horsepower) / group=type;
run;
```

The following code creates a scatter plot matrix with prediction ellipses and a diagonal with histograms and density plots:

```
proc sgscatter data=sashelp.iris
 (where=(species eq "Virginica"));
 matrix petallength petalwidth / ellipse=(type=mean)
 diagonal=(histogram kernel);
run;
```
Note: The graphs that you create with the SGSCATTER procedure can have many individual graph cells. As the number of cells increases, the overall graph size does not automatically increase. To increase the graph size, use the HEIGHT= and WIDTH= options of the ODS GRAPHICS statement.

Concepts: SGSCATTER Procedure

Statements for Creating Panels

About Creating Panels

The SGSCATTER procedure contains three statements that you can use to create a paneled graph of scatter plots:

- PLOT
- COMPARE
- MATRIX

Each of the statements is specialized for creating a different type of paneled graph.

PLOT Statement

The PLOT statement is used to create a paneled graph of scatter plots where each graph cell has its own independent set of axes. Each variable pair that you specify in the PLOT statement creates an independent graph cell. You can also overlay fit plots and ellipses on each cell by using options.

Figure 12.45 shows a graph that contains four independent cells. Each cell contains a scatter plot and a fitted, penalized B-spline curve.
By default, the axis ranges of each cell are independent from the other cells. However, you can use the UNISCALE= option to specify that all of the cells use the same axis ranges for the X axis, the Y axis, or both axes.

See “Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves” on page 1622 for the code that generated this graph.

Note: It is possible to create a single scatter cell with the PLOT statement, but the SGPLOT procedure is better suited to creating a single-celled graph.

**COMPARE Statement**

The COMPARE statement is used to create a shared axis panel, also called an MxN matrix. The list of X and Y variables are crossed to create each cell in the graph. All cells in a row share the same row axis range. All cells in a column share the same column axis range.

When using the COMPARE statement, you can add fit plots and confidence ellipses to each cell in the panel by using options. The COMPARE statement can also be used to do simple X- or Y-axis sharing by specifying only one X or Y variable as shown in Table 12.144 on page 1566.

Figure 12.46 shows a comparative scatter plot with grouped data.
**MATRIX Statement**

The MATRIX statement is used to create a scatter plot matrix. Each of the variables that you specify are graphed against each other to create the graph. You can use the ELLIPSE option to overlay a confidence ellipse on each cell in the panel.

The MATRIX statement also has an option called DIAGONAL= that enables you to display the distribution of your variables in the diagonal cells of the matrix. You can place histograms in the diagonal cells, and overlay those histograms with normal density curves or kernel density estimates as shown in Table 12.144 on page 1566.

*Figure 12.46* shows a scatter plot matrix of four variables with grouped data where the variable names are displayed in the diagonal.
Legends in the SGSCATTER Procedure

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend.

For all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

You can also generate a continuous color legend, which maps the data range of a response variable to a range of colors. For more information, see "Using Gradient Color Legends" on page 1637.

Syntax: SGSCATTER Procedure

Requirement: One COMPARE, MATRIX, or PLOT statement is required.
Supported Statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE
PROC SGSCATTER <options>;

COMPARE X=variable | (variable-1…variable-n)
Y=variable | (variable-1…variable-n) <options>;

MATRIX variable-1 variable-2 < …variable-n > <options>;

PLOT plot-request(s) <options>;

PROC SGSCATTER Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description and write template code to a file.

Requirement: An input data set is required.

Syntax

PROC SGSCATTER <options>;

Summary of Optional Arguments

BACKCOLOR=color
specifies the background color of the graph area.

DATA=input-data-set
specifies the SAS data set that contains the variables to process.

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements, such as CLM bands and filled markers.

DATACONTRASTCOLORS=(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers.

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns for the graph data lines.

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbol for the graph data.

DATATTRMAP=discrete-attribute-map-data-set
specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure.

DESCRIPTION="text-string"
specifies a description for the output image.

NOSUBPIXEL
SUBPIXEL
specifies whether subpixel rendering should be used for rendering curved lines.

OPAQUE
NOOPAQUE
specifies whether the graph background is opaque or transparent.
PAD=dimension<units> | (pad-options)
specifies the amount of extra space that is reserved inside the border of an annotated graph.

RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure.

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use.

TMPLOUT="filename"
specifies a file destination for the template code that is generated by the SGSCATTER procedure.

WALLCOLOR=color
specifies the color of the plot wall area.

Optional Arguments

BACKCOLOR=color
specifies the background color of the graph area.

Note: This feature applies to SAS 9.4M3 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default The Color attribute of the GraphBackground style element

Examples backcolor=CXFF0000

    backcolor=light_blue

DATA=input-data-set
specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements, such as CLM bands and filled markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default The colors that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

Requirements The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Note When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphDataN style elements. When the colors in color-list are exhausted, the colors repeat.

Example datacolors=(CXFF0000 red blue)
DATACONTRASTCOLORS=(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

Requirements The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphData n style elements. When the colors in color-list are exhausted, the colors repeat.

Example datacontrastcolors=(red blue CXFF0000)

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default The line patterns that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

Requirements The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

Note When this option is specified, the line patterns cycle through line-pattern-list rather than the line patterns that are defined in the GraphData1 ... GraphData n style elements. When the patterns in line-pattern-list are exhausted, the patterns repeat.

Example datalinepatterns=(dot solid longdash 26)

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See marker symbols on page 1656.

Default The symbols that are defined in the GraphData1 ... GraphData n style elements in the current style are used.
Requirements

The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction

Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

Note

When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphDataN style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

Example
datasymbols=(circle square triangle star)

DATTRMAP=discrete-attribute-map-data-set

specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Restriction

The procedures do not support attribute maps that reside in CAS in-memory tables. Only standard SAS data sets are supported for attribute map data.

Requirement

The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See

Chapter 18, “Using Discrete Attribute Maps,” on page 1737
“Overview of Attribute Maps” on page 1733

DESCRIPTION="text-string"

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGSCATTER Procedure”.

Alias DES

Notes

You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering curved lines. Subpixel rendering produces smoother curves.

NOSUBPIXEL

never uses subpixel rendering to render curved lines.
SUBPIXEL
always uses subpixel rendering, when applicable, for rendering curved lines.

Defaults When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.
Starting with SAS 9.4M3, subpixel rendering is always enabled for vector-graphics output.

Restriction When this option is in effect, only the line-based plots use subpixel rendering. The affected plots are ELLIPSE, LOESS, REG, and PBSPLINE.

Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Interaction Starting with SAS 9.4M3, if the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1690

OPAQUE | NOOPAQUE
specifies whether the graph background is opaque or transparent.

Note: This feature applies to SAS 9.4M3 and later releases.

Default OPAQUE

Restriction The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

Interaction When NOOPAQUE is specified, the background color is not used.

PAD=dimension<units> | (pad-options)
specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, “Annotating ODS Graphics,” on page 1767.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit
is pixels. For a list of measurement units that are supported, see "Units of Measurement" on page 1659.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

*pad-options* can be one or more of the following:

- **LEFT=** `dimension<units>`
  - specifies the amount of extra space to add to the left edge.

- **RIGHT=** `dimension<units>`
  - specifies the amount of extra space to add to the right edge.

- **TOP=** `dimension<units>`
  - specifies the amount of extra space to add to the top edge.

- **BOTTOM=** `dimension<units>`
  - specifies the amount of extra space to add to the bottom edge.

**RATTRMAP=range-attribute-map-data-set**

specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Restriction**

The procedures do not support attribute maps that reside in CAS in-memory tables. Only standard SAS data sets are supported for attribute map data.

**Requirement**

The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

**See**

Chapter 19, "Using Range Attribute Maps," on page 1755

"Overview of Attribute Maps" on page 1733

**SGANNO=annotation-data-set**

specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 20, "Annotating ODS Graphics," on page 1767.

**Note:**

The procedures do not support annotation data that resides in a CAS in-memory table. Only standard SAS data sets are supported for annotation data.

**TMPLOUT="filename"**

specifies a file destination for the template code that is generated by the SGSCATTER procedure.

**WALLCOLOR=color**

specifies the color of the plot wall area.

**Note:** This feature applies to SAS 9.4M3 and later releases.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

**Default**

The Color attribute of the GraphWalls style element

**Examples**

```
wallcolor=CXFF0000
```
COMPARE Statement

Creates a comparative panel of scatter plots with shared axes.

Examples:

“Example 3: Creating a Simple Comparative Panel” on page 1624
“Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses” on page 1625

Syntax

COMPARE X=variable | (variable-1…variable-n)
Y=variable | (variable-1…variable-n) <options>;

Summary of Optional Arguments

Appearance options

ATTRID=variable
specifies the value of the ID variable in an attribute map data set.

GRID
creates grid lines for each tick on both axes.

GRIDATTRS=style-element <options> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on both axes.

MINORGRIDATTRS=style-element <options> | (options)
specifies the appearance of the minor grid lines.

NOWALL
turns off the display of the graph wall’s fill and outline.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

SPACING =n
specifies the amount of spacing (in pixels) that is placed between the cells in the graph.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components.

Axis options

REFTICKS <(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of the graph.

Data tip options
TIP=(variable-list)
  displays data tips using the data obtained from the specified variables.

TIPFORMAT=(format-list)
  applies formats to the list of data tip variables that you specify in the TIP=
  option.

TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP=
  option.

**Group options**

GROUP= variable
  specifies a classification variable to divide the values into groups.

**Label options**

DATALABEL <=variable>
  displays a label for each data point.

DATALABELPOS=position
  specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
  splits the text for data labels at the specified character(s) when there is
  not enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

**Legend options**

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE=
  option.

COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a continuous
  color legend.

GRADLEGEND=(options)
  specifies the appearance of a continuous color legend when the
  COLORRESPONSE= option is used.

LEGEND=(options)
  specifies the appearance of the legend for the scatter plot.

NOGRADLEGEND
  turns off the display of the continuous color legend that appears when the
  COLORRESPONSE= option is used.

NOLEGEND
  removes the legend from the plot.

**Marker options**

FILLEDOUTLINEDMARKERS
  specifies that markers have a fill and an outline.

JITTER
  specifies that data markers are offset when multiple observations have
  the same response value.

MARKERATTRS=style-element<(options)> | (options)
  specifies the appearance of the markers in the plot.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)  
specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element <(options)> | (options)  
specifies the appearance of the marker outlines.

Plot options

ELLIPSE <(options)>
adds a confidence or prediction ellipse to the scatter plot.

JOIN <(options)>
specifies that line segments join all of the scatter points.

LOESS <(options)>
Adds a loess fit to the scatter plot.

PBSPLINE <(options)>
adds a fitted, penalized B-spline curve to the scatter plot.

REG <(options)>
adds a regression fit to the scatter plot.

Required Arguments

X=variable | (variable-1) ... (variable-n)  
specifies one or more variables for the X axis. To specify more than one variable, 
enclose the list of variables in parentheses.

Y=variable | (variable-1) ... (variable-n)  
specifies the one or more variables for the Y axis. To specify more than one 
variable, enclose the list of variables in parentheses.

Optional Arguments

ATTRID=variable  
specifies the value of the ID variable in an attribute map data set. You specify 
this option only if you are using an attribute map to control visual attributes of the 
graph. For more information, see Chapter 18, “Using Discrete Attribute Maps,” 
on page 1737.

COLORMODEL=style-element | (color-list)  
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element  
specifies the name of a style element. The style element should contain 
these style attributes:

STARTCOLOR  
specifies the color for the smallest data value of the 
COLORRESPONSE= column.

NEUTRALCOLOR  
specifies the color for the midpoint of the range of 
the COLORRESPONSE= column. This attribute is 
not required when you specify a two-color ramp 
model.

ENDCOLOR  
specifies the color for the highest data value of the 
COLORRESPONSE= column.

Example  colormodel=TwoColorRamp
**COLORMODEL=** *(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Requirement**  The list of colors must be enclosed in parentheses.

**Example**  
```
colormodel=(blue yellow green)
```

**Default**  The ThreeColorAltRamp style element

**Interaction**  For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=** *numeric-column*

specifies the numeric column that is used to map colors to a continuous color legend.

**Restriction**  When GROUP= and COLORRESPONSE= are specified, only a continuous legend is rendered in the graph.

**Interaction**  The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

**Notes**  This option is ignored when the JOIN option is also specified.

When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

**Tip**  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**  “Using Gradient Color Legends” on page 1637

**DATALABEL** *<=variable>*

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, the value of the Y variable is used for the data label.

**DATALABELPOS=** *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>
Interactions  This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

This option does not support the splitting or rotation of data labels.

**ELLIPSE <=(options)>**

adds a confidence or prediction ellipse to the scatter plot. options can be one or more of the following:

**ALPHA=numeric-value**
specifies the confidence level for the ellipse.

Default  0.05 (95% confidence)
Range  0.01 (complete confidence) to 0.99 (no confidence)

**CLIP**
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default  The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

**TYPE=MEAN | PREDICTED**
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

Default  PREDICTED

**Restriction**  To use this option, all of the X and Y variables must be numeric.

**Interaction**  The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

**Tip**  If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in theCOMPARE statement to make the markers more transparent.

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**Requirement**  The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interaction**  Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**GRADLEGEND=**(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

*options* can be one or more of the following:

**BORDER**
adds a border around the legend.

**INTEGER**
specifies that integers are used for the gradient legend.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

**NOTITLE**
removes the default title. The default title is the name of the response variable.

**POSITION=**TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT

**TITLE=**"text-string"
specifies the label for the legend.

Default If you do not specify this option, the name of the response variable is displayed as the title.

Interaction This option has no effect unless the COLORRESPONSE= option is also specified.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**GRID**
creates grid lines for each tick on both axes.

**GRIDATRNS=**style-element <(options)> | (options)
specifies the appearance of the grid lines.

---

**Note:** This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.
**Interaction**  
This option has no effect unless GRID is also specified.

**Examples**  
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:  
GRIDATTRS=GraphAxisLines

**GROUP= variable**  
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

**Restriction**  
When GROUP= and COLORRESPONSE= are specified, only a continuous legend is rendered in the graph.

**Note**  
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

**JITTER**  
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default" /></td>
<td><img src="image2" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

Default  
Markers that represent the same response value are overlaid, which results in some markers being obscured.

**Notes**  
This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**JOIN <(options)>**  
specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.
You can specify the following options:

**LINEATTRS=** `<style-element <(options)> | (options)>`

specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

**SMOOTHCONNECT**

specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using **SMOOTHCONNECT**.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default Series" /></td>
<td><img src="image2" alt="SMOOTHCONNECT Specified" /></td>
</tr>
</tbody>
</table>

**LEGEND=**( `options` )

specifies the appearance of the legend for the scatter plot. *options* can be one or more of the following:

**ACROSS=** *n*

specifies the number of columns in the legend.

**ATTRMAP**

specifies that the items defined in an attribute map data set are shown in the legend regardless of whether they are used in this graph.

**Requirement**

You must also specify the **ATTRID=** on page 1595 option in the **COMPARE** statement. Otherwise, this option is ignored.

**Tips**

You can use this option to create a standard legend for multiple graphs.

To show all of the items defined in a discrete attribute map data set in any graph that uses it, specify **SHOW=“ATTRMAP”** in the attribute map data set. See “Reserved Discrete Attribute Map Variables” on page 1741.

**AUTOITEMSIZE**

specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.
The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

**Figure 12.4  Default Marker Size**

Iris Species  • Setosa  • Versicolor  • Virginica

**Figure 12.5  AUTOITEMSIZE Used in the Statement**

Iris Species  • Setosa  • Versicolor  • Virginica

**DOWN=n**
specifies the number of rows in the legend.

**Interaction**  If you specify both the ACROSS= and DOWN= suboptions, then the DOWN= suboption has no effect.

**NOBORDER**
removes the border from the legend.

**NOTITLE**
removes the label from the legend.

**POSITION=position-value**
specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
  places the legend at the bottom of the graph.

- **LEFT**
  places the legend at the left side of the graph.

- **RIGHT**
  places the legend at the right side of the graph.

- **TOP**
  places the legend at the top of the graph.

**Default**  BOTTOM

**Note**  If you specify more than one legend with the same position, then all of your legends are placed at that position.

**SORTORDER=ASCENDING | DESCENDING**
specifies the sort order to use for the legend entry labels.

**Note**:  This feature applies to SAS 9.4M2 and later releases.

**TITLE="text-sting"**
specifies the label for the legend. By default, the label of the group variable is used.

**LOESS <=(options)>**
Adds a loess fit to the scatter plot. You can specify the following options:

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.
Default 0.05 (95% confidence)  
Range 0.01 (complete confidence) to 0.99 (no confidence)  
Interaction This option has no effect if you do not specify the CLM option.

**CLM**

creates confidence limits for a mean predicted value for each observation.

**DEGREE=1 | 2**

specifies the degree of the local polynomials to use for each local regression. 
1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1

**INTERPOLATION=CUBIC | LINEAR**

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default CUBIC

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NOGROUP**

specifies that the fit does not use the group variable from the scatter plot.

**SMOOTH=numeric-value**

specifies a smoothing parameter value.

Default A smoothing value is determined automatically.

Range (0,1]

See What is loess regression? on blogs.sas.com.

The LOESS Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the LOESS option uses.

**MARKERATTRS=style-element <(options)> | (options)**

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.
**MARKERFILLATTRS=**

Default For ungrouped data, the GraphDataDefault style element contrastColor, markerSymbol, and markerSize attributes. For grouped data, the GraphDataDefault markerSize attribute, and the GraphData1-GraphData_

interaction: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MARKEROUTLINEATTRS=**

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are ContrastColor and LineThickness

interaction: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

**MINORGRID**

creates grid lines at each minor tick on both axes.

---

Note: This feature applies to SAS 9.4M2 and later releases.
Interactions

**MINORGRIDATTRS=style-element <(options)> | (options)**
specifies the appearance of the minor grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default

GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\text{n} style elements in the current style for grouped data.

Interaction

This option has no effect unless MINORGRID is also specified.

Tip

You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples

MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

MINORGRIDATTRS=GraphAxisLines

**NOGRADLEGEND**

turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

**NOLEGEND**

removes the legend from the plot.

**NOWALL**

turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

**PBSPLINE <=(options)>**

adds a fitted, penalized B-spline curve to the scatter plot. options can be one or more of the following:

**ALPHA=numeric-value**

specifies the confidence level for the confidence limits.

Default 0.05 (95% confidence)

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect if you do not specify either the CLI option or the CLM option.
CLI
creates confidence limits for individual predicted values for each observation.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=$n$
specifies the degree of the spline transformation.

Default 3

LINEATTRS=\textit{style-element <\textit{options}> | (\textit{options})}
specifies the appearance of the curve line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData$\textit{n}$ style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NKNOTS=$n$
specifies the number of evenly spaced internal knots.

Default 100

NOGROUP
specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=$\textit{numeric-value}$
specifies a smoothing parameter value.

Default A smoothing value that minimizes a lack-of-smoothness penalty is determined automatically.

Range $[0,1]$

Tip Specify SMOOTH=0 for an ordinary B-spline fit.

See The TRANSREG Procedure in SAS/STAT User's Guide for information about the fitting methodology that the PBSPLINE option uses.

Restriction To use this option, all of the X and Y variables must be numeric.

RATTRID=$\textit{character-value}$
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
“Overview of Attribute Maps” on page 1733

**REFTICKS <=(options)>**
duplicates the tick marks from the X and Y axes on the opposite sides of the graph. You can also specify options:

- **LABEL**
  in addition to the tick marks, displays the axis label.

- **VALUES**
  in addition to the tick marks, displays the values that are represented by the tick marks.

**REG <=(options)>**
adds a regression fit to the scatter plot. *options* can be one or more of the following:

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.
  - Default: 0.05 (95% confidence)
  - Range: 0.01 (complete confidence) to 0.99 (no confidence)

- **CLI**
  creates confidence limits for individual predicted values for each observation.

- **CLM**
  creates confidence limits for a mean predicted value for each observation.

- **DEGREE=n**
  specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.
  - Default: 1

- **LINEATTRS=style-element <=(options)> | (options)**
  specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
  - Default: GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData* n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

- **NOGROUP**
  specifies that the fit does not use the group variable from the scatter plot.
  - Restriction: To use this option, all of the X and Y variables must be numeric.

- **SPACING =n**
  specifies the amount of spacing (in pixels) that is placed between the cells in the graph.
SPLITCHAR="character-list"

 splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643
**TIP=(variable-list)**

Displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Note**

The option affects only the scatter plot in this statement.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```
tip=(age weight)
```

**TIPFORMAT=(format-list)**

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL option to assign labels to the list of variables.

**See**

[SAS Formats and Informats: Reference](#)

**Example**

```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted "text strings" enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.
Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

**TRANSAPRENCY=numeric-value**
specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

Restriction
This option does not apply to LOESS, PBSPLINE, and REG plots in the scatter plot matrix.

---

**MATRIX Statement**

Creates a scatter plot matrix.

Example: "Example 1: Creating a Scatter Plot Matrix" on page 1621

**Syntax**

```
MATRIX numeric-variable-1 numeric-variable-2 < ... numeric-variable-n> <options>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=variable**
  specifies the value of the ID variable in an attribute map data set.

- **RATTRID=character-value**
  specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=numeric-value**
  specifies the degree of transparency for the plot components.

**Data tip options**

- **TIP=(variable-list)**
  displays data tips using the data obtained from the specified variables.

- **TIPFORMAT=(format-list)**
  applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
    applies labels to the list of data tip variables that you specify in the TIP=
    option.

Group options
GROUP=variable
    specifies a classification variable to divide the values into groups.

Label options
DATALABEL=variable
    specifies a variable that is used to create data labels for each point in the
    plot.
DATALABELPOS=position
    specifies the location of the data label with respect to the plot.
SPLITCHAR="character-list"
    splits the text for data labels at the specified character(s) when there is
    not enough room to display the text normally.
SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Legend options
COLORMODEL=style-element | (color-list)
    specifies a color ramp that is to be used with the COLORRESPONSE=
    option.
COLORRESPONSE=numeric-column
    specifies the numeric column that is used to map colors to a continuous
    color legend.
GRADLEGEND=(options)
    specifies the appearance of a continuous color legend when the
    COLORRESPONSE= option is used.
LEGEND=(options)
    specifies the appearance of the legend for the scatter plot.
NOGRADLEGEND
    turns off the display of the continuous color legend that appears when the
    COLORRESPONSE= option is used.
NOLEGEND
    removes the legend from the graph.

Marker options
MARKERATTRS=style-element<(options)> | (options)
    specifies the appearance of the markers in the plot.

Plot options
DIAGONAL=(graph-list)
    adds graphs to the diagonal cells of the plot matrix.
ELLIPSE <=(options)>
    Adds a confidence or prediction ellipse to each cell that contains a scatter
    plot.
START=BOTTOMLEFT | TOLEFT
specifies whether the diagonal starts in the top left corner or the bottom left corner.

Required Argument

\texttt{numeric-variable-1 numeric-variable-2 < ... numeric-variable-n>}

specifies two or more numeric variables for the matrix.

Optional Arguments

**ATTRID=variable**

specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\textit{style-element}

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**
  specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**
  specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**
  specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

colormodel=TwoColorRamp

\textit{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**
colormodel=(blue yellow green)

**Default**
The ThreeColorAltRamp style element

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a continuous color legend.
DATALABEL=variable
specifies a variable that is used to create data labels for each point in the plot.

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

**Interactions**
This option has no effect unless you also specify the DATALABEL= option.

This option displays group values for each category when GROUP= is also specified.

DIAGONAL=(graph-list)
adds graphs to the diagonal cells of the plot matrix. If you do not specify the DIAGONAL option, the diagonal cells contain the variable names.

**graph-list** can be one or more of the following:

- **HISTOGRAM**
  specifies a histogram.

- **KERNEL**
  specifies a kernel density estimate.

- **NORMAL**
  specifies a normal density curve.

ELLIPSE <=(options)>
Adds a confidence or prediction ellipse to each cell that contains a scatter plot.

**options** can be one or more of the following:

- **ALPHA=numeric-value**
  specifies the confidence level for the ellipse.
  *Default* 0.05 (95% confidence)
  *Range* 0.01 (complete confidence) to 0.99 (no confidence)

- **CLIP**
  specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

  Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

  *Default* The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.
TYPE=MEAN | PREDICTED

specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

Default PREDICTED

Interaction The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

Tip If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the MATRIX statement to make the markers more transparent.

GRADLEGEND=(options)

specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

options can be one or more of the following:

BORDER
add a border around the legend.

INTEGER
specifies that integers are used for the gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

NOTITLE
removes the default title. The default title is the name of the response variable.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT

TITLE="text-string"
specifies the label for the legend.

Default If you do not specify this option, the name of the response variable is displayed as the title.

Interaction This option has no effect unless the COLORRESPONSE= option is also specified.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

GROUP=variable
specifies a classification variable to divide the values into groups.

Interaction If the COLORRESPONSE= option is also specified, then the GROUP= option is ignored.
LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

options can be one or more of the following:

ACROSS=n
specifies the number of columns in the legend.

ATTRMAP
specifies that the items defined in an attribute map data set are shown in the
legend regardless of whether they are used in this graph.

Requirement You must also specify the ATTRID= on page 1605 option in
the MATRIX statement. Otherwise, this option is ignored.

Tips You can use this option to create a standard legend for
multiple graphs.

To show all of the items defined in a discrete attribute map
data set in any graph that uses it, specify SHOW="ATTRMAP"
in the attribute map data set. See “Reserved Discrete Attribute
Map Variables” on page 1741.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size
used for the legend labels.

The following figures show a legend with fairly large labels. In the first figure,
the markers are small compared to the labels. The second figure uses
AUTOITEMSIZE to size the markers in proportion to the labels.

Figure 12.6 Default Marker Size

Iris Species  ○ Setosa  ○ Versicolor  ○ Virginica

Figure 12.7 AUTOITEMSIZE Used in the Statement

Iris Species  ○ Setosa  ○ Versicolor  ○ Virginica

DOWN=n
specifies the number of rows in the legend.

Interaction If you specify both the ACROSS= and DOWN= suboptions, then
the DOWN= suboption has no effect.

NOBORDER
removes the border from the legend.

NOTITLE
removes the label from the legend.

POSITION=position-value
specifies the position of the legend within the graph. The values are as
follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.
RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default  BOTTOM

Note  If you specify more than one legend with the same position, then all of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

Note: This feature applies to SAS 9.4M2 and later releases.

TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is used.

MARKERATTRS=style-element<options>|options
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see "Marker Attributes and Symbols" on page 1656.

Default  For ungrouped data, the GraphDataDefault style element contrastColor, markerSymbol, and markerSize attributes. For grouped data, the GraphDataDefault markerSize attribute, and the GraphData1-GraphData n style element markerSymbol and contrastColor attributes.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND
removes the legend from the graph.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See  Chapter 19, "Using Range Attribute Maps," on page 1755
"Overview of Attribute Maps" on page 1733

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.
"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

START=BOTTOMLEFT | TOPLEFT specifies whether the diagonal starts in the top left corner or the bottom left corner.

Default TOPLEFT
**TIP=(variable-list)**

Displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Note**
The option affects only the scatter plot in this statement.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
```
tip=(age weight)
```

**TIPFORMAT=(format-list)**

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL option to assign labels to the list of variables.

**See**
[SAS Formats and Informats: Reference](#)

**Example**
```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted "text strings" enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=**numeric-value specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Restriction This option does not apply to ELLIPSE plots in the scatter plot matrix.

---

**PLOT Statement**

Creates a paneled graph that contains multiple independent scatter plots.

Example: "Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves" on page 1622

---

**Syntax**

```
PLOT plot-request(s) </options> ;
```

---

**Summary of Optional Arguments**

**Appearance options**

- **ASPECT=**positive-number
  - specifies the aspect ratio of the plot's wall area.

- **ATTRID=**variable
  - specifies the value of the ID variable in an attribute map data set.

- **COLUMNS=**n
  - specifies the number of columns in the graph.

- **GRID**
  - creates grid lines for each tick on both axes.

- **GRIDATTRS=**style-element <(options)> | (options)
  - specifies the appearance of the grid lines.

- **MINORGRID**
  - creates grid lines at each minor tick on both axes.

- **MINORGRIDATTRS=**style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

**NOBORDER**
removes the border from each plot in the panel.

**NOWALL**
turns off the display of the graph wall’s fill and outline.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set.

**ROWS=n**
specifies the number of rows in the graph.

**SPACING =n**
specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.

**TRANSPARENCY=numeric-value**
specifies the degree of transparency for the plot components.

**Axis options**

**AXISEXTENT=FULL | DATA**
specifies the extent of the axis line for the axes.

**REFTICKS <(options)>**
duplicates the tick marks from the X and Y axes on the opposite sides of each cell.

**UNISCALE=X | Y | ALL**
specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph.

**Data tip options**

**TIP=(variable-list)**
displays data tips using the data obtained from the specified variables.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**GROUP=variable**
specifies a classification variable to divide the values into groups.

**Label options**

**DATALABEL <=variable>**
displays a label for each data point.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**SPLITCHAR="character-list"**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.
Legend options

- **COLORMODEL=** *style-element | (color-list)*  
  Specifies a color ramp that is to be used with the **COLORRESPONSE=** option.

- **COLORRESPONSE=** *numeric-column*  
  Specifies the numeric column that is used to map colors to a continuous color legend.

- **GRADLEGEND=**(options)  
  Specifies the appearance of a continuous color legend when the **COLORRESPONSE=** option is used.

- **LEGEND=**(options)  
  Specifies the appearance of the legend for the scatter plot.

- **NOGRADLEGEND**  
  Turns off the display of the continuous color legend that appears when the **COLORRESPONSE=** option is used.

- **NOLEGEND**  
  Removes the legend from the graph.

Marker options

- **FILLEDOUTLINEDMARKERS**  
  Specifies that markers have a fill and an outline.

- **JITTER**  
  Specifies that data markers are offset when multiple observations have the same response value.

- **MARKERATTRS=** *style-element<(options)> | (options)*  
  Specifies the appearance of the markers in the plot.

- **MARKERFILLATTRS=** *style-element <(COLOR=color)> | (COLOR=color)*  
  Specifies the color of the marker fill.

- **MARKEROUTLINEATTRS=** *style-element <(options)> | (options)*  
  Specifies the appearance of the marker outlines.

Plot options

- **ELLIPSE <=(options)>**  
  Adds a confidence or prediction ellipse to the scatter plot.

- **JOIN <=(options)>**  
  Specifies that line segments join all of the scatter points.

- **LOESS <=(options)>**  
  Adds a loess fit to the scatter plot.

- **PBSPLINE <=(options)>**  
  Adds a fitted, penalized B-spline curve to the scatter plot.

- **REG <=(options)>**  
  Adds a regression fit to the scatter plot.

Required Argument

- **plot-request-1 < ... plot-request-n>**  
  Specifies one or more plot requests. Each plot request specifies the variables to plot and produces a separate cell. All variables must be in the input data set. Multiple plot requests are separated with blanks. You can plot character or numeric variables. A plot request can be either of these:
$y$-variable*$x$-variable
plots the values of two variables.

$y$-variable
variable plotted on the left vertical axis.

$x$-variable
variable plotted on the horizontal axis.

$(y$-variable(s))$*(x$-variable(s))$
plots the values of two or more variables and produces a separate cell for each combination of $Y$ and $X$ variables. That is, each $Y\times X$ pair is plotted on a separate set of axes.

$y$-variable(s)
variables plotted on the left vertical axes.

$x$-variable(s)
variables plotted on the horizontal axes.

If you use only one $y$-variable or only one $x$-variable, omit the parentheses for that variable, for example,

plot (temp rain)*month;

This plot request produces two cells, one for TEMP and MONTH and one for RAIN and MONTH.

Optional Arguments

**ASPECT=**positive-number
specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall-height divided by wall-width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default The wall area is sized to the maximum area that can fill the available space.

**ATTRID=**variable
specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 18, “Using Discrete Attribute Maps,” on page 1737.

**AXISEXTENT=**FULL | DATA
specifies the extent of the axis line for the axes.

---

**Note:** This feature applies to SAS 9.4M3 and later releases.

This option turns off the wall border so that the axis lines can be clearly seen.

FULL
the axis lines extend along the entire length of the axis.

DATA
the axis lines extend through the data range from the minimum data point to the maximum data point.
The following figure shows a simple example of each value for the X- and Y-axis lines.

Default: **FULL**

**COLORMODEL=** `<style-element> | (color-list)`
specifies a color ramp that is to be used with the `COLORRESPONSE=` option.

* `<style-element>` specifies the name of a style element. The style element should contain these style attributes:
  - **STARTCOLOR** specifies the color for the smallest data value of the `COLORRESPONSE=` column.
  - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the `COLORRESPONSE=` column. This attribute is not required when you specify a two-color ramp model.
  - **ENDCOLOR** specifies the color for the highest data value of the `COLORRESPONSE=` column.

* Example: `colormodel=TwoColorRamp`

* `(color-list)` specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

* Requirement: The list of colors must be enclosed in parentheses.

* Example: `colormodel=(blue yellow green)`

**Default** The ThreeColorAltRamp style element

**Interaction** For this option to take effect, the `COLORRESPONSE=` option must also be specified.

**COLORRESPONSE=** `<numeric-column>`
specifies the numeric column that is used to map colors to a continuous color legend.
Restriction When GROUP= and COLORRESPONSE= are specified, only a continuous legend is rendered in the graph.

Interaction The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

Notes This option is ignored when the JOIN option is also specified.

When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See "Using Gradient Color Legends" on page 1637

**COLUMNS=n**
specifies the number of columns in the graph.

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, the value of the Y variable is used for the data label.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

Interactions This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

This option does not support the splitting or rotation of data labels.

**ELLIPSE <=(options)>**
adds a confidence or prediction ellipse to the scatter plot. options can be one or more of the following:

**ALPHA=n**
specifies the confidence level for the ellipse.

Default 0.05 (95% confidence)

Range 0.01 (complete confidence) to 0.99 (no confidence)
CLIP specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

TYPE=MEAN | PREDICTED specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

Default PREDICTED

Restriction To use this option, all of the X and Y variables must be numeric.

Interaction The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

Tip If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the PLOT statement to make the markers more transparent.

FILLEDOUTLINEDMARKERS specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1645.

GRADLEGEND=(options) specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

options can be one or more of the following:

BORDER adds a border around the legend.

INTEGER specifies that integers are used for the gradient legend.

Note: This feature applies to SAS 9.4M3 and later releases.

NOTITLE removes the default title. The default title is the name of the response variable.
POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.
Default  RIGHT

TITLE="text-string"
specifies the label for the legend.
Default  If you do not specify this option, the name of the response variable is displayed as the title.
Interaction This option has no effect unless the COLORRESPONSE= option is also specified.
Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

GRID
creates grid lines for each tick on both axes.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note:  This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\text{\textit{n}} style elements in the current style for grouped data.
Interaction  This option has no effect unless GRID is also specified.
Examples  GRIDATTRS=(color=green pattern=longdash thickness=2)

GROUP=variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

Restriction  When GROUP= and COLORRESPONSE= are specified, only a continuous legend is rendered in the graph.

Note  When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the
same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Image" /></td>
<td><img src="image2.png" alt="JITTER Specified Image" /></td>
</tr>
</tbody>
</table>

Default  
Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes  
This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**JOIN <=(options)>**  
specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.

You can specify the following options:

**LINEATTRS=style-element <=(options)> | (options)**  
specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default  
GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**SMOOTHCONNECT**  
specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using SMOOTHCONNECT.
LEGEND=(options)
specifies the appearance of the legend for the scatter plot. options can be one or more of the following:

ACROSS=n
specifies the number of columns in the legend.

ATTRMAP
specifies that the items defined in an attribute map data set are shown in the legend regardless of whether they are used in this graph.

Requirement You must also specify the ATTRID= option in the PLOT statement. Otherwise, this option is ignored.

Tips You can use this option to create a standard legend for multiple graphs.

To show all of the items defined in a discrete attribute map data set in any graph that uses it, specify SHOW="ATTRMAP" in the attribute map data set. See “Reserved Discrete Attribute Map Variables” on page 1741.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

Figure 12.8 Default Marker Size

| Iris Species | Setosa | Versicolor | Virginica |

Figure 12.9 AUTOITEMSIZE Used in the Statement

| Iris Species | Setosa | Versicolor | Virginica |

DOWN=n
specifies the number of rows in the legend.

Interaction This suboption has no effect if you also specify the ACROSS= suboption.
LOCATION=CELL | OUTSIDE
specifies whether the legend is placed inside an empty cell (CELL) in the plot area or outside of the plot area (OUTSIDE). The LOCATION=CELL suboption should be specified only when the graph contains an empty cell.

Note If you specify LOCATION=CELL, then auto-wrapping of the legend might produce unexpected results. In that case, use the ACROSS= or DOWN= suboption to specify the number of columns or rows.

NOBORDER
removes the border from the legend.

NOTITLE
removes the label from the legend.

POSITION=position-value
specifies the position of the legend within the graph. The positions are as follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default BOTTOM

Interaction This suboption has no effect if you also specify LOCATION=CELL.

Note If you specify more than one legend with the same position, then all of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

Note: This feature applies to SAS 9.4M2 and later releases.

TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is used.

LOESS <=(options)>
adds a loess fit to the scatter plot. You can specify the following options:

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default 0.05 (95% confidence)

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect if you do not specify the CLM option.
CLM
  creates confidence limits for a mean predicted value for each observation.

DEGREE=1 | 2
  specifies the degree of the local polynomials to use for each local regression.
  1 specifies a linear fit and 2 specifies a quadratic fit.
  Default 1

INTERPOLATION=CUBIC | LINEAR
  specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.
  Default CUBIC

LINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
  For a description of the line options, see “Line Attributes and Patterns” on page 1651.
  Defaults GraphFit style element in the current style. The effective attributes are ContrastColor, LineStyle, and LineThickness.

SMOOTH=numeric-value
  specifies a smoothing parameter value.
  Default A smoothing value is determined automatically.
  Range (0,1]
  Restriction To use this option, all of the X and Y variables must be numeric.
  See What is loess regression? on blogs.sas.com.
  The LOESS Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the LOESS option uses.

MARKERATTRS=style-element<(options)> | (options)
  specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
  For a description of marker attributes, see “Marker Attributes and Symbols” on page 1656.
  Default For ungrouped data, the GraphDataDefault style element contrastColor, markerSymbol, and markerSize attributes. For grouped data, the
GraphDataDefault markerSize attribute, and the GraphData1-
GraphData style element markerSymbol and contrastColor attributes.

**MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)**
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1660.

**Default**  ContrastColor attribute of the GraphDataDefault style element in
the current style for ungrouped data. GraphData1 ... GraphData
style elements in the current style for grouped data.

**Interactions**  This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

This option overrides any color that is specified with the
MARKERATTRS= option.

**Tip**  You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.

**See**  For usage information and an example, see “Marker Fills and
Outlines” on page 1645.

**MARKEROUTLINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the marker outlines. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1651.

**Default**  GraphDataDefault style element in the current style for ungrouped
data. GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are ContrastColor and
LineThickness

**Interaction**  This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

**Tip**  You can also use the MARKERFILLATTRS= option to specify
attributes for the fill.

**See**  For usage information and an example, see “Marker Fills and
Outlines” on page 1645.

**MINORGRID**  
creates grid lines at each minor tick on both axes.

**Note:**  This feature applies to SAS 9.4M2 and later releases.

**Interaction**  This option has no effect unless GRID is also specified for the axis.
MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Note: This feature applies to SAS 9.4M2 and later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see "Line Attributes and Patterns" on page 1651.

Default
- GraphMinorGridLines style element in the current style for ungrouped data.
- GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction
- This option has no effect unless MINORGRID is also specified.

Tip
- You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples
- MINORGRIDATTRS=(color=green pattern=longdash thickness=2)
  Here is an example that specifies a style element:
  MINORGRIDATTRS=GraphAxisLines

NOBORDER
removes the border from each plot in the panel.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND
removes the legend from the graph.

NOWALL
turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

PBSPLINE <=(options)>
adds a fitted, penalized B-spline curve to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default
- 0.05 (95% confidence)

Range
- 0.01 (complete confidence) to 0.99 (no confidence)

Interaction
- This option has no effect if you do not specify either the CLI option or the CLM option.
CLI
creates confidence limits for individual predicted values for each observation.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=n
specifies the degree of the spline transformation.
Default 3

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the curve line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1651.

Default GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NKNOTS=n
specifies the number of evenly spaced internal knots.
Default 100

NOGROUP
specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value.
Default A smoothing value that minimizes a lack-of-smoothness penalty is determined automatically.
Range [0,1]
Tip Specify SMOOTH=0 for an ordinary B-spline fit.
See The TRANSREG Procedure in SAS/STAT User’s Guide for information about the fitting methodology that the PBSPLINE option uses.
Restriction To use this option, all of the X and Y variables must be numeric.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to SAS 9.4M3 and later releases.

See Chapter 19, “Using Range Attribute Maps,” on page 1755
REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of each
cell. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the
tick marks.

REG <=(options)>
adds a regression fit to the scatter plot. options can be one or more of the
following:

ALPHA=numeric-value
specifies the confidence level for the confidence limits.
Default 0.05 (95% confidence)
Range 0.01 (complete confidence) to 0.99 (no confidence)
Interaction This option has no effect if you do not specify either the CLI
option or the CLM option.

CLI
creates confidence limits for individual predicted values for each observation.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=n
specifies the degree of the polynomial fit. For example, 1 specifies a linear fit,
2 specifies a quadratic fit, and 3 specifies a cubic fit.
Default 1

LINEATTRS=style-element <=(options)>) | (options)
specifies the appearance of the fit line. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance
attributes.

For a description of the line options, see "Line Attributes and Patterns" on
page 1651.

Default GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for
grouped data. The effective attributes are: ContrastColor, LineStyle,
and LineThickness.

NOGROUP
specifies that the fit does not use the group variable from the scatter plot.

Restriction To use this option, all of the X and Y variables must be numeric.

ROWS=n
specifies the number of rows in the graph.
This option has no effect if you specify the COLUMNS= option.

**SPACING =** \( n \)

specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.

**Default** 10

**SPLITCHAR=** "character-list"

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[ \text{SPLITCHAR=}"abc" \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Interactions** This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction** This option has no effect unless SPLITCHAR= is also specified.

**See** “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**Default** LEFT
Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” on page 1643

TIP=(variable-list)
displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

Requirement  You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction  This option replaces all of the information that is displayed by default.

Note  The option affects only the scatter plot in this statement.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPLABEL option to assign labels to the list of variables.

See  SAS Formats and Informats: Reference

Example  tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=** `numeric-value` specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

Restriction: This option does not apply to LOESS, PBSPLINE, and REG plots in the scatter plot matrix.

**UNISCALE=X | Y | ALL** specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph. By default, no scaling is performed. If this option is used, then all variables on the specified axis must be of the same type (all numeric or all character). In addition, mixing character and numeric variables with this option can cause blank plots to occur.

---

**Examples: SGSCATTER Procedure**

**About the SGSCATTER Procedure Examples**

**Examples in This Section**

This section provides basic examples of how to use the SGSCATTER procedure. The following examples are provided:
Example 1: Creating a Scatter Plot Matrix

**Features:**
- MATRIX statement
- GROUP option

**Sample library member:** SGSCMAT

**Note:** For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 138.

This example shows a scatter plot matrix with grouped data.
Program

Set the title and footnote and create the scatter plot matrix. In the MATRIX statement, the GROUP= option groups the data by the SPECIES variable.

```sas
proc sgscatter data=sashelp.iris;
 title "Scatterplot Matrix for Iris Data";
 matrix sepal length petal length sepal width petal width / group=species;
run;
title;
```

Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves

Features:  
PLOT statement  
PBSPLINE option

Sample library member:  
SGSCPLT
This example shows a graph with multiple independent scatter plots with fitted splines.

Output

Program

Create the scatter plots. In the PLOT statement, the PBSPLINE option fits the spline curves to the scatter points.

```
proc sgscatter data=sashelp.iris(where=(species="Virginica"));
 title "Multi-Celled Spline Curve for Species Virginica";
 plot (sepallength sepalwidth)*(petallength petalwidth) / pbspline;
run;
```

Example 3: Creating a Simple Comparative Panel

**Features:**
- COMPARE statement
- GROUP option

**Sample library member:**
SGSCCMP

**Note:**
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a comparative scatter plot with grouped data.

**Output**

![Iris Data: Length and Width](chart)

**Program**

Create the scatter plot. In the COMPARE statement, the GROUP= option groups the data by the SPECIES variable.

```sas
proc sgscatter data=sashelp.iris;
```
Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses

Features:
- COMPARE statement
- REG option
- ELLIPSE option
- SPACING option

Sample library member: SGSCCM1

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 138.

This example shows a comparative panel of scatter plots with regression fits and confidence ellipses.

title "Iris Data: Length and Width";
compare x=(sepal_length petal_length)
y=(sepal_width petal_width)
   / group=species;
run;
title;
Output

Program

Create the scatter plot. In the COMPARE statement, the REG on page 1590 option fits the regression lines and the ELLIPSE on page 1581 option creates the confidence ellipses and sets the ellipse type to MEAN. The SPACING= on page 1590 option adds spacing between plots.

```sas
proc sgscatter data=sashelp.iris(where=(species="Versicolor"));
 title "Versicolor Length and Width";
 compare y=(sepalwidth petalwidth)
 x=(sepallength petallength)
 / reg ellipse=(type=mean) spacing=4;
run;
title;
```
Overview of the Common Concepts

These topics describe concepts that are similar among the SGPANEL, SGPLOT, and SGSCATTER procedures.

Note: The SGDESIGN and SGRENDER procedures do not apply to the topics here. Both of those procedures produce graphs that have been defined outside of the ODS Graphics Procedures.
Table 13.1  Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1628)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1634)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1635)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1642)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1643)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1645)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers</td>
</tr>
</tbody>
</table>

---

Plot Type Compatibility

Applicable Procedures

The plots listed in this section apply to the SGPANEL and SGPLOT procedures only unless otherwise noted.

Types of Plots You Can Create Using SGPLOT and SGPANEL

You can create the following types of plots with the SGPLOT and SGPANEL procedures:

- basic plots
- fit and confidence plots
- distribution plots
- categorization plots
Basic Plots

The plot statements that you can use in SGPLOT and SGPANEL procedure steps to create basic charts are as follows:

- **BAND**
- **HEATMAP**
- **SERIES**
- **BUBBLE**
- **HEATMAPPARM**
- **SPLINE**
- **BLOCK**
- **HIGHLOW**
- **STEP**
- **DROPLINE**
- **LINEPARM**
- **TEXT**
- **ELLIPSEPARAM**
- **NEEDLE**
- **VBARBASIC**
- **FRINGE**
- **POLYGON**
- **VBARPARM**
- **HBARPARAM**
- **RELINE**
- **VECTOR**
- **HBARBASE**
- **SCATTER**

* This statement generates a categorization plot that is compatible with the other basic plots.

Fit and Confidence Plots

The plot statements that you can use in SGPLOT and SGPANEL procedure steps to create fit and confidence plots are as follows:

- **ELLIPSE**
- **PBSPLINE**
- **LOESS**
- **REG**

Distribution Plots

The plot statements that you can use in SGPLOT and SGPANEL procedure steps to create distribution plots are as follows:

- **DENSITY**
- **HISTOGRAM**
- **HBOX**
- **VBOX**

Categorization Plots

The plot statements that you can use in SGPLOT and SGPANEL procedure steps to create categorization plots are as follows:

- **DOT**
- **HLINE**
- **VLINE**
- **HBAR**
- **VBAR**
- **WATERFALL**
- **HBARBASE**
- **VBARBASIC**

* This plot statement is available only with the SGPLOT procedure.
**This plot statement is not compatible with the other categorization plots.

# Plot Compatibility

Not all of the plot types can be used together in the same PROC SGPLOT or PROC SGPANEL procedure step. If you submit a PROC SGPLOT or PROC SGPANEL procedure step that combines two incompatible plot statements, then an error is written to the log. To help you avoid plot overlay issues, the following table shows which of the plot types can be used together and any restrictions that apply.

*Table 13.2  Plot Compatibility*

<table>
<thead>
<tr>
<th>Plot</th>
<th>Compatible Plot Types</th>
<th>Restrictions¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>Basic</td>
<td>See “BAND Statement” on page 839.</td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>BUBBLE</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td>Distribution</td>
<td>Can overlay with DENSITY and HISTOGRAM plots only. See &quot;DENSITY Statement&quot; on page 875 for additional information.</td>
</tr>
<tr>
<td>DOT</td>
<td>Categorization</td>
<td>Can overlay with HBAR, HBARBASIC, and HLINE plots only. See &quot;DOT Statement&quot; on page 883 for additional information.</td>
</tr>
<tr>
<td>DROPLINE</td>
<td>Basic</td>
<td>See “DROPLINE Statement” on page 901.</td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td>ELLIPSE</td>
<td>Basic</td>
<td>See “ELLIPSE Statement” on page 906.</td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td>ELLIPSEPARM</td>
<td>Basic</td>
<td>See “ELLIPSEPARM Statement” on page 911.</td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>Compatible Plot Types</td>
<td>Restrictions</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FRINGE</td>
<td>Basic</td>
<td>Cannot overlay with HBOX and VBOX distribution plots.</td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence Distribution</td>
<td></td>
</tr>
<tr>
<td>HBAR</td>
<td>Categorization</td>
<td>Cannot overlay with VBAR, VBARBASIC, VLINE, and WATERFALL plots. See “HBAR Statement” on page 929 for additional information.</td>
</tr>
<tr>
<td>HBARBASIC³</td>
<td>Basic</td>
<td>Not available in SAS 9.4M2 and prior releases.</td>
</tr>
<tr>
<td></td>
<td>Categorization</td>
<td>Cannot overlay with VBAR, VBARBASIC, VLINE, and WATERFALL categorization plots.</td>
</tr>
<tr>
<td>HBARPARM</td>
<td>Basic</td>
<td>Cannot overlay with VBARPARM basic plot and VBOX distribution plot. See “HBARPARM Statement” on page 974 for additional information.</td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>HBOX</td>
<td>Basic²</td>
<td>Prior to SAS 9.4M1, box plots can be overlaid only with other box plots.</td>
</tr>
<tr>
<td></td>
<td>Distribution²</td>
<td>Overlaid box plots must have the same category variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cannot overlay with NEEDLE and VBARPARM basic plots, VBOX distribution plot, and WATERFALL categorization plot.</td>
</tr>
<tr>
<td>HEATMAP</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td>HEATMAPPARM</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td>HIGLOW</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>HISTOGRAM</td>
<td>Distribution</td>
<td>Can overlay with DENSITY plot only.</td>
</tr>
<tr>
<td>HLINE</td>
<td>Categorization</td>
<td>Cannot overlay with VBAR, VBARBASIC, VLINE, and WATERFALL plots. See “HLINE Statement” on page 1060 for additional information.</td>
</tr>
<tr>
<td>Plot</td>
<td>Compatible Plot Types</td>
<td>Restrictions</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>LINEPARM</td>
<td>Basic</td>
<td>See “LINEPARM Statement” on page 1099.</td>
</tr>
<tr>
<td>LOESS</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>NEEDLE</td>
<td>Basic</td>
<td>Cannot overlay with HBOX distribution plot. See “NEEDLE Statement” on page 1118 for additional information.</td>
</tr>
<tr>
<td>PBSPLINE</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>POLYGON</td>
<td>Basic</td>
<td>See “POLYGON Statement” on page 1144.</td>
</tr>
<tr>
<td>REFLINE</td>
<td>All plots (p. 1628)</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>SCATTER</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>SPLINE</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>Basic</td>
<td>See “STEP Statement” on page 1240.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>VBAR</td>
<td>Categorization</td>
<td>Cannot overlay with HBAR, HBARBASIC, HLINE, and WATERFALL plots. See “VBAR Statement” on page 1284 for additional information.</td>
</tr>
</tbody>
</table>
## Plot Type Compatibility

<table>
<thead>
<tr>
<th>Plot</th>
<th>Compatible Plot Types</th>
<th>Restrictions¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBARBASIC³</td>
<td>Basic</td>
<td>Not available in SAS 9.4M2 and prior releases.</td>
</tr>
<tr>
<td></td>
<td>Categorization</td>
<td>Cannot overlay with HBARPARM basic plot, and HBAR, HBARBASIC, and HLINE categorization plots.</td>
</tr>
<tr>
<td>VBARPARM</td>
<td>Basic</td>
<td>Cannot overlay with HBARPARM basic plot and HBOX distribution plot. See “VBARPARM Statement” on page 1330 for additional information.</td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>Basic ²</td>
<td>Prior to SAS 9.4M1, box plots can be overlaid only with other box plots.</td>
</tr>
<tr>
<td></td>
<td>Distribution ²</td>
<td>Overlaid box plots must have the same category variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cannot overlay with HBARPARM basic plot, and HBOX distribution plot.</td>
</tr>
<tr>
<td>VECTOR</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fit and Confidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>VLINE</td>
<td>Categorization</td>
<td>Cannot overlay with HBAR, HBARBASIC, HLINE, and WATERFALL plots. See “VLINE Statement” on page 1382 for additional information.</td>
</tr>
<tr>
<td>WATERFALL</td>
<td>Basic</td>
<td>Cannot overlay with HBOX distribution plot.</td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
</tbody>
</table>

1 Additional restrictions might apply for certain plots. Where indicated, see the plot statement description for additional information.

2 Starting with SAS 9.4M1.

3 Starting with SAS 9.4M3.

---

### What to Consider When Overlapping Plots

The procedure draws the plots in your graph in the same order that you specify the plot statements. Because of this, it is important to consider the order of your plot statements so that your plots do not obscure one another. For example, if you specify a BAND statement after a SCATTER statement, then the band plot might obscure the markers in your scatter plot. To correct this, you can reverse the order of the plot statements in your program. (You can also avoid obscuring your data by using the TRANSPARENCY= option to make your plots partially transparent.)
Plot Axes

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th>SGPANEL</th>
<th>SGPLOT</th>
</tr>
</thead>
</table>

The SGPANEL and SGPLOT procedures contain the following statements that enable you to change the type and appearance for the axes of the graph.

**Table 13.3 Axis Statements in the SGPANEL and SGPLOT Procedures**

<table>
<thead>
<tr>
<th>SGPANEL Procedure</th>
<th>SGPLOT Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLAXIS</td>
<td>XAXIS</td>
</tr>
<tr>
<td>ROWAXIS</td>
<td>X2AXIS</td>
</tr>
<tr>
<td></td>
<td>YAXIS</td>
</tr>
<tr>
<td></td>
<td>Y2AXIS</td>
</tr>
</tbody>
</table>

By default, the type of each axis is determined by the types of plots that use the axis and the data that is applied to the axis.

The procedures support the following axis types:

**Discrete**
The axis contains independent data values rather than a range of numeric values. Each distinct value is represented by a tick mark. Discrete is the default axis type for character data.

**Linear**
The axis contains a linear range of numeric values. Linear is the default axis type for numeric data.

**Logarithmic**
The axis contains a logarithmic range of values. The logarithmic axis type is not used as a default.

**Time**
The axis contains a range of time values. Time is the default axis type for data that uses a SAS time, date, or datetime format.

Some types of plot do not support all of the axis types. For example, needle plots cannot use a discrete vertical axis. See the documentation for each plot statement to determine whether any axis type restrictions apply.
Legends

Types of Legends

The procedures support two types of legends:

- **discrete legend**
  - contains one or more legend entries. Each entry consists of a graphical item (marker, line, ...) and corresponding text that explains the item.
  
  Here is a simple discrete legend.

  ![Discrete legend example]

- **gradient color legend**
  - maps the data range of a response variable to a range of colors.
  
  Here is a simple gradient legend.

  ![Gradient color legend example]

Some of the Uses for a Legend

A graphical legend provides a key to the marker symbols, lines, and other data elements that are displayed in a graph. Here are some of the situations where legends are useful:

- when a plot contains grouped markers (scatter plots, for example).
- when a plot contains lines that differ by color, marker symbol, or line pattern (series plots or step plots, for example).
- when a plot contains one or more lines or bands that require identification or explanation.
- when series plots with different data are overlaid in the graph, or fit lines are displayed with confidence bands, or density plots with different distributions are generated.
- when markers vary in color to show the values of a response variable. For this case, you would generate a continuous color legend.

The procedures do not automatically generate legends for all of the above situations. However, the mechanism for creating legends is simple and flexible.
### Using Discrete Legends

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPIE</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

The SGPANEL and SGPLOT procedures create a legend automatically based on the plot statements and options that you specify. The automatic legend functionality determines which information is likely to be useful in the legend. For example, in non-group situations, if there are two or more plot overlays, a legend is generated automatically and the plots are added to the legend.

You can create customized legends by using one or more KEYLEGEND statements. You can use the KEYLEGEND statement to control the contents, title, position, and border of the legend. You can specify the labels that represent your plots in the legend by using the LEGENDLABEL= option in the corresponding plot statements.

**TIP** Using the LEGENDITEM statement, you can create a legend item that can be included in the legend. For more information, see “LEGENDITEM Statement” on page 1093. This feature applies to SAS 9.4M5 and later releases.

You can override the automatic legend functionality in several ways. In the SGPANEL and SGPLOT procedures, legends are not generated automatically when you specify any of the following:
- KEYLEGEND statement that specifies the name of one or more plots
- NOAUTOLEGEND option in the procedure statement
- CURVELABEL= option for a plot
- a single plot or chart with no overlay and no group variable

In the PROC SGPIE statement, legends are not generated when the category data label is displayed or the NOAUTOLEGEND option is specified.

In the SGSCATTER procedure, you can prevent legends by using the NOLEGEND option in the PLOT, COMPARE, and MATRIX statements.

The following rules apply to the content of an auto-generated legend:
- If a group variable is used, the first statement using a group variable is added to the legend. All other statements are ignored.
- You can suppress features of a legend that is generated for a fit plot (LOESS, REG, PBSPLINE) using options such as NOLEGCLI, NOLEGCLM, and NOLEGFIT.

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend. For
all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

The following graph shows the default discrete legend that is generated automatically. In this example, the legend contains the normal and kernel density curves. You can use the KEYLEGEND statement to customize the legend.

Figure 13.1  Automatically Generated Discrete Legend

```
proc sgplot data=sashelp.heart;
 histogram weight;
 density weight;
 density weight / type=kernel
 lineattrs=(pattern=mediumdash);
run;
```

See Also

- “KEYLEGEND Statement” on page 410 (SGPANEL procedure)
- “KEYLEGEND Statement” on page 1083 (SGPLOT procedure)

Using Gradient Color Legends

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

A color gradient legend maps the data range of a response variable to a range of colors. Gradient legends can be used with the following plot statements in the SGPLOT and SGPANEL procedures.
Note:
- For heat maps, the gradient legend appears automatically.
- The WATERFALL chart applies to the SGPLOT procedure only.

In addition, gradient legends can be used with the PLOT, COMPARE, and MATRIX statements in the SGSCATTER procedure.

To generate the gradient legend, specify the COLORRESPONSE= option in any of those statements. The COLORRESPONSE= option indicates the numeric variable that is used to map colors to a continuous gradient. The COLORRESPONSE= option is used in conjunction with the GRADLEGEND feature.

The GRADLEGEND feature operates in different ways, depending on the procedure.

### Table 13.4 GRADLEGEND Feature

<table>
<thead>
<tr>
<th>Procedure</th>
<th>GRADLEGEND Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL and SGPLOT</td>
<td>The procedures support one or more GRADLEGEND statements. The GRADLEGEND statement can associate the gradient legend with a plot statement and can specify options for the legend. For example, you can use the GRADLEGEND statement to control the title, position, tick values, and border of the legend.</td>
</tr>
<tr>
<td>SGSCATTER</td>
<td>The PLOT, COMPARE, and MATRIX statements support a GRADLEGEND= option that controls the title, position, and border of the legend.</td>
</tr>
</tbody>
</table>

The following rules apply to a color gradient legend:
- The COLORRESPONSE= option must be specified in order for the legend to appear.
- The GRADLEGEND feature is responsible for creating the legend.
- The GRADLEGEND feature has auto-legend capabilities. If you specify a COLORRESPONSE= option, a gradient legend automatically appears even if you do not specify the GRADLEGEND feature.

Note: When the auto-legend feature is in effect, only one legend is displayed. This is true even if you specify the COLORRESPONSE= option in multiple plot statements. To have more than one gradient legend, specify the desired
GRADLEGEND statements, and specify the correct plot name for each GRADLEGEND statement.

For heat maps, the gradient legend appears automatically without specifying the COLORRESPONSE= option.

You can override the automatic legend functionality in two ways. Legends are not generated automatically when you specify either of the following:

- KEYLEGEND statement in the SGPLOT and SGPANEL procedures
- NOGRADLEGEND option in the PLOT, COMPARE, or MATRIX statements in the SGSCATTER procedure

The following examples create an automatic legend in the SGPLOT, SGPANEL, and SGSCATTER procedures:

**Table 13.5 Examples of Automatic Gradient Legends**

```plaintext
proc sgplot data=sashelp.class;
 scatter x=weight y=height / colorresponse=age;
run;
```

```plaintext
proc sgpanel data=sashelp.class;
 panelby sex;
 bubble x=weight y=height size= age / colorresponse=age;
 run;
```

```plaintext
proc sgscatter data=sashelp.class;
 plot (weight height) * age / colorresponse=age;
 run;
```

The COLORMODEL= option, available in the plot statements, enables you to control the appearance of the color ramp that is used.
Using a Discrete Legend and a Gradient Color Legend

When a graph overlays plots that show discrete graphical elements and color gradients, both a discrete legend and a gradient legend can be displayed. The following examples create an automatic continuous color legend and discrete legend in the SGPLOT, SGPANEL, and SGSCATTER procedures:

Table 13.6  Examples of Automatic Gradient Legend and Discrete Legend

```
proc sgplot data=sashelp.class;
 scatter x=weight y=height / colorresponse=age;
 reg x=weight y=height / nomarkers;
 loess x=weight y=height / nomarkers;
run;
```
Note: If you want to use a KEYLEGEND statement or GRADLEGEND statement to customize one of the two legends, you must include both legend statements in the procedure step. If you provide only one of the legend statements, only that legend will be rendered in the graph.
Automatic Differentiation of Visual Attributes

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th>SGPANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGPLOT</td>
</tr>
<tr>
<td></td>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

Depending on the plots and options that you specify, the SGPlot and SGPANEL procedures can automatically assign different style attributes to the plots in your graph. For example, if you specify two series plots, then each series plot automatically uses a different line color by default.

If different attributes are not assigned by default, then you can force the procedure to use different style attributes. You can accomplish this by using the CYCLEATRrs option in the PROC SGPlot or PROC SGPANEL statement. For example, you can use the CYCLEATRrs option to assign different colors to a series plot and a scatter plot. You can also disable automatic attribute differentiation by using the NOCYCLEATRrs option in the PROC SGPlot statement.

For all three procedures, grouped data values by default use the GraphData style elements for the presentation of each unique group value. You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified. For more information, see “Grouped Data” on page 1695.

See Also

- “CYCLEATRrs|NOCYCLEATRrs” on page 161 (SGPANEL procedure)
- “CYCLEATRrs|NOCYCLEATRrs” on page 825 (SGPLOT procedure)
Fit Policies for Axis Tick Values, Curve Labels, and Data Labels

Overview of Collision Avoidance

| Applicable Procedures | SGPANEL | SGPLOT | SGSCATTER |

Plot statements that support data labels or curve labels includes the ability to split the text for those labels when there is not enough room to display the text normally. Similarly, you can split the text for axis tick mark values. The text is split into two or more lines.

The following table lists the tasks that you can perform along with the option that is used to perform each task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>split the text at one or more characters that you specify</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>specify that the split characters are included in the displayed value</td>
<td>SPLITCHARNODROP</td>
</tr>
<tr>
<td>align the text horizontally (center, left, or right)</td>
<td>SPLITJUSTIFY=</td>
</tr>
</tbody>
</table>

These options are available for most of the plot statements in the SGPANEL and SGPLOT procedures. In the SGSCATTER procedure, the COMPARE, MATRIX, and PLOT statements support the options.

In the following example, the DATA step creates a column named SPEC with two values: Teen and Pre-Teen.

```sparql
data class;
set sashelp.class;
where sex="F"
length label $10;
if age > 12 then label='Teen';
else label='Pre-Teen';
run;
```
In this bar chart example, the procedure splits Pre-Teen at the hyphen (-) whenever the text does not fit within the bar width.

### Table 13.8 Character Split Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Teen</td>
<td>90</td>
</tr>
<tr>
<td>Teen</td>
<td>100</td>
</tr>
<tr>
<td>Pre-Teen</td>
<td>95</td>
</tr>
<tr>
<td>Teen</td>
<td>105</td>
</tr>
</tbody>
</table>

Notice that the split character does not appear in the labels. To force the split character to appear, specify the SPLITCHARNODROP option.

## Fit Policies for Axes

For axes in the SGPANEL and SGPLOT procedures, you can specify split options for the fit policy. The FITPOLICY= option specifies the method that is used to fit tick mark values on the axis when there is not enough room to draw them normally.

The FITPOLICY= option supports a number of values that split, stagger, and rotate the values. FITPOLICY= also combines these options. For example, FITPOLICY=SPLITROTATE first attempts to use SPLIT and then ROTATE to fit the values.

The following examples use the fit policy to split axis values. The default split character is a space. You can override the default and specify the split character using the SPLITCHAR= option (not shown in the example). All three of these examples use the SPLITALWAYS fit policy. You might instead specify FITPOLICY=SPLIT if you want splitting to occur only on collision.

### Table 13.9 Examples That Show Split Axis Values

```plaintext
ods graphics / width=4.5in;
proc sgplot data=class;
 vbar name / response=weight
data=class
 datalabel=label splitchar=-;
run;
```

```plaintext
ods graphics / width=4in;
proc sgplot data=sashelp.heart;
hbar deathcause;
yaxis fitpolicy=splitalways;
run;
```

```plaintext
ods graphics / reset=width;
```
Fit Policies for Bar Charts

In vertical bar charts, fit policies are available for data labels that appear above the bars. The DATALABELFITPOLICY= option specifies the method that is used to fit the data labels when the bars are not wide enough to display the labels normally.

The DATALABELFITPOLICY= option specifies whether the labels are rotated or split, or whether they are allowed to collide.

Marker Fills and Outlines

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

When your graph contains markers, such as those found in scatter plots, the MARKERATTRS= option enables you to specify the marker color, size, and symbol. This option is also available for plots, such as step plots, that support the creation of markers.
There might be times when you want to change the appearance of the marker fill and its outline separately. The following additional options enable you to specify attributes for the fill and outline of your markers separately:

- **FILLEDOUTLINEDMARKERS** specifies that markers have a fill and an outline.
- **MARKERFILLATTRS=** specifies the color of the marker fill.
- **MARKEROUTLINEATTRS=** specifies the color and thickness of the marker outline.

These options are available for the dot and scatter plots, series and step plots, line and needle plots, and fit plots in the SGPANEL and SGLOT procedures. They are also available for the PLOT and COMPARE statements in the SGSCATTER procedure.

The options are typically used along with the MARKERATTRS= option and enable markers to be more customized. The options have a cumulative, overriding effect when used with MARKERATTRS=.

To specify attributes for marker fills and outlines, do the following:

1. Specify FILLEDOUTLINEDMARKERS in the plot statement.
   - For PROC SGSCATTER, specify FILLEDOUTLINEDMARKERS in the PLOT or COMPARE statement.
2. Make sure the marker uses a filled symbol. The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. For example, the marker might be CircleFilled, DiamondFilled, TriangleFilled, and so on.

   See marker symbols on page 1656.

If the above two conditions are met, then you can use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options.

When FILLEDOUTLINEDMARKERS is specified, the marker attributes are obtained as follows:

- **MARKERATTRS=** provides the marker size and symbol. This option does not provide the marker fill color.
- **MARKERFILLATTRS=** provides the marker fill color.
- **MARKEROUTLINEATTRS=** provides the color and thickness of the marker outline.

The following table shows this information at a glance:

<table>
<thead>
<tr>
<th>Option</th>
<th>Color</th>
<th>Size</th>
<th>Symbol</th>
<th>Outline Color</th>
<th>Outline Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKERATTRS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKERFILLATTRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKEROUTLINEATTRS</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
The following example shows how the three options work together to produce a scatter plot with yellow markers and red outlines.

**Table 13.11  Yellow Markers with Red Outlines**

```
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markeroutlineattrs=(color=red thickness=2)
markerattrs=(symbol=circlefilled size=25);
run;
```

In the following example, the MARKERFILLATTRS= option is not specified. Because this option determines marker color when FILLEDOUTLINEDMARKERS is used, the marker color becomes the default color for the style (HTMLBlue). (The COLOR attribute in the MARKERATTRS= option is ignored.)

**Table 13.12  Marker Color Uses the Default Value**

```
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markeroutlineattrs=(color=red thickness=2)
markerattrs=(symbol=circlefilled size=25 color=yellow);
run;
```

In the following example, the markers are specified as CIRCLE, which is not filled. As a result, the options used to specify the fill and outline attributes are ignored.

**Table 13.13  Markers Not Filled, Defaults Used**

```
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markeroutlineattrs=(color=red thickness=2)
markerattrs=(symbol=circle size=25);
run;
```
Note: The following code produces the same result as the previous example. In the following code, the SYMBOL= option is not specified, and the default marker symbol is used. Because the graph uses the HTMLBlue ODS style, the default marker symbol is CIRCLE.

```sas
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
 markerfillattrs=(color=yellow)
 markeroutlineattrs=(color=red thickness=2)
 markerattrs=(size=25);
run;
```
Commonly Used Attribute Options

General Syntax for Attribute Options .................................................. 1650
See Also ......................................................................................... 1651
Line Attributes and Patterns ............................................................... 1651
See Also ......................................................................................... 1654
Fill Attributes .................................................................................. 1655
See Also ......................................................................................... 1655
Marker Attributes and Symbols ......................................................... 1656
See Also ......................................................................................... 1657
Text Attributes ................................................................................ 1658
See Also ......................................................................................... 1659
Units of Measurement ....................................................................... 1659
Color-Naming Schemes .................................................................... 1660
Overview of Color-Naming Schemes .................................................. 1660
RGB Color Codes ........................................................................... 1661
CMYK Color Codes ......................................................................... 1662
HLS Color Codes ............................................................................ 1663
HSV (or HSB) Color Codes ............................................................... 1664
Gray-Scale Color Codes .................................................................. 1665
Color Naming System (CNS) Values .................................................. 1665
SAS Color Names and RGB Values in the SAS Registry ................. 1667
Converting Color Values between Color-Naming Schemes .......... 1667
Converting Numeric Color Component Values to Color Names .... 1668
Converting Color Values from Other Applications ......................... 1668
General Syntax for Attribute Options

Most statements provide options that enable you to specify attributes for the lines, fills, data markers, or text that is used in the display. For example, many plots provide a DATALABELATTRS= option that specifies the attributes of the data labels. This section discusses the general syntax for those options and the valid values that they accept.

A statement’s attribute options use the following general syntax:

\[ \text{OPTION-NAME} = \text{style-element} \mid \text{style-element (options)} \mid (\text{options}) \]

\textit{style-element}

name of a style element.

A style element is a named collection of style attributes that affects specific parts of your output. For example, a style element might specify the color and font properties of title text or the fill properties of a bar chart. An ODS style is a collection of style elements that provides specific visual attributes for your SAS output.

Only style attributes relevant for rendering the fill, line, data marker, or text are used.

See \lq\lq Specifying a Style Element\rq\rq\ on page 1682

Example \[ \text{density height} / \text{lineattrs=graphfit2}; \]

\textit{style-element (options)}

name of a style element, plus individual options to be used as style overrides. Any \textit{options} not specified are derived from the specified \textit{style-element}.

See \lq\lq Specifying a Style Element with Hardcoded Values\rq\rq\ on page 1684

Example \[ \text{density height} / \text{lineattrs=graphfit2 (pattern=dashdashdot)}; \]

\textit{(options)}

individual options. Any \textit{options} not specified are derived from the default style element.

See \lq\lq Specifying Hardcoded Values\rq\rq\ on page 1683

Example \[ \text{density height} / \text{lineattrs= (pattern=dashdashdot color=red)}; \]

Depending on the attribute option used, the \textit{options} might be one of the following commonly used option types:

\begin{itemize}
\item \lq\lq Line Attributes and Patterns\rq\rq\ on page 1651
\item \lq\lq Fill Attributes\rq\rq\ on page 1655
\item \lq\lq Marker Attributes and Symbols\rq\rq\ on page 1656
\item \lq\lq Text Attributes\rq\rq\ on page 1658
\end{itemize}
Line Attributes and Patterns

Line options and patterns specify the appearance of particular lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

(pattern=dashdashdot color=red)

Here is an example that uses the LINEATTRS= option for a series plot:

lineattrs=(pattern=thindot color=lightgreen thickness=10)

options can be one or more of the following attributes.

COLOR= color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

PATTERN= line-pattern
specifies the line pattern for the line. Line patterns can be specified as a pattern name or pattern number.

<table>
<thead>
<tr>
<th>Pattern Number</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ShortDash</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>MediumDash</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>LongDash</td>
<td>___</td>
</tr>
<tr>
<td>8</td>
<td>MediumDashShortDash</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>14</td>
<td>DashDashDot</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>15</td>
<td>DashDotDot</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>20</td>
<td>Dash</td>
<td>- - - - - - - - - -</td>
</tr>
</tbody>
</table>
Valid pattern numbers range from 1 to 46. Not all pattern numbers have names. The following table lists all possible line patterns. We recommend that you use the named patterns because they have been optimized to provide good discriminability when used in the same plot.

Table 14.2  Full List of Line Patterns

<table>
<thead>
<tr>
<th>Pattern Number</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid</td>
<td>______________________________</td>
</tr>
<tr>
<td>2</td>
<td>ShortDash</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>LongDash</td>
<td>______________________________</td>
</tr>
<tr>
<td>4</td>
<td>MediumDash</td>
<td>______________________________</td>
</tr>
<tr>
<td>5</td>
<td>LongDash</td>
<td>______________________________</td>
</tr>
<tr>
<td>6</td>
<td>ShortDashDot</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>7</td>
<td>MediumDashDotDot</td>
<td>______________________________</td>
</tr>
<tr>
<td>8</td>
<td>DashDashDot</td>
<td>______________________________</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>______________________________</td>
</tr>
<tr>
<td>Pattern Number</td>
<td>Pattern Name</td>
<td>Example</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>DashDotDot</td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>20</td>
<td>Dash</td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>· · · · · · · · · ·</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>· · · · · · · ·</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>· · · · · ·</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>26</td>
<td>LongDashShortDash</td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>· · · · · · · ·</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>· · · · · · · ·</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>· · · · · ·</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>34</td>
<td>Dot</td>
<td>· · · · · · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>35</td>
<td>ThinDot</td>
<td>· · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>· · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>· · · · · · · · · · · · · ·</td>
</tr>
</tbody>
</table>
Pattern Number | Pattern Name       | Example
----------------|-------------------|---------
39              |                  |         
40              |                  |         
41              | ShortDashDot     |         
42              | MediumDashDotDot |         
43              |                  |         
44              |                  |         
45              |                  |         
46              |                  |         

**THICKNESS= n <units>**
specifies the thickness of the line. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

See Also

- “General Syntax for Attribute Options” on page 1650
- “Style Elements for Use with ODS Graphics” on page 1708
Fill Attributes

Fill options specify the appearance of an area fill in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

(color=red transparency=.5)

Here is an example that uses the FILLATRKS= option for a bar chart:

fillattrs=(color=green transparency=.2)

options can be one or more of the following attributes.

COLOR=style-reference | color
specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

TRANSPARENCY=number
specifies the degree of the transparency of the filled area.

Default 0

Range 0 (completely opaque) to 1 (completely transparent)

Note Not all fill options enable you to specify the transparency attribute. For example, the FILLATRKS= option in the BAND statement does not support transparency. The reason is that the BAND plot statement includes its own TRANSPARENCY= option.

Example fillattrs=(transparency=0.5)

See Also

- “General Syntax for Attribute Options” on page 1650
- “Style Elements for Use with ODS Graphics” on page 1708
Marker Attributes and Symbols

Marker options specify the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

(symbol=diamond color=red)

Here is an example that uses the MARKERATTRS= option for a scatter plot:

`markerattrs=(color=lightgreen size=10 symbol=trianglefilled)`

options can be one or more of the following attributes.

**COLOR= color**
specifies the color of the markers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

**SIZE= n <units >**
specifies the size of the markers. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

**SYMBOL= symbol-name**
specifies the symbol for the markers.
### Table 14.5  Supported Marker Symbols

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Plot Symbol</th>
<th>Symbol Name</th>
<th>Plot Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrowDown</td>
<td>↓</td>
<td>StarFilled</td>
<td>⭐</td>
</tr>
<tr>
<td>Asterisk</td>
<td>⋆</td>
<td>Tack</td>
<td>T</td>
</tr>
<tr>
<td>Circle</td>
<td>○</td>
<td>Tilde</td>
<td>∪</td>
</tr>
<tr>
<td>CircleFilled</td>
<td>⬤</td>
<td>Triangle</td>
<td>△</td>
</tr>
<tr>
<td>Diamond</td>
<td>◊</td>
<td>TriangleFilled</td>
<td>▲</td>
</tr>
<tr>
<td>DiamondFilled</td>
<td>❀</td>
<td>TriangleDown</td>
<td>▽</td>
</tr>
<tr>
<td>GreaterThan</td>
<td>＞</td>
<td>TriangleDownFille d</td>
<td>▼</td>
</tr>
<tr>
<td>Hash</td>
<td>#</td>
<td>TriangleLeft</td>
<td>◄</td>
</tr>
<tr>
<td>HomeDown</td>
<td>▾</td>
<td>TriangleLeftFilled</td>
<td>▼</td>
</tr>
<tr>
<td>HomeDownFilled</td>
<td>▼</td>
<td>TriangleRight</td>
<td>▶</td>
</tr>
<tr>
<td>IBeam</td>
<td>▶</td>
<td>TriangleRightFilled</td>
<td>▲</td>
</tr>
<tr>
<td>LessThan</td>
<td>＜</td>
<td>Union</td>
<td>∪</td>
</tr>
<tr>
<td>Plus</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Square</td>
<td>□</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SquareFilled</td>
<td>■</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>Star</td>
<td>⭐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### See Also

- "General Syntax for Attribute Options" on page 1650
- "Style Elements for Use with ODS Graphics" on page 1708
Text Attributes

Text options specify the appearance of particular text elements in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

(family="Arial" size=10pt color=red)

Here is an example that uses the DATALABELATTRS= option for a bar chart:

datalabelattrs=(Color=lightgreen Family="Arial" Size=8 Style=italic Weight=bold)

Options can be one or more of the following attributes.

COLOR=style-reference | color
specifies the color of the text. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

FAMILY= "font-family"
specifies the font family for the text. The SAS ODS styles use TrueType system fonts. For more information, see “Managing Fonts in Universal Printing” in SAS 9.4 Universal Printing.

SIZE= n <units>
specifies the font size of the text. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

Table 14.6  Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
Note: For some data and curve labels, font sizes might be automatically reduced in order to achieve less overlapping. This behavior affects all data labels with non-fixed positions, and curve labels for which you have specified a curve label position of MIN or MAX.

**STYLE= ITALIC | NORMAL**
specifies the font style of the text.

Note: If the text font does not support italic typeface, STYLE=ITALIC is ignored.

**WEIGHT= BOLD | NORMAL**
specifies the font weight of the text.

Note: If the text font does not support bold typeface, WEIGHT=BOLD is ignored.

System fonts can be used by the SAS ODS Graphics procedures. These fonts include TrueType, Type1, and Opentype fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial. System fonts must be installed on the operating system, and then registered with SAS using the FONTREG procedure. For more information, see “FONTREG Procedure” in *Base SAS Procedures Guide*.

### See Also
- “General Syntax for Attribute Options” on page 1650
- “Style Elements for Use with ODS Graphics” on page 1708

### Units of Measurement

Some options enable you to specify the unit of measurement as part of the value.

For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
</tbody>
</table>
Unit Description
---
PT  point size, calculated at 72 dots per inch
PX  pixels

Color-Naming Schemes

Overview of Color-Naming Schemes

The valid color-naming schemes in SAS are as follows:

- RGB (red green blue)
- CMYK (cyan magenta yellow black)
- HLS (hue lightness saturation)
- HSV (hue saturation brightness), also called HSB
- Gray scale
- SAS color names (from the SAS Registry)
- SAS Color Naming System (CNS)

Table 14.8 on page 1660 shows examples of each color-naming scheme.

Table 14.8  Examples of SAS Color-Naming Schemes

<table>
<thead>
<tr>
<th>Color-Naming Scheme</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>COLOR= (CX98FB98)</td>
</tr>
<tr>
<td>CMYK</td>
<td>COLOR= (FF00FF00)</td>
</tr>
<tr>
<td></td>
<td>COLOR= &quot;00FFFF00&quot;</td>
</tr>
<tr>
<td></td>
<td>COLOR= (CMYK00FFFF00)</td>
</tr>
<tr>
<td>HLS</td>
<td>COLOR= (H14055FF)</td>
</tr>
<tr>
<td>HSV</td>
<td>COLOR= (V0F055FF)</td>
</tr>
<tr>
<td>Gray Scale</td>
<td>COLOR= (GRAY4F)</td>
</tr>
<tr>
<td>SAS Registry Colors</td>
<td>COLOR= (palegreen)</td>
</tr>
</tbody>
</table>
You can also mix color-naming schemes in the same statement. For example:

```
DATACOLORS=(CXEE0044 "vivid blue", darkgreen);
```

Each of the color-naming schemes has its advantages and disadvantages based on how the output is used. For example, if you are creating a report that will be viewed only online, then specifying colors using the RGB naming scheme or the SAS color names defined in the registry might produce better results. If you are creating a report for publishing in printed form, you might want to use the CMYK color-naming scheme.

**Note:** If you specify an invalid color name, the default color is used instead.


### RGB Color Codes

The RGB color-naming scheme is usually used to define colors for a display screen. This color-naming scheme is based on the properties of light. An RGB color code defines a color by combining red, green, and blue colors in different ratios. All the colors combined together create white. The absence of all color creates black.

Color names are in the form `CXrrggbb`, where the following is true:

- **CX** indicates to SAS that this is an RGB color specification.
- **rr** is the red component.
- **gg** is the green component.
- **bb** is the blue component.

The components are hexadecimal numbers in the range 00–FF (0% to 100%). Each hexadecimal number indicates how much of the red, green, or blue is included in the color. Lower percentage values are darker and higher values are lighter. This scheme allows for up to 256 levels of each color component (more than 16 million different colors).

**Table 14.9 Examples of RGB Color Values**

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>CXFF0000</td>
</tr>
<tr>
<td>Green</td>
<td>CX00FF00</td>
</tr>
</tbody>
</table>
Any combination of the color components is valid. Some combinations match the colors produced by predefined SAS color names.

### CMYK Color Codes

The CMYK color-naming scheme is used in four-color printing. CMYK is based on the principles of objects reflecting light. Combining equal values of cyan, magenta, and yellow produces process black, which might not appear as pure black. The black component (K) of CMYK can be used to specify the level of blackness in the output. A lack of all colors produces white when the output is printed on white paper.

To specify the colors from a printer's Pantone Color Lookup Table, you can use the CMYK color-naming scheme. Specify colors in terms of their cyan, magenta, yellow, and black components. Color names are in the form CMYK\textsubscript{ccmmyykk} or K\textsubscript{ccmmyykk}, where the following is true:

- CMYK or K is an optional prefix that indicates to SAS that this is a CMYK color specification.
- \textit{cc} is the cyan component.
- \textit{mm} is the magenta component.
- \textit{yy} is the yellow component.
- \textit{kk} is the black component.

The color-value components are hexadecimal numbers in the range 00–FF, where higher values are darker and lower values are brighter. This scheme allows for up to 256 levels of each color component. When the color value begins with a letter (A–F), you can omit the CMYK or K prefix. When the color value begins with a number (0–9), you must use the CMYK or K prefix, or enclose the value in quotation marks.

**Note:** For some graph style elements such as GraphData1–GraphDataN, the color specification must begin with a letter. Values that begin with a number such as "000000FF" are not valid. In those cases, use the CMYK or K prefix.

<table>
<thead>
<tr>
<th>Color</th>
<th>CMYK Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>&quot;0FFFFF00&quot;</td>
</tr>
<tr>
<td>Green</td>
<td>FF00FF00</td>
</tr>
</tbody>
</table>

**Table 14.10** Examples of CMYK Color Values
Color-Naming Schemes

<table>
<thead>
<tr>
<th>Color</th>
<th>CMYK Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>CMYKFFFF0000</td>
</tr>
<tr>
<td>White</td>
<td>&quot;00000000&quot;</td>
</tr>
<tr>
<td>Process black (using cyan, magenta, and yellow ink)</td>
<td>FFFFFFF00</td>
</tr>
<tr>
<td>Pure black (using only black ink)</td>
<td>&quot;000000FF&quot;</td>
</tr>
</tbody>
</table>

1 Not valid for some graph style elements.

**Note:** You can specify a CMY value by specifying zero (00) for \( kk \), the color's black component.

CMYK color specifications are for output devices that support four colors. If you specify CMYK colors on an output device that supports three colors such as RGB, the CMYK colors are converted to colors in the three-color space. Because the four-color space supports many more colors than a three-color space, the CMYK colors might map to different colors in the three-color space. To preserve your CMYK colors in that case, specify a device that supports the CMYK color space. See “Color Support for Universal Printers” in SAS 9.4 Universal Printing.

### HLS Color Codes

The HLS color scheme specifies colors in terms of hue, lightness, and saturation levels. It is based on the Tektronix Color Standard. HLS color names are of the form \( Hhhhlss \), where the following is true:

- \( H \) indicates to SAS that this is an HLS color specification.
- \( hhh \) is the hue component, which is expressed as an angle.
- \( ll \) is the lightness component.
- \( ss \) is the saturation component.

The components are hexadecimal numbers. The hue component is in the range 000–168 hexadecimal, which represents an angular value in the range 0–360 decimal. Hue starts with the primary color blue at 0 degrees, and then progresses to red at 120 degrees, to green at 240 degrees, and back to blue at 360 degrees. Both the lightness and saturation components are in the range 00–FF hexadecimal (0–255 decimal), which provides 256 levels that represent 0% to 100% for each component.

**Table 14.11** Examples of HLS Color Codes

<table>
<thead>
<tr>
<th>Color</th>
<th>HLS Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>H07880FF</td>
</tr>
</tbody>
</table>

---

**Color**

1663
HSV (or HSB) Color Codes

The HSV color-naming scheme specifies colors in terms of hue, saturation, and value (or brightness) components. HSV color names are of the form \(Vhhhssvv\), where the following is true:

- \(V\) indicates to SAS that this is an HSV color specification.
- \(hhh\) is the hue component, which is expressed as an angle.
- \(ss\) is the saturation component.
- \(vv\) is the value or brightness component.

The components are hexadecimal numbers. The hue component is in the range 000–168 hexadecimal, which represents an angular value in the range 0–360 decimal. Hue starts with the primary color red at 0 degrees, and then progresses to green at 120 degrees, to blue at 240 degrees, and back to red at 360 degrees. Both the saturation and value (brightness) components are in the range 00–FF hexadecimal (0–255 decimal), which provides 256 levels for each component.

<table>
<thead>
<tr>
<th>Color</th>
<th>HSV Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>V000FFFF</td>
</tr>
<tr>
<td>Green</td>
<td>V078FFFF</td>
</tr>
<tr>
<td>Blue</td>
<td>V0F0FFFF</td>
</tr>
<tr>
<td>Light gray(^1)</td>
<td>Vxxx00BB such as V07900BB</td>
</tr>
<tr>
<td>White(^1)</td>
<td>Vxxx00FF such as V07900FF</td>
</tr>
</tbody>
</table>

\(^1\) When the saturation is set to 00, the color is a shade of gray that is determined by the lightness value. Therefore, white is defined as \(HxxxFF00\) and black as \(Hxxx0000\), where \(xxx\) can be any hue.
Gray-Scale Color Codes

Gray-scale colors are specified using the word GRAY and a lightness value in the form GRAY<code>hh</code>. The value <code>hh</code> is the lightness of the gray and is a hexadecimal number in the range 00–FF, which provides 256 levels on the gray scale.

Note: GRAY, without a lightness value, is a SAS color name defined in the SAS registry. (See “SAS Color Names and RGB Values in the SAS Registry” on page 1667.) Its value is CX808080. Invalid color specifications are mapped to GRAY.

The following figure shows the gray-scale color for each hexadecimal value.

Color Naming System (CNS) Values

For CNS, you specify a color value by specifying lightness, saturation, and hue, in that order, using the terms shown in the following table.

<table>
<thead>
<tr>
<th>Color</th>
<th>HSV Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black&lt;sup&gt;1&lt;/sup&gt;</td>
<td>Vxxx00000 such as V0790000</td>
</tr>
</tbody>
</table>

<sup>1</sup> When the saturation is set to 00, the color is a shade of gray. The value component determines the intensity of gray level. The xxx value can be any hue.
Table 14.13  Color Naming System Values

<table>
<thead>
<tr>
<th>Lightness</th>
<th>Saturation</th>
<th>Hue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Gray</td>
<td>Blue</td>
</tr>
<tr>
<td>Very Dark</td>
<td>Grayish</td>
<td>Purple</td>
</tr>
<tr>
<td>Dark</td>
<td>Moderate</td>
<td>Red</td>
</tr>
<tr>
<td>Medium</td>
<td>Strong</td>
<td>Orange/Brown</td>
</tr>
<tr>
<td>Light</td>
<td>Vivid</td>
<td>Yellow</td>
</tr>
<tr>
<td>Very Light</td>
<td></td>
<td>Green</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow these rules when you are determining the CNS color name:

- You should not use the lightness values Black and White with saturation or hue values.
- If you do not specify default values, medium is the default lightness value and vivid is the default saturation value.
- Gray is the only saturation value that can be used without a hue.
- Unless the color that you want is black, white, or some form of gray, you must specify at least one hue.

You can use one or two hue values in the CNS color name. When you use two hue values, the hues must be adjacent to each other in the following list: blue, purple, red, orange/brown, yellow, green, and then returning to blue. Two hue values result in a color that is a combination of both colors. Use the suffix "ish" to reduce the effect of a hue when two hues are combined. Reddish purple is less red than red purple. The color specified with the "ish" suffix must precede the color without the "ish" suffix.

You can write color names in the following ways:

- without space separators between words
- with an underscore to separate words
- with a space to separate words, enclosed in quotation marks

For example, the following color specifications are valid:

- verylightmoderatepurplishblue
- very_light_moderate_purplish_blue
- "very light moderate purplish blue"

Note: If a CNS color name is also a color name in the SAS Registry, the SAS Registry color value takes precedence. Some CNS color names and color names in the SAS Registry have different color values. Dark blue is an example.
To use a CNS color value when the color name is also in the SAS Registry, do one of the following:

- Include a space to separate the words and enclose the entire color name in quotation marks. Here is an example:
  
  ```
 color="dark blue"
  ```

- Include an underscore to separate the words. Here is an example:
  
  ```
 color=dark_blue
  ```

---

### SAS Color Names and RGB Values in the SAS Registry

The SAS Registry provides a set of color names and RGB values that you can use to specify colors. These color names and RGB values are common to most web browsers. You can specify the name itself or the RGB value associated with that color name. To view the color names as associated RGB values that are defined in the registry, submit the following code:

```sas
proc registry list
 startat="COLORNAMES";
run;
```

SAS prints the output in the SAS log. Here is a partial listing.

```
NOTE: Contents of SASHELP REGISTRY starting at subkey [COLORNAMES]
[COLORNAMES]
Active="HTML"
[HTML]
 AliceBlue=hex: F0,F8,FF
 AntiqueWhite=hex: FA,EB,D7
 Aqua=hex: 00,FF,FF
 Aquamarine=hex: 7F,FD,D4
 Azure=hex: F0,FF,FF
 Beige=hex: F5,F5,DC
 ...
```

You can also create your own color values by adding them to the SAS registry. For information about viewing and modifying the list of color names, see "The SAS Registry" in *SAS Programmer’s Guide: Essentials*.

---

### Converting Color Values between Color-Naming Schemes

If the SAS/GRAPH software is included in your SAS installation, several macros are provided with SAS/GRAPH that enable you to perform selected conversions between color-naming schemes. The following table shows the conversions that are possible using these macros.
Converting Numeric Color Component Values to Color Names

If the SAS/GRAPH software is included in your SAS installation, several macros are provided with SAS/GRAPH that enable you to convert numeric color component values to color names. The following table shows the macros that you can use for this purpose.

<table>
<thead>
<tr>
<th>From Numeric Color Component Values</th>
<th>To Color Name</th>
<th>Conversion Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan, magenta, yellow, black</td>
<td>CMYK</td>
<td>%CMYK</td>
</tr>
<tr>
<td>hue, lightness, saturation</td>
<td>HLS</td>
<td>%HLS</td>
</tr>
<tr>
<td>hue, saturation, value</td>
<td>HSV</td>
<td>%HSV</td>
</tr>
<tr>
<td>red, green, blue</td>
<td>RGB</td>
<td>%RGB</td>
</tr>
</tbody>
</table>

For information about these macros, see SAS/GRAPH: Reference.

Converting Color Values from Other Applications

Many software programs enable you to change or customize various colors. A dialog box typically provides a means of selecting a different color or modifying the attributes of an existing color. In the SAS ODS Graphics Editor, for example, the More Colors dialog box shown in the following figure serves this purpose.
Figure 14.1 on page 1669 shows the HSB and RGB numeric color component values for the currently selected color. It also shows the RGB values in hexadecimal. To use the RGB specification for this color in a SAS program, add the CX prefix to the Hex value E7B3B4. If the application provides only the numeric component values, you must convert the decimal component values to hexadecimal. In Figure 14.1 on page 1669, the H value is in the range 0–360 degrees, and the S and B values are each in the range 0–100 percent. The R, G, and B values are in the range 0–255 each. You can convert the component values manually. Be aware that you must first convert the S and B values from percentages to 255-based values by rounding the result of the following computation to the nearest integer:

\[
\left( \frac{Value}{100} \right) \times 255
\]

If the SAS/GRAPH software is included in your SAS installation, you can also use the SAS/GRAPH color utility macros to convert the values. The %HSV color utility macro converts HSV (HSB) numeric color component values to an HSV color name. Likewise, the %RGB macro converts RGB numeric color component values to an RGB color name. The following example shows how to use the %HSV color utility macro to convert the H, S, and B color component values in Figure 14.1 on page 1669 to an HSV color name.

```
%COLORMAC;
data _null_;
 put "%HSV(357,22,90)";
run;
```

Note: The %COLORMAC macro compiles all of the SAS/GRAPH color utility macros. You need to run it only once during a SAS session.

Because the %HSV macro accepts values in the range 0–100 as a percentage of 255 for saturation and value, use the S and B values as shown. The result is V16538E6.
The following example shows how to use the %RGB color utility macro to convert the R, G, and B numeric color component values in Figure 14.1 on page 1669 to an RGB color name.

```sas
/* Compute the RGB percentages */
data _null_
 r = 231;
 g = 179;
 b = 180;
 call symputx("r", round((r/255)*100));
 call symputx("g", round((g/255)*100));
 call symputx("b", round((b/255)*100));
run;

/* Convert to RGB color name */
%COLORMAC;
data _null_
 put "%RGB(&r,&g,&b)";
run;
```

Because the %RGB color utility macro accepts integer values in the range 0–100 as a percentage of 255, you must convert the 255-based values to integer percentages in order to use them in the %RGB macro call. The result is CXE8B3B5. The result from the %RGB macro is not exact due to rounding. If you want more exact results, use the following program.

```sas
data _null_
 r = 231;
 g = 179;
 b = 180;
 rgb="CX" || put(r,hex2.) || put(g,hex2.) || put(b,hex2.);
 put rgb;
run;
```

The result is CXE7B3B4.

To convert the RGB color name to an HLS color name, use the %RGB2HLS macro as shown in the following program.

```sas
%COLORMAC;
data _null_
 put "%RGB2HLS(CXE7B3B4)";
run;
```

The result is H077CD84.

For more information about the SAS/GRAPH color utility macros, see SAS/GRAPH: Reference.
Controlling the Appearance of Your Graphs

Overview ................................................................. 1674
Understanding Styles .................................................. 1675
   About Styles and Style Elements ................................ 1675
   About the Default Styles ......................................... 1676
   Recommended Styles .............................................. 1676
   Viewing a Style Template ........................................ 1679
Specifying Styles .................................................... 1680
   Specify a Style for an ODS Destination ....................... 1680
   Change the Default Style for the HTML Destination ........ 1680
Using Plot Options to Control Graph Appearance .......... 1681
   Overview of the Appearance Options ......................... 1681
   Specifying a Style Element .................................... 1682
   Specifying Hardcoded Values ................................... 1683
   Specifying a Style Element with Hardcoded Values ........ 1684
Using Data Skins .................................................... 1685
Subpixel Rendering .................................................. 1690
Output for Grouped versus Non-Grouped Data ............. 1691
   Non-Grouped Data ................................................ 1691
   Grouped Data ..................................................... 1695
Modifying Style Templates ....................................... 1697
Using Fill Patterns to Distinguish Categories of Data .... 1698
   About Using Fill Patterns ..................................... 1698
   Using Plot Options to Display Fill Patterns ................ 1698
   Using Gray-Scale Styles to Distinguish Grouped Bar Charts 1703
Style Elements for Use with ODS Graphics ................. 1708
Overview

Along with table and page attributes, ODS styles contain a collection of graphical attributes such as color, marker shape, line pattern, fonts, and so on. Many carefully designed styles are shipped with SAS that enhance the visual impact of the graphics.

In addition to creating visually appealing graphics, many key elements of effective graphics are built into the various elements of the styles, such as the following:

- provide maximum contrast between backgrounds and data
- provide for ease of discrimination among different groups
- provide equal emphasis for data with equal importance

The ODS styles are used to produce professional looking graphics without the need for further modification. However, you have several options for modifying the appearance of your graphs if you choose to do so.

You can customize your graphical output at three levels.

The following table shows the three levels of customization.

Table 15.1  Levels of Customization

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Level of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change the style. See “Specifying Styles” on page 1680.</td>
<td>Specify a style with the STYLE= option on the ODS destination statement to change the appearance of the entire graph. Requires no further modification. The active style affects all SAS output and remains in effect until the ODS style or destination is changed.</td>
<td>low</td>
</tr>
<tr>
<td>Change attributes for graphs that specify a group variable. See “Grouped Data” on page 1695.</td>
<td>Change group colors, markers, and so on, within the procedure, without having to change the ODS style template. The appearance options override the corresponding defaults from the current style. The appearance options affect only the procedure in which they are specified.</td>
<td>medium</td>
</tr>
<tr>
<td>Use plot options. See “Using Plot Options to Control Graph Appearance” on page 1681.</td>
<td>Specify an appearance option in one or more plot statements to change various aspects of your graph. The appearance options override the corresponding defaults from the current style.</td>
<td>medium</td>
</tr>
</tbody>
</table>
### Understanding Styles

#### About Styles and Style Elements

ODS styles are produced from compiled STYLE templates written in PROC TEMPLATE style syntax. An ODS style template is a collection of style elements that provides specific visual attributes for your SAS output.

The style elements of a style are designed to ensure the goals of effective graphics. Each style element is a named collection of style attributes such as color, marker symbol, line style, font face, as well as many others. Each graphical element of a plot, such as a marker, a bar, a line or a title, derives its visual attributes from a specific style element from the active style.

Changing the style for an ODS destination is the easiest way to change a graph's appearance. Changing the current style requires only the use of the STYLE= option on an ODS destination statement. For more information, see “Specify a Style for an ODS Destination” on page 1680.

---

**Note:** The style that a destination uses is applied to tabular output as well as graphical output.
About the Default Styles

Every ODS output destination is associated with a default style. These default styles are different for each destination. Therefore, your output might look different depending on which destination you use. For example, the default style for the PRINTER destination is “Printer” while the default style for the HTML destination is “HTMLBlue.”

For a table that lists the default styles for ODS destinations, see “Working with Styles” in SAS Output Delivery System: Procedures Guide.

You can display a list of the available styles by submitting the following PROC TEMPLATE statements:

```sas
proc template;
 list styles;
run;
```

You can change the default style for a destination by modifying the SAS Preferences.

See Also

“Change the Default Style for the HTML Destination” on page 1680

Recommended Styles

SAS ships a set of styles that have been designed by GUI experts to address the needs of different situations, while ensuring the principles of effective graphics.

The following table shows a subset of the styles shipped with SAS that are particularly suitable for statistical graphics. The example output shown was generated by running the following code:

```sas
proc sgplot data=sashelp.cars;
 histogram weight;
 density weight / type=normal;
 density weight / type=kernel;
run;
```
<table>
<thead>
<tr>
<th>Style</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HTMLBLUE</strong>&lt;sup&gt;1&lt;/sup&gt;</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- white background</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- white wall</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- sans-serif fonts</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- table colors match the graph colors</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- a lighter color scheme for HTML content</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- group distinctions based primarily on color rather than markers, line styles, and fill patterns, when displayed</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td>- the default style for the ODS HTML destination</td>
<td><img src="image1.png" alt="Example" /></td>
</tr>
<tr>
<td><strong>DEFAULT</strong>&lt;sup&gt;1&lt;/sup&gt;</td>
<td><img src="image2.png" alt="Example" /></td>
</tr>
<tr>
<td>- gray background</td>
<td><img src="image2.png" alt="Example" /></td>
</tr>
<tr>
<td>- white wall</td>
<td><img src="image2.png" alt="Example" /></td>
</tr>
<tr>
<td>- sans-serif fonts</td>
<td><img src="image2.png" alt="Example" /></td>
</tr>
<tr>
<td>- group distinctions based on color, line styles, and fill patterns, when displayed</td>
<td><img src="image2.png" alt="Example" /></td>
</tr>
<tr>
<td><strong>STATISTICAL</strong>&lt;sup&gt;1&lt;/sup&gt;</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>- white background</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>- white wall</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>- sans-serif fonts</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>- contrasting color scheme of blues, reds, greens, and yellows for markers, lines, fill colors, and fill patterns</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
<tr>
<td>- group distinctions based on color, line styles, and fill patterns, when displayed</td>
<td><img src="image3.png" alt="Example" /></td>
</tr>
</tbody>
</table>
Style | Example
---|---
ANALYSIS ¹ | light tan background  
| white wall  
| sans-serif fonts  
| muted color scheme of tans, greens, yellows, oranges, and browns for lines, markers, fill colors, and fill patterns  
| group distinctions based on color, line styles, and fill patterns, when displayed

DAISY ¹ | white background  
| white wall  
| sans-serif fonts  
| a higher contrast color scheme for lines, markers, and fill colors, and fill patterns  
| starting with SAS 9.4M6, group distinctions based on color, line styles, and fill patterns, when displayed  
| prior to SAS 9.4M5, group distinctions based primarily on color rather than marker, line styles, and fill patterns, when displayed  
| recommended for creating accessible graphs (see Using ODS Styles to Create Accessible Output in Creating Accessible SAS Output Using ODS and ODS Graphics)

JOURNAL and JOURNAL3¹,² | white background  
| white wall  
| sans-serif fonts  
| gray-scale color scheme for fill colors, and black-only color scheme for markers, lines, and fill patterns
### Style

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>n group distinctions based on color, line styles, and fill patterns, when displayed</td>
</tr>
<tr>
<td>for bar charts, gray-scale fill color scheme and back-only fill pattern color scheme by default (JOURNAL3 only)</td>
</tr>
</tbody>
</table>

#### JOURNAL2 ²

- white background
- white wall
- sans-serif fonts
- gray-scale color scheme for fill colors, and black-only color scheme for markers, lines, and fill patterns
- group distinctions based on color, line styles, and fill patterns, when displayed
- starting with SAS 9.4M5, for band plots, bar charts, box plots, ellipse plots, high-low plots, histograms, and polygon plots, black-only color scheme for fill patterns, by default
- no solid filled areas—a minimal ink style
- recommended for creating accessible graphs (see Using ODS Styles to Create Accessible Output in Creating Accessible SAS Output Using ODS and ODS Graphics)

---

1 Supports fill patterns starting with SAS 9.4M5.
2 The JOURNAL2 and JOURNAL3 styles, by default, render grouped bars with fill patterns. For more information, see “Using Fill Patterns to Distinguish Categories of Data” on page 1698.

---

## Viewing a Style Template

In the SAS windowing environment, you can view the styles that SAS provides by using the command line or the graphical interface.

To use the graphical interface, follow these steps:

1. In the Results window, select the Results folder. Right-click and select Templates to open the Templates window.
Specifying Styles

Specify a Style for an ODS Destination

Each ODS destination has a default style that is set by SAS. By specifying `STYLE=style-template` in your ODS destination statement, you can create an entirely different appearance for your graphs.

For example, you can specify that ODS apply the Styles.Journal style to all HTML output with one of the following statements:

```sas
ods html style=styles.journal;
ods html style=journal;
```

This style is applied to all output for that destination until you change the style or start a new SAS session.

Note: HTML is the default destination. If you close this destination and do not open another destination, then no destinations are open.

Change the Default Style for the HTML Destination

The default style for the HTML destination is HTMLBlue.
To change the default style in the SAS windowing environment:

1. Select **Tools** ⇒ **Options** ⇒ **Preferences**.
2. Select the **Results** tab.
3. Select a new default style from the **Style** list box.
4. Click **OK**.

In SAS Studio, you can specify the style for the default ODS destinations in the Preferences window. For more information, see **SAS Studio: User’s Guide** for your release of SAS Studio. See also “Using SAS Studio” on page 78.

### Using Plot Options to Control Graph Appearance

#### Overview of the Appearance Options

ODS styles enable you to control the overall appearance of the graphs. The ODS Graphics procedures also enable you to control the appearance of particular graphics elements in a graph. Graphics elements include lines, bars, markers, text, and so on.

Many ODS Graphics procedure statements have options and suboptions that control the appearance of different parts of a plot or graph. Default visual attributes of various graphics elements are derived from the specific style elements of the active style. By using appearance options in your procedure statements, you can change the appearance of one or more aspects of your graph without changing the overall style.

For example, the following statement specifies that the mean value confidence limits (for a regression plot) using the GraphConfidence2 style element instead of the default GraphConfidence style element:

```sas
reg x=height y=weight / clmattrs=GraphConfidence2;
```

You can specify values for appearance options by using three different methods:

- **specify a style element.**
  ```sas
density height / lineattrs=graphfit2;
```
  
  **Note:** This is the preferred method.

- **specify hardcoded values.**
  ```sas
density height / lineattrs=(pattern=dashdashdot color=red);
```
This method overrides one or more attributes of the style element. See “Specifying Hardcoded Values” on page 1683.

- specify a style element, but override one or more attributes with hardcoded values. This method combines the first two methods.

```plaintext
density height / lineattrs=graphfit2 {pattern=dashdashdot};
```

See “Specifying a Style Element with Hardcoded Values” on page 1684.

The appearance options and their values are specific to each statement. For complete documentation about the statements and their options, see the syntax section for the appropriate procedure and statement.

**See Also**

“About Styles and Style Elements” on page 1675

### Specifying a Style Element

You can change the visual attributes that are used for a graphics element by specifying a particular style element for any appearance option. Graphics elements include lines, bars, markers, text, and so on.

For example, the graph shown here is a histogram with a normal density curve. By default, the visual attributes of the density curve are specified by the style attributes within the style element GraphFit.

**Table 15.3** Histogram with Density Curve That Uses the Default Style Element

```plaintext
proc sgplot data=sashelp.class
 noautolegend;
 histogram height;
 density height;
run;
```

You can use the LINEATTRS= option in the DENSITY statement to change the style element that is used for the line attributes. For example, when you are using the HTMLBlue style, specifying the GraphFit2 style element changes the density curve line to an orange color.

```plaintext
density height / lineattrs=graphfit2;
```

The full code is below.
Specifying a style element is the preferred way to change the appearance of a graphics element. Visual attributes that are referenced by the style element are chosen to provide consistency and appropriate emphasis based on display principles for statistical graphics. If you later change the style for the graph, the graphics element is compatible with the new style.

See Also

- “About Styles and Style Elements” on page 1675
- “Style Elements for Use with ODS Graphics” on page 1708

Specifying Hardcoded Values

In some cases it is important to have a specific visual effect, but it is not necessary for the plot to be reused with different styles. In such a case, you can specify hardcoded values for the visual attributes in the appearance option.

For example, you could use the following statement to set the density curve attributes:

```
density height / lineattrs=(pattern=dashdashdot color=red);
```

Table 15.5   Using Hardcoded Values
The result is a red density curve with a DashDashDot pattern.

In general, it is recommended that you specify the style element rather than hardcoded values. Style elements are designed to derive all of the relevant visual attributes from the applied style. When you specify a hardcoded value for the line color, as in this example, the color is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new style. Also, a hardcoded color could be exactly the same color as the wall color of another style, and become indistinguishable from the wall.

For example, if you change the overall style to Journal, which uses only gray-scale colors, the color for the curve is still red. This result might not be desirable.

You use a standard syntax to hardcode colors, line thickness, line patterns, and marker symbols.

For more information about this syntax, see the following topics:
- “Color-Naming Schemes” on page 1660
- “Units of Measurement” on page 1897
- List of Line Patterns on page 1651
- List of Marker Symbols on page 1656

### Specifying a Style Element with Hardcoded Values

You can specify a style element, but override one or more attributes of that style element with hardcoded values.

This example modifies a density curve. The example specifies the GraphFit2 style element for line attributes, but also specifies a particular line pattern with a hardcoded value.

```plaintext
density height / lineattrs=graphfit2 (pattern=dashdashdot);
```

**Table 15.6 Using a Hardcoded Value with a Style Element, Default Style**

If you change the overall style to Journal, the color for this curve changes as well. However, the pattern remains DashDashDot because it was hardcoded.
Always be careful when you hardcode a value. When you specify a hardcoded value for the line pattern, as in this example, the pattern is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new style.

Using Data Skins

Data skins add a heightened visual effect to two-dimensional plots. Each skin uses shading, highlighting, and shadowing to give the appearance of contour and depth to certain elements of a graph, including the legend. For plots, the effect is generated by filters and is applied to filled areas, markers, and lines. When a data skin is applied to a filled area, it does not change the underlying fill color and pattern of the area. Typically, a data skin sets the area fill outline color to black. The outline color is controlled by the filters that generate the skin and is not controlled by the ODS style attributes or any custom outline attributes that are specified. For very small or very narrow filled areas, the data skin might not draw an outline around the filled area. For filled outlined markers, the outline color is determined by the ODS style attributes or by any custom marker attributes that are specified.

The effect that a data skin has on a filled area depends on the skin type, and on the size and color of the filled area. Because the ODS style determines the fill color by default, the effect can depend on the ODS style. Some skins have a greater effect than others. Most of the skins work best with lighter colors over a medium to large filled area. Over small filled areas and with some fill colors, the effect can be significantly reduced.

Note: Some ODS styles such as JOURNAL2 and MONOCHROMPRINTER use pattern fill for certain areas rather than color fill. For these styles, data skins have no effect on the pattern-filled areas.

You can apply data skins to filled areas, markers, and lines in a plot. The data skins include CRISP, GLOSS, MATTE, PRESSED, and SHEEN. The following figure shows the effect of each data skin on filled bars and bubbles with the default HTMLBlue ODS style. A display with no data skin applied is included for comparison.
Figure 15.1  Data Skins Applied to Filled Bars and Bubbles

The next figure shows each of the data skins applied to large HOMEDOWNFILLED markers.
The effect of a data skin on filled markers is more apparent when the markers are enlarged.

Except for the GLOSS data skin, the data skins also affect the appearance of plot lines and the outlines for unfilled markers and bubbles. They do not affect the outlines of unfilled bars, boxes, and so on. As with filled areas, the effect of data skins on lines varies with skin type and line color. It is also more apparent when the thickness of the lines is increased. The skins do not change the color of the lines. They add subtle effects such as drop shadows that enhance their appearance. The following figures show each of the data skins applied to plot lines, unfilled bubbles, and unfilled markers.
Figure 15.3 Data Skins Applied to Plot Lines

Figure 15.4 Data Skins Applied to Unfilled Bubbles
For all plots that support data skins, the GraphSkin:DataSkin style element in the active style specifies by default the data skin that is applied. For an individual plot, you can use the DATASKIN= option in the plot statement to override the data skin that is specified by the current style. You can set the following values for the style GraphSkin:DataSkin element and the DATASKIN= options: NONE, SHEEN, GLOSS, PRESSED, CRISP, or MATTE.

In many cases, the maximum number of skinned graphical elements is limited to 200 per plot for performance reasons. For graphs that contain multiple plots, this limit applies to each plot and not to the entire graph. A skinned graphical element can be a bar, bubble, marker, series line, and so on. It does not necessarily correlate with the number of observations in the plot data. If this limit is exceeded for a plot, the specified data skin is not applied to that plot, and the following warning appears in the SAS log:

**NOTE:** Data skin has been disabled because the threshold has been reached. You can set DATASKINMAX=nnn in the ODS GRAPHICS statement to restore data skin.

In that case, you can use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the threshold to the value specified in the note (nnn) or to a higher value.

**Note:** A plot that contains a large number of skinned graphical elements might take several minutes to render.
Subpixel Rendering

You can specify subpixel rendering in order to generate smooth curves and more precise bar spacing.

In SAS 9.4M2 and in earlier releases, subpixel rendering is available for line-based plots and bar charts in the procedures. Starting with SAS 9.4M3, subpixel rendering is available for all plots and charts.

Starting with SAS 9.4M3, the ODS GRAPHICS statement includes support for subpixel rendering. If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used. Otherwise, the system applies subpixel rendering when the option makes sense for the graph.

The ODS Graphics procedures can override the default setting by using their own SUBPIXEL option.

- To enable subpixel rendering, include the SUBPIXEL option in your PROC SGPANEL, PROC SGPLOT, or PROC SGSCATTER statement.
- To disable subpixel rendering, include the NOSUBPIXEL option in those statements.

In the following example, the curved lines can appear slightly jagged. The partial graph images show the effect of applying SUBPIXEL on curved lines.

Table 15.7  Effect of Subpixel Rendering on Curves

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

In the previous example, the subpixel rendering produces smoother lines.

Subpixel rendering also has an effect on bar charts. When charts have a large number of bars that are very close together, slight variations in spacing between the bars that occur due to integer rounding can become more obvious. For more precise bar spacing, enable subpixel rendering.

Table 15.8  Effect of Subpixel Rendering on Spaces between Bars

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Graph" /></td>
<td><img src="image4.png" alt="Graph" /></td>
</tr>
</tbody>
</table>
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Output for Grouped versus Non-Grouped Data

Non-Grouped Data

The Default Appearance of Non-Grouped Output

For the SGPLOT and SGPANEL procedures, many plots use the same style element, GraphDataDefault, for graphics elements such as lines, bars, and markers. These plots have the same default appearance.

In the graph that is produced by the following code, the bar chart and line chart use visual attributes from the GraphDataDefault element. The visual attributes for the line (and markers if specified) are designed to coordinate with the bar fill areas.

Table 15.9  Default Appearance of Non-Grouped Bars and Lines

```plaintext
ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jun2005"d
 and stock = "IBM");
title "Stock Volume vs. Close";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
ods graphics / reset=all;
```
However, when identical plot types are overlaid, the procedures instead use style elements named GraphData1 to GraphData\(n\) (where \(n=12\) for most styles).

In the following graph, the series lines have different colors and are easy to distinguish. The plots use the GraphData1, GraphData2, and GraphData3 style elements.

Table 15.10  Default Appearance When Three Series Plots Are Overlaid

```
ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM");
title "Stock Trend";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
ods graphics / reset=all;
```

The GraphData\(n\) style elements use different marker symbols and fill colors to ensure that the plots differ in appearance. All line and marker colors are of different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another. Fill colors are based on the same hue but have less saturation, making them similar but more muted than the corresponding contrast colors.

Line patterns can also vary depending on the style that is used for the graph. Some styles vary line patterns so that elements in color plots can be distinguished even when the plot is sent to a black-and-white printer. Line patterns do not vary for the HTMLBlue style or any style that is defined with the ATTRPRIORITY="Color" option.

Note: If you have a bar-line overlay with multiple lines, the lines cycle through GraphData\(n\), whereas the bar remains GraphDataDefault.

Other plots use more specialized style elements for their appearance. For example, the line attributes for density, loess, PBSpline, and regression curves are determined by the GraphFit style element.

Here are some interactions for plots with specialized style elements:

- If you have a histogram with multiple density curves, the curve style pattern changes with the number of curves. For one curve, GraphFit is used. For two curves, GraphFit and GraphFit2 are used. For three or more, all curves switch over to GraphData\(n\) The histogram uses GraphDataDefault.

- If you have multiple fit plots (loess, regression, or PBSpline), the behavior is like the density curves. For one fit, GraphFit is used. For two fits, GraphFit and GraphFit2 are used. For three or more, all fits switch to GraphData\(n\). (This behavior also applies to the SSGSCATTER procedure when multiple fits are specified.)

- If multiple ellipses are overlaid on another plot (such as a scatter), the ellipses cycle through GraphData\(n\), whereas the plot uses GraphDataDefault.

In general, if all of the plots have the same statement name (all scatter, all series, and so on), then the plots automatically cycle.
The CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SGPANEL procedure statements can be used to manually control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. The NOCYCLEATTRS option forces cycling to be off. These options are described in the next section.

Changing the Appearance of Non-Grouped Output

You can use plot options to specify particular GraphData elements for your plots in order to achieve a different appearance.

In the following graph, the style elements GraphData3, GraphData4, and GraphData5 are used to change the default appearance of the series lines in the graph.

<table>
<thead>
<tr>
<th>Table 15.11 Overlaid Series Plots with Particular GraphData Elements Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>ods graphics on / width=4.5in;</td>
</tr>
<tr>
<td>proc sgplot data=sashelp.stocks</td>
</tr>
<tr>
<td>(where=(date &gt;= &quot;01jan2004&quot;d and stock = &quot;IBM&quot;);) ;</td>
</tr>
<tr>
<td>title &quot;Stock Trend&quot;;</td>
</tr>
<tr>
<td>series x=date y=close</td>
</tr>
<tr>
<td>/ lineattrs= GraphData3;</td>
</tr>
<tr>
<td>series x=date y=low</td>
</tr>
<tr>
<td>/ lineattrs= GraphData4;</td>
</tr>
<tr>
<td>series x=date y=high</td>
</tr>
<tr>
<td>/ lineattrs= GraphData5;</td>
</tr>
<tr>
<td>run;</td>
</tr>
<tr>
<td>title;</td>
</tr>
<tr>
<td>ods graphics / reset=all;</td>
</tr>
</tbody>
</table>

Note: To achieve a different appearance for the series lines, you can use any style element that has line properties. However, the GraphData style elements are very suitable for this purpose. The GraphData style elements have been carefully constructed with different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another.

For more information, see “Specifying a Style Element” on page 1682.

Sometimes, you might want to control one or more attributes of a style element. You can use plot options to override, or hardcode, an attribute in the style element.

The following two graphs show the same plots before and after the PATTERN= option is used. The PATTERN= option is used with two series lines to force a different line pattern.
Table 15.12  The Effect of Specifying a Hardcoded Line Pattern

```
ods html style=journal;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM");
title "Default Journal Style";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
ods html style=htmlblue;
ods html style=journal;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM");
title "Line Patterns Specified";
series x=date y=close;
series x=date y=low
 / lineattrs= (pattern=2);
series x=date y=high
 / lineattrs= (pattern=4);
run;
title;
ods html style=htmlblue;
```

Note: In SAS Studio, you can specify the style in the Preferences window.

For more information, see “Specifying Hardcoded Values” on page 1683 and “Specifying a Style Element with Hardcoded Values” on page 1684.

You can also use the CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SGPANEL procedure statements to control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. If the plots do not have unique attributes by default, then you can specify the CYCLEATTRS option to force unique attributes for each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

The following two graphs show the same plots before and after the CYCLEATTRS option is used.
Table 15.13  The Effect of Specifying the CYCLEATTRS Option

```
proc sgplot data=sashelp.stocks;
where(date >= "01jun2005"d and
 stock = "IBM");
title "Stock Volume vs. Close";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
```

```
proc sgplot data=sashelp.stocks CYCLEATTRS;
where(date >= "01jun2005"d and
 stock = "IBM");
title "Graph with CYCLEATTRS Specified";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
```

In the second graph, the procedure retrieves the attributes from GraphData1 and GraphData2. The first graph retrieves all of its data attributes from GraphDataDefault.

**Note:** Depending on the size of your graph, the output might not look identical to what is shown here. See “About the Examples in This Book” on page 137.

---

**Grouped Data**

**The Appearance of Grouped Output**

The GROUP= option is used to plot data when a classification or grouping variable is available. By default, this option automatically uses the GraphData\textit{n} style elements for the presentation of each unique group value.

You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified.

To specify appearance options for a procedure, do the following:
In the SGLOT and SGPANEL procedures, use the STYLEATTRS statement. Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options.

Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options in the PROC SGSCATTER statement.

You can also use attribute maps to specify particular visual attributes for group values of the data. Attribute mapping does not require the input data set to be ordered by the group variable. Attribute mapping is explained in the following section.

Making the Appearance of Grouped Data Independent of Data Order

When unique group values are gathered, they are internally recorded in the order in which they appear in the data. They are not subsequently sorted. This means that if an input data source is modified, sorted, or filtered, the order of the group values and their associations with GraphData might change.

The following two graphs show the same plots before and after the data is sorted.

Table 15.14 The Effect That Sorting Has on Grouped Plot Attributes

<table>
<thead>
<tr>
<th>Default Graph</th>
<th>Sorted Graph</th>
</tr>
</thead>
</table>

```
ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks;
 where date >= "01jun2004"d;
 title "Default Graph";
 series x=date y=close / group= stock;
run;
title;
```

```
proc sort data=sashelp.stocks out=stocks;
 by descending stock;
run;
proc sgplot data=stocks;
 where date >= "01jun2004"d;
 title "Sorted Graph";
 series x=date y=close / group= stock;
run;
title;
```

Because the position of the data in the sorted data set has changed, the sorted graph uses different GraphData style elements for the group values.

In many cases, this might not be a problem if you do not care which line pattern, marker symbols, or colors are associated with particular group values. However, in
some cases you might care. For example, if you create many plots grouped by
gender, you might want a consistent set of visual properties for females and males
across plots, regardless of the input data order.

SG attribute maps enable you to ensure that particular visual attributes are applied
to the data independent of data order.

The following output shows a bar chart that uses the MYATTRMAP discrete attribute
map data set for its pink and blue bar colors. The FILLCOLOR= values determine
the color of the bars, and the LINECOLOR= values determine the color of the
border edges around the bars.

```
data myattrmap;
length linecolor $ 9 fillcolor $ 9;
input ID $ value $ linecolor $ fillcolor $;
datalines;
myid F pink pink
myid M lightblue lightblue
; run;
proc sgplot data=sashelp.class
dattrmap=myattrmap;
vbar age / response=height group=sex
groupdisplay=cluster attrid=myid;
run;
```

For complete information about attribute maps, see Chapter 17, “Using Attribute
Maps to Control Visual Attributes,” on page 1733.

---

## Modifying Style Templates

Style templates are created and modified with the TEMPLATE procedure. You can
use the DEFINE STYLE statement to create your own style from scratch or from an
existing style. When you create styles from existing styles, you can modify the
individual style elements.

For example, the following program shows the style element GraphDataDefault, as
defined in the Default style:

```
proc template;
 define style Styles.Default;
 ...

 class GraphDataDefault /
 endcolor = GraphColors("gramp3cend")
 neutralcolor = GraphColors("gramp3cneutral")
 startcolor = GraphColors("gramp3cstart")
 markersize = 7px
 markersymbol = "circle"
 linethickness = 1px
 linestyle = 1
 contrastcolor = GraphColors("gcdata")
```

---

Modifying Style Templates
color = GraphColors("gdata");

You can use the DEFINE STYLE statement to create a new style from the Default style and modify the GraphDataDefault style element.

The following program creates the new style MyStyleDefault, which inherits all of its style elements and style attributes from the Default style, and customizes the GraphDataDefault style element:

```sas
proc template;
 define style MyStyleDefault;
 parent=Styles.Default;
 style GraphDataDefault from GraphDataDefault /
 markersize = 10px
 markersymbol = "square";
 end;
end;
run;
```

For complete documentation on using PROC TEMPLATE to modify and create styles, see the SAS Output Delivery System: User’s Guide.

---

Using Fill Patterns to Distinguish Categories of Data

About Using Fill Patterns

Fill patterns help distinguish between different categories of data and are useful with group data. The procedures provide two ways to display fill patterns:

- use plot options to display and control the appearance of fill patterns. These options are available with various plots and charts. This feature applies to SAS 9.4M5 and later releases.
- use SAS gray-scale styles to display fill patterns for grouped bar charts.

Accessibility note: This feature helps support accessibility. Graphs that use this feature do not rely on color alone to distinguish categories of data.

---

Using Plot Options to Display Fill Patterns

Note: This feature applies to SAS 9.4M5 and later releases.
Plot Options That Display Fill Patterns

The FILLPATTERN and FILLPATTERNATTRS= options are available with a number of plots and charts. These options enable you to display and control the appearance of fill patterns in the plot.

The options are available with the following types of plots, whether generated using the SGPLOT procedure or the SGPANEL procedure:

- **BAND**
- **HBARBASIC**
- **POLYGON**
- **BBBLE**
- **HBARPARAM**
- **VBAR**
- **ELLIPSE**
- **HBOX**
- **VBARBASIC**
- **ELLIPSEPARAM**
- **HIGHLOW**
- **VBARPARAM**
- **HBAR**
- **HISTOGRAM**
- **VBOX**

Adding Fill Patterns to a Grouped Plot

Here is an example of a grouped vertical bar chart with fill patterns:

**Figure 15.6 Fill Pattern for Grouped Bars**

The following code was used to produce the example output:

```plaintext
ods graphics / attrpriority=none;
proc sgplot data=sashelp.prdsale;
 vbar prodtype / response=actual
group=country groupdisplay=cluster
 fillpattern;
run;
```
Note: When you specify a group, depending on the style that is applied to the graph, color might be used to distinguish the group values. To ensure that group values are distinguished by their fill patterns, use the ATTRPRIORITY option in the ODS GRAPHICS statement as shown in the previous example.

You can use the plot's NOFILL option to suppress the fill color, which might make it easier to see the fill patterns.

**Figure 15.7 Fill Pattern without Fill Color**

The following code was used to produce the example output.

```plaintext
ods graphics / attrpriority=none;
proc sgplot data=sashelp.prdsale;
 vbar prodtype / response=actual
 group=country groupdisplay=cluster
 fillpattern nofill;
run;
```

**Specifying a Single Fill Pattern for a Plot**

In addition to the FILLPATTERN option, the FILLPATTERNATTRS= enables you to specify the color and pattern for a plot's fill pattern.
Using Fill Patterns and Gradient-Color Fills

In a grouped plot that uses gradient-color fills, you can add fill patterns to distinguish the group values by using the FILLPATTERN option in the plot statement. However, when the COLORRESPONSE= option is used with the GROUP= option in a plot statement, only the gradient legend is automatically generated. In that case, to show both legends, you must include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step.

```
proc sgplot data=sashelp.prdsale;
 vbar prodtype / response=actual
 nofill;
 vbar prodtype / response=predict
 nofill fillpattern
 fillpatternattrs=(pattern=r1);
run;
```
With this method, the GraphDataDefault:contrastColor attribute determines the color of the fill patterns in the plot, and the GraphDataDefault:color attribute determines the fill color of the fill pattern swatches in the discrete legend. You can use the FILLPATTERNATTRS= option to change the fill pattern color, if desired.

An alternative method is to use an overlay plot to overlay group fill patterns onto a color-gradient plot.

In this example, the NOCYCLEATTRS option is specified in the PROC SGPLOT statement to ensure that the overlay plot uses the same visual attributes as the primary plot when not specified in the overlay plot statement. The second VBAR statement overlays the group fill patterns onto the first VBAR plot. In the overlay plot, fill color is suppressed to enable the underlying bar colors to show through and to remove the fill color from the swatches in the discrete legend. Fill patterns are specified instead. Options specify the attributes of the fill patterns and outlines. This
method enables more control over the appearance of the fill patterns in the plot and the fill-pattern swatches in the discrete legend.

With this method, both legends are generated automatically. You do not need to include the KEYLEGEND and GRADLEGEND statements in the procedure step unless you want to customize one or both of the legends as is done in this example.

**Note:** If you customize only one of the legends, you must include a KEYLEGEND statement and a GRADLEGEND statement in the procedure step. If you include only one legend statement, only that legend is rendered in the graph.

Here is the result.

![Using Gray-Scale Styles to Distinguish Grouped Bar Charts](image)

Using Gray-Scale Styles to Distinguish Grouped Bar Charts

Some SAS styles automatically display fill patterns for grouped bars. Fill patterns help distinguish between different categories when you are producing or printing black and white output.

The fill patterns appear for grouped data in the following types of plots, whether generated using the SGPLOT procedure or the SGPANEL procedure:

- HBAR
- HBARPARM
- VBARBASIC
- HBARBASIC
- VBAR
- VBARParm

Here is example output that was generated using the JOURNAL2 style.
The following code was used to produce the example output.

```sas
ods html style=journal2;
proc sgplot data=sashelp.class;
 hbar age / group= sex;
run;
ods html style=htmlblue;
```

Note: In SAS Studio, you can specify the style in the Preferences window.

Here are the SAS styles that by default render grouped bars with fill patterns:

- JOURNAL2
- JOURNAL3 (uses gray and the fill pattern)
- MONOCHROMEPRINTER

These styles use the GRAPHBAR style element for the fill pattern. If you customize a style in the GTL, then you can add the GRAPHBAR style element to your custom style.

The following example shows a graph that uses a custom style. The style, based on the Journal2 style (which uses the GRAPHBAR element), adds color style elements. The result combines patterns, colors, and skins.
Figure 15.10  Fill Pattern with Color

The following code was used to produce the output.

```sas
/* Specify a path for the ODS output. Replace output-path with your path. See the Note following this code. */
filename odsout "output-path";
proc template;
 define style Styles.MyJournal2;
 parent = styles.journal2;
 style GraphColors from GraphColors /
 'gdata'='cffffff
 'gdata1'='cffffff
 'gdata2'='cxc0c0c0
 'gdata3'='cxe0e0e0
 'gdata4'='cxa0a0a0
 'gdata5'='cx909090
 'gdata6'='cffffff
 'gdata7'='cxc0c0c0
 'gdata8'='cxe0e0e0
 'gdata9'='cxa0a0a0
 'gdata10'='cx909090
 'gdata11'='cffffff
 'gdata12'='cxc0c0c0
 'gdata13'='cxe0e0e0
 'gdata14'='cxa0a0a0
 'gdata15'='cx909090;
 style GraphHistogram from GraphComponent /
```

Using Fill Patterns to Distinguish Categories of Data
displayopts = "outline";
    style GraphEllipse from GraphComponent / displayopts = "outline";
    style GraphBand from GraphComponent / displayopts = "outline";
    style GraphBox from GraphComponent / displayopts = "caps median mean outliers" connect = "mean" capstyle = "serif";
    style GraphBar from GraphComponent / displayopts = "outline fillpattern";
    style GraphData1 from GraphData1 / fillpattern = "L1";
        style GraphData2 from GraphData2 / fillpattern = "X1";
        style GraphData3 from GraphData3 / fillpattern = "R1";
        style GraphData4 from GraphData4 / fillpattern = "L2";
        style GraphData5 from GraphData5 / fillpattern = "X2";
        style GraphData6 from GraphData6 / fillpattern = "R2";
        style GraphData7 from GraphData7 / fillpattern = "L3";
        style GraphData8 from GraphData8 / fillpattern = "X3";
        style GraphData9 from GraphData9 /
Using Fill Patterns to Distinguish Categories of Data

```plaintext
fillpattern = "R3";
 style GraphData10 from GraphData10 /
 fillpattern = "L4";
 style GraphData11 from GraphData11 /
 fillpattern = "X4";
 style GraphData12 from GraphData12 /
 fillpattern = "R4";
 style GraphData13 from GraphComponent /
 fillpattern = "L5";
 style GraphData14 from GraphComponent /
 fillpattern = "X5";
 style GraphData15 from GraphComponent /
 fillpattern = "R5";
end;

define style Styles.MyJournal3;
 parent = styles.MyJournal2;
 style GraphBar from GraphComponent /
 displayopts = "fill outline"
 fillpattern;
 style GraphColors from GraphColors /
 'gdata'=cffffff
 'gdata1'=cx00c0f0
 'gdata2'=cxf0c0a0
 'gdata3'=cxa0f0c0;
end;
run;

/* Specify the output environment, including the style. */
ods html (id=web) path=odsout file="MyBarPatterns.htm" style=MyJournal3;
ods graphics / reset imagename="MyBarPatterns";

/* Generate the bar chart. */
proc sgplot data=sashelp.cars;
 vbar type / group= origin dataskin= pressed;
run;

ods html (id=web) close;
ods graphics / reset=all;
```
Note: In SAS Studio, when you customize the output environment, it is useful to specify an output path for the ODS output. Depending on your deployment, you might not have Write permission for the default working directory. For more information about customizing the SAS Studio output environment, see “SAS Studio and ODS” in SAS Output Delivery System: User’s Guide.

**TIP** In the SAS windowing environment, you might specify `odsout "."` to reference your home directory. In SAS Studio, you would specify `odsout "&_SASWS_"` to reference your home directory.

---

### Style Elements for Use with ODS Graphics

Style elements affect ODS graphics and can be specified by GTL appearance options or used in styles. Attribute values can be changed with the `TEMPLATE` procedure.

In the ODS Graphics procedures, you can specify style elements to override the default appearance of particular graphics elements, such as data labels. Certain style elements were created to be used with specific plots. For example, the style element `GraphFit2` is best used to modify secondary fit lines. The style element `GraphConfidence2` was created to modify secondary confidence bands. However, many plots provide the option to override the style element with a different style element, or to specify particular attributes for a style element.

Here are examples that specify a style element and an attribute of a style element:

- `GraphData2` is an example of a style element.
- `GraphData2:Color` is an example of a style attribute.

The tables below list each style element, the portion of the graph that it affects, and the applicable attributes.

#### Table 15.15  Graph Style Elements: General Graph Appearance

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAnnoLine</td>
<td>Annotation lines and arrows, and outlines for closed annotation shapes such as circles and squares.</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphAnnoShape</td>
<td>Fill for closed annotation shapes such as circles and squares, and the default annotation marker in ODS Graphics Editor.</td>
<td>Color, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>GraphAnnoText</td>
<td>Annotation text</td>
<td>Color, Font, or font-attributes¹</td>
</tr>
<tr>
<td>GraphAxisLines</td>
<td>X-, Y-, and Z-axis lines</td>
<td>ContrastColor, LineStyle, LineThickness, TickDisplay</td>
</tr>
<tr>
<td>GraphBackground</td>
<td>Background of the graph</td>
<td>Color, Transparency</td>
</tr>
<tr>
<td>GraphBorderLines</td>
<td>Border line around the graph and around the graph legend</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphDataText</td>
<td>Text font and color for point and line labels</td>
<td>Color, Font, or font-attributes¹</td>
</tr>
<tr>
<td>GraphFootnoteText</td>
<td>Text font and color for footnote(s)</td>
<td>Color, Font, or font-attributes¹</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>ContrastColor, DisplayOpts, LineStyle, LineThickness, Transparency</td>
</tr>
<tr>
<td>GraphHeaderBackground</td>
<td>Background color of the cell headers in a data-driven lattice or data-driven panel graph</td>
<td>Color, Transparency</td>
</tr>
<tr>
<td>GraphLabelText</td>
<td>Text font and color for axis labels and legend titles</td>
<td>Color, Font, or font-attributes¹</td>
</tr>
<tr>
<td>GraphLegendBackground</td>
<td>Background color of the legend</td>
<td>Color, Transparency</td>
</tr>
</tbody>
</table>
### Table 15.16 Style Elements Affecting Graphical Data Representation

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphMinorGridLines</td>
<td>Appearance of the horizontal and vertical minor grid lines.</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayOpts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphOutlines</td>
<td>Outline properties for fill areas such as bars, pie slices, box plots, ellipses, and histograms</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphReference</td>
<td>Horizontal and vertical reference lines and drop lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphTitleText</td>
<td>Text font and color for title(s)</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes¹</td>
</tr>
<tr>
<td>GraphUnicodeText</td>
<td>Text font for Unicode values</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orfont-attributes¹</td>
</tr>
<tr>
<td>GraphValueText</td>
<td>Text font and color for axis tick values and legend values</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes¹</td>
</tr>
<tr>
<td>GraphWalls</td>
<td>Vertical wall(s) bounded by axes</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
</tbody>
</table>

¹ *Font-attributes* can be one or more of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphBoxWhisker</td>
<td>Box whiskers and serifs</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphConfidence</td>
<td>Primary confidence lines and bands, colors for</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td>bands and lines</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphConfidence2</td>
<td>Secondary confidence lines and bands, color for</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td>bands, and contrast color for lines</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphConnectLine</td>
<td>Line for connecting boxes or bars</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphCutLine</td>
<td>Cutline attributes for a dendogram</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items,</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td>colors for filled areas, markers, and lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NeutralColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>GraphError</td>
<td>Error line or error bar fill, ContrastColor for lines, Color for bar fill</td>
<td>CapStyle, Color, ContrastColor, LineStyle, Transparency</td>
</tr>
<tr>
<td>GraphFit</td>
<td>Primary fit lines such as a normal density curve</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphFit2</td>
<td>Secondary fit lines such as a kernel density curve</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphFinal</td>
<td>Final data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol,TextColor</td>
</tr>
<tr>
<td>GraphInitial</td>
<td>Initial data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol,TextColor</td>
</tr>
<tr>
<td>GraphMissing</td>
<td>Properties for graph items representing missing values</td>
<td>Color, ContrastColor, FillPattern, LineStyle</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>GraphOther</td>
<td>Other data for the graph. Color applies to filled areas.</td>
<td>Color&lt;br&gt;ContrastColor&lt;br&gt;LineColor&lt;br&gt;LineThickness&lt;br&gt;MarkerSize&lt;br&gt;MarkerSymbol&lt;br&gt;TextColor</td>
</tr>
<tr>
<td>GraphOverflow</td>
<td>Overflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color&lt;br&gt;ContrastColor&lt;br&gt;LineColor&lt;br&gt;LineThickness&lt;br&gt;MarkerSize&lt;br&gt;MarkerSymbol&lt;br&gt;TextColor</td>
</tr>
<tr>
<td>GraphOutlier</td>
<td>Outlier data for the graph</td>
<td>ContrastColor&lt;br&gt;Color&lt;br&gt;MarkerSize&lt;br&gt;MarkerSymbol&lt;br&gt;LineColor&lt;br&gt;LineThickness</td>
</tr>
<tr>
<td>GraphPrediction</td>
<td>Prediction lines</td>
<td>ContrastColor&lt;br&gt;Color&lt;br&gt;LineColor&lt;br&gt;LineThickness&lt;br&gt;MarkerSize&lt;br&gt;MarkerSymbol&lt;br&gt;TextColor&lt;br&gt;Transparency</td>
</tr>
<tr>
<td>GraphPredictionLimits</td>
<td>Fills for prediction limits</td>
<td>ContrastColor&lt;br&gt;Color&lt;br&gt;LineColor&lt;br&gt;LineThickness&lt;br&gt;MarkerSize&lt;br&gt;MarkerSymbol</td>
</tr>
</tbody>
</table>
### Table 15.17  Graphical Style Elements: Data Related (Grouped)

<table>
<thead>
<tr>
<th>Style Elements</th>
<th>Portion of Graph Affected</th>
<th>Attributes Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphSelection</td>
<td>For interactive graphs, visual properties of selected item. Color for selected fill area, ContrastColor for selected marker or line.</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSymbol, MarkerSize</td>
</tr>
<tr>
<td>GraphUnderflow</td>
<td>Underflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>ThreeColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>EndColor, NeutralColor, StartColor</td>
</tr>
<tr>
<td>ThreeColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>EndColor, NeutralColor, StartColor</td>
</tr>
<tr>
<td>TwoColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>EndColor, StartColor</td>
</tr>
<tr>
<td>TwoColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>EndColor, StartColor</td>
</tr>
</tbody>
</table>

1 Attribute FillPattern is available in style element GraphMissing starting with SAS 9.4M5.
### Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphData5</td>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td>GraphData6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData8</td>
<td>Primitives related to the 8th through 11th grouped data items.</td>
<td>Color, ContrastColor</td>
<td>FillPattern¹, LineStyle, MarkerSymbol²</td>
</tr>
<tr>
<td>GraphData9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData12</td>
<td>Primitives related to the 12th grouped data item.</td>
<td>Color, ContrastColor</td>
<td>FillPattern¹, MarkerSymbol</td>
</tr>
<tr>
<td>GraphData13</td>
<td>Primitives related to the 13th through 15th grouped data items.</td>
<td>FillPattern¹</td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td>GraphData14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Prior to **SAS 9.4M5**, style attribute FillPattern is available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles. Starting with **SAS 9.4M5**, style attribute FillPattern in GraphData1–GraphData11 is also available with the DEFAULT ODS style and all styles that are derived from it.

2 Style attribute MarkerSymbol in these style elements is defined for styles JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER only.

3 Style elements GraphData13–GraphData15 are available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles.

### Table 15.18  Display Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAltBlock</td>
<td>Alternate fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gablock&quot;)</td>
</tr>
<tr>
<td>GraphBand</td>
<td>Display options for confidence bands</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot; ¹</td>
</tr>
<tr>
<td>GraphBar</td>
<td>Display options for bar charts</td>
<td>DisplayOpts</td>
<td>&quot;Connect fill fillpattern outline&quot;</td>
</tr>
<tr>
<td>GraphBlock</td>
<td>Fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gblock&quot;)</td>
</tr>
<tr>
<td>GraphBox</td>
<td>Display options for box plots</td>
<td>DisplayOpts</td>
<td>&quot;Caps connect fill fillpattern mean median notches outliers&quot; ¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CapStyle</td>
<td>&quot;Serif&quot;</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
<td>Possible Values</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------------------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Connect</td>
<td></td>
<td></td>
<td>&quot;Mean&quot;</td>
</tr>
<tr>
<td>GraphContour</td>
<td>Display options for contours</td>
<td>DisplayOpts</td>
<td>&quot;LabeledLineGradient&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EndColor: GraphColors('gramp3ce nd')</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NeutralColor: GraphColors('gramp3cn eutral')</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StartColor: GraphColors('gramp3cs tart')</td>
</tr>
<tr>
<td>GraphEllipse</td>
<td>Display options for confidence ellipses</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphHighLow 2</td>
<td>Display options for high-low plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphHistogram</td>
<td>Display options for histograms</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphPolygon 2</td>
<td>Display options for polygon plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphSkins</td>
<td>Display skins</td>
<td>DataSkin</td>
<td>&quot;Crisp&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Gloss&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Matte&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;None&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Pressed&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KpiSkin: &quot;Basic&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Modern&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;None&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Onyx&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Satin&quot;</td>
</tr>
</tbody>
</table>

1 Display option FillPattern is available starting with **SAS 9.4M5**.
2 Style elements GraphHighLow and GraphPolygon are valid starting with **SAS 9.4M5**.
Managing Your Graphics with ODS

Introduction to Managing Your Graphics with ODS .................................................. 1718
Specifying ODS Destinations .................................................................................. 1718
  Opening and Closing Destinations ................................................................. 1718
  About Destination Options ............................................................................. 1719
  Specifying the Name and Location of Output Files .................................. 1720
ODS Destination Statement Options Affecting ODS Graphics .................. 1720
  See Also ........................................................................................................... 1722
Using the ODS GRAPHICS Statement ............................................................... 1722
  Introduction to Using the ODS GRAPHICS Statement .............................. 1722
  Sample Program That Uses the ODS GRAPHICS Statement .................... 1723
  See Also ........................................................................................................... 1724
Controlling the Size of Your Graph ................................................................. 1724
  Overview of Controlling the Size of Your Graph ........................................ 1724
  Specifying Output Size with the ODS GRAPHICS Statement ................. 1725
  Retaining the Aspect Ratio ........................................................................... 1725
  Graph Scaling for User-Specified Image Size ........................................... 1725
  Tip for Embedding Graph Images in Documents ..................................... 1726
Controlling Image Resolution ........................................................................ 1726
  See Also ........................................................................................................... 1727
Adding Data Tips and Other Features ............................................................ 1727
Controlling the Image Name and Image Format ........................................ 1728
  See Also ........................................................................................................... 1728
Resetting ODS GRAPHICS Options ............................................................... 1729
Creating a Graph That Can Be Edited ........................................................... 1729
  See Also ........................................................................................................... 1730
Introduction to Managing Your Graphics with ODS

The Output Delivery System (ODS) manages all output created by procedures and enables you to display the output in a variety of formats, such as HTML, PDF, and RTF. The SAS ODS Graphics procedures and many SAS Analytical procedures use ODS Graphics for creation of their graphs.

ODS provides options for controlling many relevant features using the following statements:

- ODS destination statements. For more information, see “ODS Destination Statement Options Affecting ODS Graphics” on page 1720.
- the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

For ways to customize the output in SAS Studio, see SAS Studio: User’s Guide.

Specifying ODS Destinations

Opening and Closing Destinations

ODS can send your graphs to a number of different destinations, including RTF (rich text format), HTML (hypertext markup language), LISTING (the SAS LISTING destination), and PDF (portable document format). To send your graph to one of these destinations, you open the destination.

You use an ODS statement to open a destination, as in the following examples:

```
ods html;
ods rtf;
ods listing;
ods pdf;
```

For creation of ODS graphics, a valid ODS destination must be active. In Windows and UNIX operating environments, HTML is the default destination. The HTML destination remains open until you close it.
Note: For a list of valid ODS destinations, see “Supported File Types for Output Destinations” on page 123.

Graphs rendered to the LISTING destination are not automatically displayed in the Results Viewer. To view these graphs, go to the Results window and select a graph. (To open the Results window, select View ⇒ Results.)

Graphs rendered to the RTF and PDF destinations are not displayed until you close their destinations.

You can close destinations individually, as in the following examples:

```plaintext
ods html close;
ods rtf close;
ods listing close;
ods pdf close;
```

The following statement closes all open destinations:

```plaintext
ods _all_ close;
```

**CAUTION**

Take care when closing destinations. As mentioned previously, at least one ODS destination must be active in order to generate ODS graphics.

Closing unneeded destinations makes your jobs run faster and creates fewer files. Because a graph is created for every open destination, your jobs consume fewer resources when you close unneeded destinations.

For a table that lists ODS destinations and the formatted output that results from each destination, see “Understanding ODS Destinations” in SAS Output Delivery System: User’s Guide.

### See Also

“ODS Destination Statement Options Affecting ODS Graphics” on page 1720

### About Destination Options

You can use ODS destination statement options to control aspects of ODS graphic output. These options are specified in ODS destination statements using the following form:

**ODS** destination <options;>

For example, you can use ODS destination statements to control the following:

- the style that is applied to a graph. For more information, see “Specifying Styles” on page 1680.
- the image resolution in dots per inch. For more information, see “Controlling Image Resolution” on page 1726.
Specifying the Name and Location of Output Files

You can use ODS destination statement options to specify where you want your output to be displayed and where you want your image files to be stored.

The ODS HTML statement below specifies the following:
- the name of the output file
- the folder where images and the HTML file are stored

```sas
ods html file="BoxPlot-Body.html" path="C:\myfiles" (url=none);
```

... SAS statements ...

The output is written to the file `BoxPlot-Body.html`. The HTML file and images created by the output are stored in the folder "C:\myfiles." (An images subfolder is created there for the images.) The (URL=NONE) suboption specifies that no information from the PATH= option appears in the links or references to the output files. This suboption is useful for building output files that can be moved from one location to another.

If you do not specify a file name for your output, then SAS provides a default file that is determined by the ODS destination. You can check the SAS log to verify the name of the file in which your output is saved.

When the procedures are executed in the SAS windowing environment, if you do not specify a directory for the file, the file is saved in the directory that corresponds to your SAS Work library. The default directory for batch mode is the SAS current directory.

**TIP** You can verify the location of the current SAS Work library by opening the Libraries folder in the SAS Explorer window. Right-click **Work** and select **Properties** from the pop-up menu.

---

ODS Destination Statement Options Affecting ODS Graphics

Each ODS destination has options that govern aspects of your ODS Graphics output. The following table shows the options for the most commonly used destinations.
### Table 16.1  ODS Destination Options That Affect ODS Graphics

<table>
<thead>
<tr>
<th>ODS Destination</th>
<th>Options for ODS Graphics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTING</td>
<td></td>
<td>Creates a stand-alone image. The default image format is PNG. (See also “Using a Universal Printer with ODS PRINTER to Control the Image Format” in <em>SAS Graph Template Language: User’s Guide.</em> )</td>
</tr>
<tr>
<td>GPATH=&quot;directory-spec&quot;</td>
<td>Indicate the directory where images are created. The default is the current working directory.</td>
<td></td>
</tr>
<tr>
<td>IMAGE_DPI=number</td>
<td>Specifies the image resolution in dots per inch for output images. IMAGE_DPI=96 is the default. Note: For TIFF output in SAS 9.4M2 and in earlier releases, the DPI property for the TIFF image might show 100 DPI instead of the IMAGE_DPI= setting. The actual image resolution is the IMAGE_DPI= setting. This issue is fixed starting with SAS 9.4M3.</td>
<td></td>
</tr>
<tr>
<td>STYLE= style-definition</td>
<td>Specifies the style to use. STYLE=LISTING is the default.</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td></td>
<td>Creates an embedded image in PDF format.</td>
</tr>
<tr>
<td>DPI=number</td>
<td>Specifies the image resolution in dots per inch for output images. DPI=150 is the default.</td>
<td></td>
</tr>
<tr>
<td>STYLE= style-definition</td>
<td>Specifies the style to use. STYLE=PEARL is the default.</td>
<td></td>
</tr>
<tr>
<td>RTF</td>
<td></td>
<td>Creates an embedded image or images in an RTF document. The default image format is EMF.</td>
</tr>
<tr>
<td>IMAGE_DPI=number</td>
<td>Specifies the image resolution in dots per inch for output images. IMAGE_DPI=200 is the default.</td>
<td></td>
</tr>
<tr>
<td>STYLE= style-definition</td>
<td>Specifies the style to use. STYLE=RTF is the default.</td>
<td></td>
</tr>
</tbody>
</table>
### Options for ODS Graphics

<table>
<thead>
<tr>
<th>ODS Destination</th>
<th>Options for ODS Graphics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTML</td>
<td></td>
<td>Creates a stand-alone image or images and the HTML page. Images are referenced in the HTML page. The default image format is PNG.</td>
</tr>
<tr>
<td>PATH=&quot;directory-spec&quot;</td>
<td></td>
<td>Indicates the directory where HTML files and graph images are created.</td>
</tr>
<tr>
<td>IMAGE_DPI=number</td>
<td></td>
<td>Specifies the image resolution in dots per inch for output images. IMAGE_DPI=96 is the default.</td>
</tr>
<tr>
<td>STYLE= style-definition</td>
<td></td>
<td>Specifies the style to use. STYLE=HTMLBLUE is the default.</td>
</tr>
</tbody>
</table>

### See Also

"Understanding ODS Destinations" in SAS Output Delivery System: User’s Guide

### Using the ODS GRAPHICS Statement

**Introduction to Using the ODS GRAPHICS Statement**

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. The settings that you specify remain in effect for all graphics in the current session until you change or reset these settings with another ODS GRAPHICS statement.

When you use the SAS ODS Graphics procedures in the SAS Windowing environment, ODS GRAPHICS is ON by default. In batch mode, ODS GRAPHICS is OFF by default.

You can use the ODS GRAPHICS statement to control many features, including the following:

- the size of the image
- the type and name of the image created
whether features such as data tips, scaling, and anti-aliasing are used

The basic syntax for the ODS GRAPHICS statement is as follows:

```
ODS GRAPHICS < OFF | ON> </options>;
```

Note: For the complete statement syntax, see “ODS GRAPHICS Statement” on page 96.

---

Sample Program That Uses the ODS GRAPHICS Statement

The following program uses the ODS GRAPHICS statement to illustrate several techniques for controlling your graphics.

These techniques are discussed in the following sections:

- “Controlling the Size of Your Graph” on page 1724
- “Controlling Image Resolution” on page 1726
- “Adding Data Tips and Other Features” on page 1727
- “Controlling the Image Name and Image Format” on page 1728
- “Resetting ODS GRAPHICS Options” on page 1729

**Example Code 16.1  Controlling Graphics with the ODS GRAPHICS Statement**

```plaintext
ods graphics on /
 width=3.25in
 outputfmt=gif
 imagemap=on
 imagename="MyBoxplot"
 border=off;

ods html file="Boxplot-Body.html"
 style=journal;

proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution by Weight Class";
 hbox cholesterol / category=weight_status;
run;

ods html style=htmlblue;
ods graphics on / reset=all;
```
Controlling the Size of Your Graph

Overview of Controlling the Size of Your Graph

The output size of a graph is determined by the following:

- For SGRENDER output, the design size for the graph is specified in the STATGRAPH template that you are rendering.
  
  The default sizes are:
  - Default design width=640px
  - Default design height=480px
  - Default aspect ratio is 4/3

  These default values are specified in the SAS Registry.

- For SGPLOT, SGPANEL, or SGSCATTER output, the preceding default sizes are used from the SAS Registry.

- DPI settings for the output destinations can be specified by the IMAGE_DPI= or DPI= options. For more information, see Table 16.1 on page 1721.

- Settings for width and height can be specified by the WIDTH= option and the HEIGHT= option for the ODS GRAPHICS statement. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 96.
Specifying Output Size with the ODS GRAPHICS Statement

You can control the output size of a graph by specifying the WIDTH= or HEIGHT= options in the ODS GRAPHICS statement, as shown in the following examples:

```plaintext
ods graphics on / width=6in;
ods graphics on / height=4in;
```

The dimensions of the graph can be specified in pixels (for example, 200PX), inches (for example, 3IN), centimeters (for example, 8CM), or other units. The default dimensions of ODS Graphics are 640 pixels wide and 480 pixels high, and these values determine the default aspect ratio. The actual size of the graph in inches depends on your printer or display device. For example, if the resolution of your printer is 100 dots per inch and you want a graph that is 4 inches wide, you should set the width to 4in or 400px.

In the ODS GRAPHICS statement below, taken from Example Code 16.1 on page 1723, the WIDTH= option changes the width of the graph to 3.25 inches:

```plaintext
ods graphics on /
 width=3.25in
 outputfmt=gif
 imagemap=on
 imagename="MyBoxplot"
 border=off;
```

Retaining the Aspect Ratio

It is possible to specify both the width and height in the ODS GRAPHICS statement, as shown in the following example:

```plaintext
ods graphics on / width=4.5in height=3.5in;
```

However, it is highly recommended that only one of these options be specified at a time. Using one option at a time ensures that the design aspect ratio of the graph is maintained. For the aspect ratio, height=0.75 x width.

For example, when only width is specified, SAS uses the design aspect ratio of the graph to compute the appropriate height. Retaining the design aspect ratio of the graph is important in many cases as the graph might have a specific layout. For example, a plot that has multiple columns, or that has a statistics table on the side needs a wide aspect ratio. Changing the aspect ratio for this plot by specifying both width and height might produce unpredictable results.

Graph Scaling for User-Specified Image Size

When the size or resolution (DPI) of a graph is changed due to a change in output destination or user specification, the graph is scaled accordingly. For example, when
you use the WIDTH= option in the ODS GRAPHICS statement, the output size of the graph is computed based on the new size and the active DPI. All graphical elements such as marker size, line thickness, and font sizes are also scaled accordingly. This is done to prevent rapid shrinking or growth of the fonts and markers.

You can suppress this scaling with the ODS GRAPHICS statement options NOSCALE or SCALE=OFF.

For example:

   ods graphics on / scale=off;

If you want to shrink your graph and keep the default sizes for fonts, use the NOSCALE or SCALE=OFF option in the ODS GRAPHICS statement.

---

Tip for Embedding Graph Images in Documents

When including graphs in a paper or presentation, it is recommended that you create your graphs by using the exact size that is used to display the graphs in your paper. In other words, avoid generating them at one size and then expanding or shrinking them for inclusion into your document.

It is often useful to produce a graph that fits in one column of a two-column page. In this case, the column size might be 3.25 inches wide. You can place a default output image, which is 640 by 480 pixels, in this space, but then all graphical elements scale down. This results in small markers and unreadable small fonts.

In this case, it is useful to render the graph to the exact size required, and specify the correct DPI. In the situation above, you would specify a width of 3.25 inches and use the IMAGE_DPI= destination statement option to specify a DPI of 200. Then, the graph produced can be placed in the 3.25" wide column and the fonts and markers are readable.

Note: To get exactly the specified font sizes, use the NOSCALE option in the ODS GRAPHICS statement.

---

Controlling Image Resolution

All ODS destinations use a default DPI (dots per inch) setting when creating ODS Graphics output. For example, by default HTML uses 96 dpi. Graphs that are rendered at higher DPI have greater resolution and larger file size. Although DPI can be set to large values such as 1200, from a practical standpoint, settings larger than 300 dpi are seldom necessary for most applications. Also, setting an unrealistically large DPI like 1200 could cause an out-of-memory condition.
Note: The ODS option for setting DPI is not the same for all destinations. For the LISTING, HTML, and RTF destinations, use the IMAGE_DPI= option. For the PDF destination, use the DPI= option.

Here is an example for the LISTING destination:

```plaintext
ods listing image_dpi=300;
```

For more information about the DPI for a destination, see the appropriate destination statement in the *SAS Output Delivery System: User's Guide*.

See Also

“ODS Destination Statement Options Affecting ODS Graphics” on page 1720

## Adding Data Tips and Other Features

With ODS GRAPHICS statement options, you can control borders and data tips. In the ODS GRAPHICS statement below, taken from Example Code 16.1 on page 1723, the BORDER=OFF option hides the border around the graph. The IMAGEMAP=ON option enables the generation of data tips and drill downs:

```plaintext
ods graphics on /
 width=3.25in
 outputfmt=gif
 imagemap=on
 imagename="MyBoxplot"
 border=off;
```

When viewing HTML output, data tips appear when you position your pointer over certain features of the graph. Data tips and URL drill down functionality are available only for the HTML destination. You can also specify the maximum number of distinct data tip areas allowed before data tips are disabled by using the TOOLTIPMAX= option. There are many other ODS GRAPHICS options that you can use to control other aspects of your graphics. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 96.

**TIP** Many plot statements include a TIP= option to specify the data tip information to be displayed when you specify IMAGEMAP=ON. In addition, the labels and formats for the TIP variables can be controlled with the TIPLABEL= and TIPFORMAT= options. You can also specify TIP=NONE to suppress the data tip for a particular plot in a graph overlay.
Controlling the Image Name and Image Format

For ODS Graphics output, by default, the ODS object name is used as the “root” name for the image output file. You can specify names for your graphics image files and the directory in which you want to save them. The IMAGENAME= option specifies the base image file name.

The default image file format is determined by the ODS destination. You can use the OUTPUTFMT= option to specify a different image file format. The formats that are allowed depend on the specified destination.

Note: For a table that shows which formats are allowed for each ODS destination, see “Specifying the Image Format” on page 120.

In the ODS GRAPHICS statement below, taken from Example Code 16.1 on page 1723, the OUTPUTFMT= option specifies that the file type is a GIF, and the IMAGENAME= option specifies that the name of the image is “MyBoxplot”:

```ods graphics on /
width=3.25in
outputfmt=gif
imagemap=on
imagename="MyBoxplot"
border=off;
```

The resulting file name for the image created is MyBoxplot.GIF. If there is more than one image, they are named MyBoxplot1.GIF, MyBoxplot2.GIF, and so on, with an increasing index counter. All graphs in this example are GIF images.

You can use the PATH= or GPATH= option in the ODS destination statement to specify where the output is created. For more information, see “ODS Destination Statement Options Affecting ODS Graphics” on page 1720. See also the documentation for a destination statement in the SAS Output Delivery System: User’s Guide.

See Also

- “Supported File Types for Output Destinations” on page 123
- “Description of Supported File Types” on page 124
Resetting ODS GRAPHICS Options

You can specify the RESET option to change the values for these options back to their defaults. In Example Code 16.1 on page 1723, the second ODS GRAPHICS statement uses the RESET=ALL option to set options back to their defaults for a new graph:

```ods graphics on / reset=all;```

You can also reset some of the ODS GRAPHICS options individually. For example:

```ods graphics on / reset=width;```

For the complete statement syntax, see "ODS GRAPHICS Statement" on page 96.

Creating a Graph That Can Be Edited

SAS provides an application called the ODS Graphics Editor that can be used to post-process ODS Graphics output.

Note:
- Starting with SAS 9.4M8, the ODS Graphics Editor is a retired product and no longer ships with SAS. It is available in SAS 9.4M7 and earlier releases.
- The ODS Graphics Editor is not included in SAS Viya.
- The graph editing feature is not available with output that is generated from the SGPIE procedure or the SGMAP procedure.

With the editor, you can edit the following features in a graph that was created using ODS Graphics:
- change, add, or remove titles and footnotes
- change style, marker symbols, line patterns, axis labels, and so on
- highlight or explain graph content by adding annotation, such as text, lines, arrows, and circles

To create ODS Graphics output that can be edited, you must specify the SGE=ON option in the destination statement before creating the graph, as shown in the following example. The editable graph feature remains active in the SAS session until you specify SGE=OFF or close the ODS destination.

```/* Specify a path for the ODS output. Replace output-path with your path. See the Note following this code. */
filename odsout "output-path";```
/* Specify the output environment, including SGE=ON. */
ods html path=odsout file="mySGEfile.htm" sge=on;
ods graphics / reset width=4.5in imagename="editableImage";

/* Add statements to generate the plot. */

Note: In SAS Studio, when you customize the output environment, it is useful to specify an output path for the ODS output. Depending on your deployment, you might not have Write permission for the default working directory. For more information about customizing the SAS Studio output environment, see "SAS Studio and ODS" in SAS Output Delivery System: User's Guide.

TIP In the SAS windowing environment, you might specify odsout "." to reference your home directory. In SAS Studio, you would specify odsout "&_SASWS_" to reference your home directory.

All ODS destinations that support ODS Graphics support the SGE= option. For more information about which destinations support ODS Graphics, see “Supported File Types for Output Destinations” on page 123.

When SGE=ON is in effect, a file with an extension of SGE is created in addition to the image file that is normally produced. If the ODS Graphics Editor is installed on your local machine, you can open the SGE file in the ODS Graphics Editor from the Results window of the SAS windowing environment. You can also open the SGE file directly from the Windows file system. The SGE file is always created in the same location as the image output.

After making your changes in the ODS Graphics Editor, you can save your modified graph as an SGE file or as an image file. If you save it as an SGE file, you can open it again for further editing. You can also render the SGE file using the SGRENDER procedure.

For example:

```
proc sgrender sge="MyExample.sge" data=_null_;
run;
```

After you are finished creating editable graphics, you should either close the ODS destination or specify SGE=OFF to discontinue producing SGE files and avoid the extra computational resources used to generate the extra SGE files. For example:

```
ods html sge=off;
```

See Also

PART 5

SG Attribute Maps

Chapter 17

Using Attribute Maps to Control Visual Attributes 1733

Chapter 18

Using Discrete Attribute Maps .. 1737

Chapter 19

Using Range Attribute Maps .. 1755
Using Attribute Maps to Control Visual Attributes

Overview of Attribute Maps

The attribute map feature provides a mechanism for controlling the visual attributes that are applied to specific data values in your graphs.

By default, many of the graphical attributes of a plot vary with the plot data. For example, when plots display grouped values, by default, the graphical attributes for each group value are selected from the GraphData1–GraphDataN style elements in data order. Changes in the data order can significantly change the appearance of the plot.

Attribute maps enable you to assign the same graphical properties to specific values or ranges of values regardless of data order or the data range. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data instead of the position of the data in the data set. For more information, see “Making the Appearance of Grouped Data Independent of Data Order” on page 1696.

The ODS Graphics procedures support two types of attribute maps:

discrete attribute map
 maps discrete data values to graphical properties.
range attribute map
maps ranges of continuous numeric values to graphical properties. This feature applies to SAS 9.4M3 and later releases.

Note: The procedures do not support attribute maps that are stored in CAS in-memory tables.

About Discrete Attribute Maps

A discrete attribute map maps discrete values to graphical properties. For example, consider the following plot of student height grouped by sex. You can use a discrete attribute map to assign pink bars to females and blue bars to males, as shown in the following figure.

Regardless of data order, the same plot colors are applied to the group values.

See Also

Chapter 18, “Using Discrete Attribute Maps,” on page 1737

About Range Attribute Maps

A range attribute map maps numeric values or ranges of numeric values to graphical properties.
Note: This feature applies to SAS 9.4M3 and later releases.

For example, consider the following plot of height and weight distribution. You can use a range attribute map to assign colors to the markers based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green.

See Also

Chapter 19, “Using Range Attribute Maps,” on page 1755
Using Discrete Attribute Maps

How Discrete Attribute Maps Work

A discrete attribute map maps discrete values in your data to graphical properties. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country. You do this by mapping the attributes to the various country names. The sales results for France might be shown in blue whereas the sales results for Japan might be shown in red.

You can use discrete attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures. Starting with SAS 9.4M6, you can use discrete attribute maps in the SGPIE procedure (preproduction).

IMPORTANT With the SGPLOT, SGPANEL, and SGSCATTER procedures, discrete attribute maps apply to group data. Each observation of the attribute map defines the attributes for a group value. With the SGPIE procedure,
discrete attribute maps apply to category data. Each observation of the attribute map defines the attributes for a category value.

Two main tasks are required for discrete attribute mapping:

1. Create a discrete attribute map data set, which associates data values with particular visual attributes. For more information, see "Discrete Attribute Map Data Sets" on page 1738.

2. Modify the procedure and its plot statements to use the data in the discrete attribute map. For more information, see "Modify the Procedure to Use the Discrete Attribute Map Data Set" on page 1745.

See Also

"About Discrete Attribute Maps" on page 1734

Discrete Attribute Map Data Sets

About the Discrete Attribute Map Data Set

Attribute map data sets are used in the procedures to associate data values with visual attributes.

When you have determined which attributes you want to apply to the group or category data in a graph, you can create a discrete attribute map data set. Each observation defines the attributes for a particular group value. With the SGPIE procedure (preproduction), each observation defines the attributes for a particular category value.

Each observation uses reserved variable names for the attribute map identifier (ID), the group or category value (VALUE), and the attributes:

- The ID variable identifies the attribute map that you want to use. A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph. The ID values in the attribute map data set must be continuous (in a sorted order). For more information, see "Data Sets That Contain Multiple Discrete Attribute Maps" on page 1741.

When used with the SGPIE procedure, the ID variable corresponds to an attribute map that maps graphical properties to category values in a graph.

- The VALUE variable associates a group or category value in your graph data with visual attributes in the attribute map.

When used with the SGPLOT, SGPANEL, or SGSCATTER procedure, the VALUE variable contains the group values to which you assign graphical properties. For example, suppose that you are graphing fruit sales. The variable...
in your graph data set that you want to use for grouping is FRUIT. Your plot statement specifies the GROUP=FRUIT option. Then in your attribute map, the first observation might have VALUE=APPLE, the second observation might have VALUE=BANANA, and so on.

When used with the SGPIE procedure, the VALUE variable contains the category values to which you can assign graphical properties.

- The attribute variables associate visual attributes with an observation in the discrete attribute map data set. Some reserved variables are FILLCOLOR=, LINECOLOR=, LINEPATTERN=, and so on. In the previous example, you might apply attributes to each observation to ensure that the graphics elements are red for apples, yellow for bananas, and so on.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the discrete attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data group. The most commonly used method for creating data sets is with a DATA step.

Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

Here is an example of a discrete attribute map data set called MYATTRMAP. The observations in this data set contain the attribute map identifier (ID), the group value (VALUE), and the attributes (LINECOLOR, FILLCOLOR).

Figure 18.1 Listing of the Discrete Attribute Map Data Set MYATTRMAP

<table>
<thead>
<tr>
<th>Obs</th>
<th>linecolor</th>
<th>fillcolor</th>
<th>ID</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pink</td>
<td>pink</td>
<td>myid</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>lightblue</td>
<td>lightblue</td>
<td>myid</td>
<td>M</td>
</tr>
</tbody>
</table>

The data set has these characteristics:

- All variables listed are CHAR variables.
- The value of the ID variable, MYID in this case, is referenced in one or more plot statements within the procedure.
- The values of the VALUE variable are valid data group values. These values are case sensitive. The data group is assigned in the plot statement with the GROUP= option.
- The values for LINECOLOR= and FILLCOLOR= are valid SAS colors. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

The following output shows a bar chart that uses the MYATTRMAP data set for its pink and blue bar colors. The FILLCOLOR= values determine the color of the bars, and the LINECOLOR= values determine the color of the border edges around the bars.

The chart was produced with the SGPLOT procedure. The name of the data set is referenced in the procedure statement.
This DATA step creates the discrete attribute map data set MYATTRMAP. The ID values for the attribute map are MYID.

```
data myattrmap;
length linecolor $ 9 fillcolor $ 9;
input ID $ value $ linecolor $ fillcolor $;
datalines;
myid  F pink pink
myid  M lightblue lightblue
;
run;
```

This procedure generates the graph. The SG PLOT statement references the SASHELP.CLASS data set and the MYATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```
proc sgplot data=sashelp.class dattrmap=myattrmap;
vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

For more information about the highlighted options that are used in the procedure, see “Modify the Procedure to Use the Discrete Attribute Map Data Set” on page 1745.

You use a standard syntax to specify colors, line thickness, line patterns, and marker symbols. For more information about this syntax, see the following topics:

- “Color-Naming Schemes” on page 1660
- “Units of Measurement” on page 1897
- List of Line Patterns on page 1651
- List of Marker Symbols on page 1656
Data Sets That Contain Multiple Discrete Attribute Maps

A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a discrete attribute map data set contains multiple attribute maps:

- The ID variable has more than one value.
- The VALUE variable has different values that correspond to different data groups.
- The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

Note: Plots that specify different ID values must also specify different groups. A group variable can be associated with only one attribute map ID. If a group is associated with more than one attribute map ID value, the graph produces incorrect attribute mapping and a warning is written to the SAS log.

For an example, see “Example: Combine Multiple Discrete Attribute Maps in a Graph” on page 1748.

Reserved Discrete Attribute Map Variables

About the Reserved Discrete Attribute Map Variables

When a discrete attribute map data set is processed, the procedure looks at the values of specific variables in the discrete attribute map data set. The procedure uses these values to associate visual attributes with group data. Variables in the discrete attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.
Variables That Have Style Values

For some variables, you can specify a style element or a style attribute as the value. Here are examples:

- GraphData2 is an example of a style element.
- GraphData2:Color is an example of a style attribute.

For more information about style elements, see “Style Elements for Use with ODS Graphics” on page 1708.

For a table of the style elements and attributes that you can use with ODS Statistical Graphics, see “Style Elements Affecting Template-Based Graphics” in SAS Output Delivery System: Procedures Guide. This table contains each style element, the portion of the graph that it affects, and the default attribute values.

Required Reserved Variables

The ID and VALUE variables are required for every discrete attribute map data set. If they are not found, a warning is written to the SAS log, and the data set is ignored. The remaining attribute variables are used as applicable to the plot type.

Descriptions of the Reserved Variables

The following list describes each reserved variable.

FILLCOLOR= "color"
specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

FILLSTYLE= "style-element"
specifies the style element for fill attributes. If you specify the style element, you can also specify the FILLCOLOR variable to override the color.

FILLTRANSPARENCY=value
specifies the degree of transparency for the fill.

Note: This feature applies to SAS 9.4M1 and later releases.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

ID= "text-string"
(required) specifies the ID of the attribute map. This value is referenced from the ATTRID option on one or more plot statements.
Though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes.

LINECOLOR= "color"
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

The color that you specify here also applies to the line labels, if displayed.

LINEPATTERN= "line-pattern"
specifies a line pattern for lines and outlines. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Note This variable has no effect on bar chart outlines.

LINESTYLE= "style-element"
specifies the style element for line attributes. If you specify the style element, you can also specify the LINEPATTERN and LINECOLOR variables to override specific appearance attributes.

LINETHICKNESS=numeric-value
specifies the line thickness in pixels.

Note: This feature applies to SAS 9.4M1 and later releases.

MARKERCOLOR= "color"
specifies the color for the markers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

The color that you specify here also applies to the marker labels, if displayed.

MARKERSIZE=numeric-value
specifies the size of the marker in pixels.

Note: This feature applies to SAS 9.4M1 and later releases.

MARKERSTYLE= "style-element"
specifies the style element for marker attributes. If you specify the style element, you can also specify the MARKERSYMBOL, MARKERCOLOR, and MARKERSIZE variables to override specific appearance attributes.

MARKERSYMBOL= "symbol-name"
specifies the symbol for the markers. See marker symbols on page 1656.

MARKERTRANSPARENCY=value
specifies the degree of transparency for the markers.

Note: This feature applies to SAS 9.4M1 and later releases.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

NOCASE="TRUE" | "FALSE"
specifies whether value comparisons in the attribute map are case sensitive.
"TRUE"
The value comparisons are not case sensitive.

"FALSE"
The value comparisons are case sensitive. Each instance of a value must have the exact same capitalization.

Default "FALSE"

SHOW="ATTRMAP" | "DATA"
specifies whether values in the attribute map are displayed in the legend.

"ATTRMAP"
displays all attribute map values in the legend.

"DATA"
displays only the map values for which there is data.

Default "DATA"

TEXTCOLOR= "color"
specifies the color of the text in an axis table or in a text plot. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Note: This feature applies to SAS 9.4M1 and later releases.

Note This attribute applies to axis tables and to text plots.

See "Example: Use a Discrete Attribute Map with an Axis Table" on page 1752

TEXTFAMILY= "font-family"
specifies the font family for the text in an axis table. The SAS ODS styles use TrueType system fonts. For more information, see "Managing Fonts in Universal Printing" in SAS 9.4 Universal Printing.

Note: This feature applies to SAS 9.4M1 and later releases.

Restriction This attribute can be applied only to axis tables.

See "Example: Use a Discrete Attribute Map with an Axis Table" on page 1752

TEXTSTYLE= "NORMAL" | "ITALIC"
specifies the style of the text in an axis table.

Note: This feature applies to SAS 9.4M1 and later releases.

Restriction This attribute can be applied only to axis tables.

See "Example: Use a Discrete Attribute Map with an Axis Table" on page 1752
TEXTSTYLEELEMENT= "style-element"

specifies the style element for the text in a text plot or in an axis table. If you specify the style element, you can also specify the TEXTCOLOR, TEXTFAMILY, TEXTSTYLE, and TEXTWEIGHT variables to override specific appearance attributes.

Note: This feature applies to SAS 9.4M1 and later releases.

Restriction

The color attribute of the specified style element applies to text plots and axis tables. The font attribute applies only to axis tables.

TEXTWEIGHT= "NORMAL" | "BOLD"

specifies the weight of the text in an axis table.

Note: This feature applies to SAS 9.4M1 and later releases.

Restriction

This attribute can be applied only to axis tables.

See

"Example: Use a Discrete Attribute Map with an Axis Table" on page 1752

VALUE= "text-string"

(required) specifies the group data value that is assigned to the attributes. The value must be valid for the data group that is assigned in the plot statement with the GROUP= option. You can provide different values in the data set if your plots specify different group variables.

Notes

By default, the group values are case sensitive. Each instance of a value must have the exact same capitalization. To make the values case insensitive, specify NOCASE="TRUE".

If the group value is formatted, then the *text-string* in the attribute map data set must contain the formatted value.

VALUE= also accepts the _MISSING_ and _OTHER_ keywords. The keyword _OTHER_ in the column can be used to define the attributes of any values that are not explicitly defined in the map. The _MISSING_ keyword is used to define attributes when the data contains missing values. These keywords are not case sensitive.

Modify the Procedure to Use the Discrete Attribute Map Data Set

After you have created a discrete attribute map data set, you can modify the ODS Graphics procedure and its plot statement or statements to reference the discrete attribute map data.

To reference attribute map data in a procedure:
1. Add the DATTRMAP= option to the procedure statement and specify the name of the discrete attribute map data set.

2. If you are using the SGPLOT, SGPANEL, or SGSCATTER procedure, then perform these steps for each plot statement that maps attributes:
 - Specify the GROUP= option. The group’s values must correspond to the values in the VALUE variable in the attribute map data set.
 - Specify the ATTRID= option. This option specifies the value of the ID variable that is in the discrete attribute map data set.

 If the discrete attribute map data set contains more than one ID value, then the plot statements can specify different ATTRID values. However, plots that specify different ATTRID values must also specify different groups. A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1741.

 If the ATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the ATTRID is ignored.

3. If you are using the SGPIE procedure (preproduction), then specify the ATTRID= option in the chart statement. The ATTRID= option specifies the value of the ID variable that is in the discrete attribute map data set.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.

Note: WHERE expressions cannot be used to subset attribute map data in the ODS Graphics procedures. The reason is that the WHERE expression might unintentionally affect both the data and the attribute map. If you want to subset your attribute map data, set up that data prior to using the procedure.

In the SGPLOT and SGPANEL procedures, any plot statement that supports GROUP variables supports discrete attribute mapping. The following plot statements support discrete attribute mapping:

<table>
<thead>
<tr>
<th>BAND</th>
<th>HISTOGRAM</th>
<th>TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK</td>
<td>HLINE</td>
<td>VBAR</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>LINEPARM</td>
<td>VBARBASIC</td>
</tr>
<tr>
<td>DENSITY</td>
<td>LOESS</td>
<td>VBARPARM</td>
</tr>
<tr>
<td>DOT</td>
<td>NEEDLE</td>
<td>VBOX</td>
</tr>
<tr>
<td>FRINGE</td>
<td>PBSPLINE</td>
<td>VECTOR</td>
</tr>
<tr>
<td>HBAR</td>
<td>POLYGON</td>
<td>VLINE</td>
</tr>
<tr>
<td>HBARBASIC</td>
<td>REG</td>
<td>WATERFALL *</td>
</tr>
<tr>
<td>HBARPARM</td>
<td>SCATTER</td>
<td>XAXISTABLE *</td>
</tr>
<tr>
<td>HBOX</td>
<td>SERIES</td>
<td>YAXISTABLE *</td>
</tr>
<tr>
<td>HEATMAPPARM</td>
<td>SPLINE</td>
<td>COLAXISTABLE **</td>
</tr>
<tr>
<td>HIGHLOW</td>
<td>STEP</td>
<td>ROWAXISTABLE **</td>
</tr>
</tbody>
</table>

*applies to the SGPLOT procedure only
**applies to the SGPANEL procedure only
Here is an example of an SG PLOT procedure that references the discrete attribute map data set shown in the example Figure 18.1 on page 1739. The options that reference the attribute map (data set and ID) are highlighted.

```
proc sgplot data=sashelp.class dattrmap=myattrmap;
  vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

Example: Create a Plot That Uses a Single Discrete Attribute Map

This example creates a simple bar chart that uses a discrete attribute map.

Figure 18.3 Bar Chart That Uses a Discrete Attribute Map

Here is the SAS code that creates the input data set, the attribute map data set, and the SG PLOT procedure output.

This DATA step creates the data that is used for the graph. The FRUIT variable is used in the procedure to group the data.

```
data fruit_sales;
  input Fruit $ Sales;
datalines;
    Apples   40
    Pears    25
    Oranges  50
    Grapes   30
    Bananas  60
run;
```
This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are FRUIT.

```sas
data attrmapfruit;
retain linecolor "black";
input id $ value $ fillcolor $;
datalines;
fruit Apples red
fruit Pears green
fruit Oranges orange
fruit Grapes purple
fruit Bananas yellow
;
run;
```

This PROC step generates the graph. The SGPLOT statement references the FRUIT_SALES data set and the ATTRMAPFRUIT attribute map data set. The plot statement references the attribute map ID (FRUIT).

```sas
title  "Fruit Sales";
proc sgplot data=fruit_sales dattrmap=attrmapfruit;
vbar Fruit / response=Sales group=Fruit attrid=fruit;
run;
```

Example: Combine Multiple Discrete Attribute Maps in a Graph

This example uses a discrete attribute map data set that contains two attribute maps. Here are the noteworthy characteristics of the attribute map data set and the procedure:

- The attribute map data set has these features:
 - The ID variable has two values.
 - The VALUE variable has different values that correspond to two different data groups.
 - The ID values in the attribute map data set are continuous (in a sorted order). If they were not, the example would use the SORT procedure to sort the data set by ID (in ascending or descending order).

- In the procedure, the plot statements specify different ATTRID= values in order to use the different attribute maps. The plot statements also specify different GROUP= values. (A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1741.)
Here is the SAS code that creates the attribute map data set and uses the SGPLOT procedure to generate the graph.

This DATA step creates the data that is used for the graph. The STATE and TYPE variables are used in the procedure to group the data.

```sas
data finances;
format income dollar8. expense dollar8.;
length expensetype $ 9;
input Year incometyp $ income expensetype $ expense;
datalines;
2000 Salary 20000 Utilities 4000
2000 Bonus 2000 Rent 7000
2000 Gifts 500 Food 8000
2001 Salary 25000 Utilities 5000
2001 Bonus 1000 Rent 8000
2001 Gifts 200 Food 6000
2002 Salary 23000 Utilities 4500
2002 Bonus 500 Rent 9000
2002 Gifts 500 Food 7000;
run;
```

This DATA step creates the discrete attribute map data set. The data set contains two attribute maps. Each attribute map is specified by an ID value: INCOME or EXPENSE.

```sas
data attrmap;
length value $ 9 fillcolor $ 9;
retain linecolor "black";
input id $ value $ fillcolor $;
datalines;
income Salary blue
income Bonus gray
```

Example: Combine Multiple Discrete Attribute Maps in a Graph
This PROC step generates the graph. The SGPLOT statement references the FINANCES data set and the ATTRMAP attribute map data set. Each plot statement references an attribute map ID. The plot statements also specify different GROUP= values.

```
proc sgplot data=finances dattrmap=attrmap;
yaxis label="Dollars";
vbarparm category=year response=income / group=incometype attrid=income
  barwidth=0.4 groupdisplay=stack
discreteoffset=-0.2 name="income";
vbarparm category=year response=expense / group=expensetype attrid=expense
  barwidth=0.4 groupdisplay=stack
discreteoffset=0.2 name="expense";
keylegend "income" / position=bottomleft title="Income";
keylegend "expense" / position=bottomright title="Expenses";
run;
```

Example: Create a Panel That Uses an Attribute Map

This example uses the SGPANEL procedure to generate discrete attribute map output.
Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are MYID.

```sas
data attrmap;
  retain ID "myid"
  retain markersymbol "circlefilled";
  input value $ markercolor $ linecolor $ linepattern $;
  datalines;
  F orange orange solid
  M blue blue solid
; run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the ATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
title "Height and Weight by Age";
proc sgpanel data=sashelp.class dattrmap=attrmap;
  panelby age;
  reg x=weight y=height / group=sex attrid=myid;
run;
title;
```
Example: Use a Discrete Attribute Map with an Axis Table

This example creates a simple bar chart along with an axis table. Both the chart and the axis table use a discrete attribute map.

Figure 18.6 Bar Chart and Axis Table That Use a Discrete Attribute Map

Here is the SAS code that creates the attribute map data set and the SGPLOT procedure output.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable.

```
data myattrmap;
id="myid"; value="M";
   linecolor="blue"; fillcolor="blue";
   textcolor="blue"; textstyle="normal";
   textweight="normal";
output;

id="myid"; value="F";
   linecolor="red"; fillcolor="pink";
   textcolor="red"; textstyle="italic";
   textweight="bold";
output;
run;
```
Example: Use a Discrete Attribute Map with the SGPIE Procedure

This example creates a simple pie chart that uses a discrete attribute map. The example first defines a format that uses the Other keyword to group all vehicle types that are not sedans.

Figure 18.7 Pie Chart That Uses a Discrete Attribute Map

Here is the SAS code that defines the format, creates the attribute map data set, and generates the SGPIE procedure output.

```sas
proc format;
   value $type
      'Sedan'='Sedan'
      otherwise='Other';
run;

data attrmap;
   length ID $ 9 FillColor $ 20;
   input id $ Value $ fillcolor $;
```
datalines;
mytype Sedan gold
mytype Other forestgreen
;
run;

title "Sedans Compared with Other Vehicle Types";
proc sgpie data=sashelp.cars dattrmap=attrmap;
 format type $type.;
 pie type / startangle=90 attrid=mytype;
run;
title;
Main Tasks for Range Attribute Mapping

A range attribute map maps numeric values or ranges of numeric values to graphical properties.

Two main tasks are required for range attribute mapping:

1. Create a range attribute map data set, which associates data values with particular visual attributes. For more information, see "Range Attribute Map Data Sets" on page 1756.

2. Modify the procedure and its plot statements to use the data in the range attribute map. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures (not all plot statements support attribute maps). For more information, see "Modify the Procedure to Use the Range Attribute Map Data Set" on page 1762.

Note: This feature applies to SAS 9.4M3 and later releases.
Range Attribute Map Data Sets

About the Range Attribute Map Data Set

When you have determined which attributes you want to apply to the data in a graph, you can create a range attribute map data set. Each observation defines the color attributes for a particular range.

Each observation uses reserved variable names for the attribute map identifier (ID), one or two variables that define the range (MIN and MAX), and the color attributes:

- The ID variable identifies the attribute map that you want to use. A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different plots in a graph. The ID values in the attribute map data set must be continuous (in a sorted order). For more information, see “Data Sets That Contain Multiple Range Attribute Maps” on page 1758.

- The MIN and MAX variables define the ranges in the attribute map. The MIN variable is always required. The MAX variable is sometimes required depending on the value that you provide for the MIN variable.

 In addition, two variables (EXCLUDEMIN, EXCLUDEMAX) enable you to exclude the first or last end points in a range, respectively. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.

- The attribute variables associate color attributes with an observation in the range attribute map data set.

 There are three ways to assign colors to a range:

 - assign a single color to a range.
 - specify a reference to an ODS style element that contains color ramp start and end colors (with an optional neutral color).
 - use variable names COLORMODEL1 – COLORMODELn to specify several consecutive colors for the range. This list of colors creates a gradient across the range. See “Example: Create a Panel That Uses COLORMODELn Variables” on page 1763.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that a range attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data range. The most commonly used method for creating data sets is with a DATA step.
Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

The following output shows a scatter plot that uses a range attribute map to assign marker colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green. The chart was produced with the SGPLOT procedure.

Figure 19.1 Example Range Attribute Map Output

Here is the code for the example.

The DATA step creates the range attribute map data set MYRATTRMAP. The ID values for the attribute map are MYID. Three ranges are defined.

```sas
data myrattrmap;
  retain id "myID";
  length min $ 5 max $ 5;
  input min $ max $ color $ altcolor $;
  datalines;
  _min_ 80    purple purple
  80   100   gold   gold
  100   _max_ green  green
  ;
run;
```

The following procedure generates the graph. The SGPLOT statement references the SASHELP.CLASS data set and the MYRATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class rattrmap=myrattrmap;
  scatter x=height y=weight / colorresponse=weight rattrid=myID;
run;
```

Note: The COLORRESPONSE= option must be specified in order for the attribute map to be applied to the plot.
Data Sets That Contain Multiple Range Attribute Maps

A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a range attribute map data set contains multiple attribute maps:
- The ID variable has more than one value.
- The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

Reserved Range Attribute Map Variables

About the Reserved Range Attribute Map Variables

When a range attribute map data set is processed, the procedure looks at the values of specific variables in the attribute map data set. The procedure uses these values to associate visual attributes with the range data. Variables in the attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

Required Reserved Variables

Each observation in the data set requires the ID variable and one or two variables that define the range (MIN and MAX). If the required variables are not found, a warning is written to the SAS log, and the data set is ignored.

Note: For helpful information about defining ranges, see “Tips for Defining Ranges” on page 1762.

The following list describes the required variables.
ID= "text-string"
specifies the ID of the attribute map. This value is referenced from the RATTRID option in one or more plot statements.

Even though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes. See “Data Sets That Contain Multiple Range Attribute Maps” on page 1758.

MIN=numeric-value | "keyword"
defines the minimum value of the range specification. You can specify a numeric value, or you can specify one of several accepted keywords. The keywords are character values.

You can specify one of the following keywords as the minimum value:

=_MIN_ indicates the minimum data value for the response variable.
=_NEGMAX_ indicates –MAX
=_NEGMAXABS_ indicates –max(abs(MIN) , abs(MAX))

Rather than specifying a low value, you can use one of the following keywords for the range specification.

Note: When you specify one of the following four keywords, the value in the MAX column is not required.

=_MISSING_ indicates a mapping for missing values. The visual attributes for this setting are obtained from the GraphMissing style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include missing values.

=_OTHER_ creates a category for all other column values not explicitly assigned to a range. The _OTHER_ values can consist of several non-contiguous ranges. The visual attributes for this setting are obtained from the GraphOther style element.

=_OVER_ creates a range for all data between the highest mapped value and the highest actual data value. The visual attributes for this setting are obtained from the GraphOverflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include overflow values.

=_UNDER_ creates a range for all data values between the lowest mapped value and the lowest actual data value. The visual attributes for this setting are obtained from the GraphUnderflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include underflow values.

Tip Use the EXCLUDEMIN optional variable to exclude the lowest end point in the range. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.
MAX=numeric-value | "keyword"

defines the maximum value of the range specification. You can specify a numeric value, or you can specify one of two accepted keywords. The keywords are character values.

This variable is required unless one of the special four keywords is specified for the MIN variable (_MISSING_, _OTHER_, _OVER_, _UNDER_).

You can specify one of the following keywords as the maximum value:

- **_MAX_** indicates the maximum data value for the response variable.
- **_MAXABS_** indicates max(abs(MIN), abs(MAX))

Tip Use the EXCLUDEMAX optional variable to exclude the highest end point in the range.

Optional Reserved Variables

The following list describes each optional reserved variable.

ALTCOLOR= "color"

assigns a single color to the lines, markers, and text in a range. You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

ALTCOLORMODEL1–N

specifies several consecutive line, marker, and text colors for the range. This list of colors creates a gradient across the range.

Requirement The columns must be contiguous (ALTCOLORMODEL1, ALTCOLORMODEL2, and so on). Any gaps prevent the remaining colors from being used.

ALTCOLORMODELSTYLE="style-element"

specifies a style reference to a gradient style element.

style-element specifies the name of a gradient style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value.
- **NEUTRALCOLOR** specifies the color for the midpoint of the data range. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value.

Interaction This option is ignored if the ALTCOLOR= option is specified.

Tip To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp.

See “Style Elements for Use with ODS Graphics” on page 1708
COLOR= "color"
specifies the fill color for the range. You can specify colors using a number of
different color-naming schemes. For more information, see "Color-Naming
Schemes" on page 1660.

COLORMODEL1–N
specifies several consecutive fill colors for the range. This list of colors creates a
gradient across the range.

Requirement The columns must be contiguous (COLORMODEL1,
COLORMODEL2, and so on). Any gaps prevent the remaining
colors from being used.

See “Example: Create a Panel That Uses COLORMODELn Variables”
on page 1763

COLORMODELSTYLE="style-element"
specifies a style reference to a gradient style element.

style-element
specifies the name of a gradient style element. The style element should
contain these style attributes:

STARTCOLOR specifies the color for the smallest data value.
NEUTRALCOLOR specifies the color for the midpoint of the data
range. This attribute is not required when you
specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value.

Interaction This option is ignored if the COLOR= option is specified.

Tip To display the range as a gradient ramp, choose a style element
such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp,
or ThreeColorAltRamp.

See “Style Elements for Use with ODS Graphics” on page 1708

Example colormodelstyle=TwoColorRamp

Default The ThreeColorAltRamp style element

EXCLUDEMAX="TRUE" | "FALSE" | 1 | 0
Specifies whether to exclude the maximum value from the range specification.
This column can be character or numeric. If the column is character, you must
use the values “TRUE” or “FALSE”. If the column is numeric, the values must be
1 or 0.

EXCLUDEMIN="TRUE" | "FALSE" | 1 | 0
Specifies whether to exclude the minimum value from the range specification.
This column can be character or numeric. If the column is character, you must
use the values “TRUE” or “FALSE”. If the column is numeric, the values must be
1 or 0.
Tips for Defining Ranges

Here are some helpful notes and tips for specifying ranges in the attribute map data set:

- If two ranges share a common endpoint (for example, 10–20 and 20–30) and you do not use EXCLUDEMIN or EXCLUDEMAX, then the common endpoint belongs to the lower encountered range (10–20 in this case). The order of the specification does not matter.

- If two or more ranges define colors to associate with the same numeric values or ranges, then the first range’s settings are used.

- If any range overlaps another range (for example, 10–20 and 15–25), then the entire attribute map is ignored and default coloring is used.

- To set a single numeric value, specify the same value for both the low value and the high value.

- If the low value is not less than or equal to the high value, then the range specification is invalid, and the range is ignored in the attribute map.

- If a range is not defined for keyword MIN="_OTHER_", then gaps within the attribute map ranges are assigned the default color that is defined by the GraphOther:ContrastColor style reference.

Modify the Procedure to Use the Range Attribute Map Data Set

After you have created a range attribute map data set, you can modify the procedure and its plot statements to reference the attribute map data. You can use range attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To reference attribute map data in a procedure:

1. Add the RATTRMAP= option to the procedure statement and specify the name of the range attribute map data set.

2. For each plot statement that maps attributes, perform these steps:
 - Specify the RATTRID= option. This option specifies the value of the ID variable in the range attribute map data set.
 - If the range attribute map data set contains more than one ID value, then the plot statements can specify different RATTRID values. For more information, see “Data Sets That Contain Multiple Range Attribute Maps” on page 1758.
 - If the RATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the RATTRID option is ignored.
Specify the COLORRESPONSE= option.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.

Note: WHERE expressions cannot be used to subset attribute map data in the ODS Graphics procedures. The reason is that the WHERE expression might unintentionally affect both the data and the attribute map. If you want to subset your attribute map data, set up that data prior to using the procedure.

In the SGPLOT and SGPANEL procedures, the following plot statements support range attribute mapping:

- BUBBLE
- HEATMAPPARM
- TEXT
- DOT
- HIGHLOW
- VBAR
- HBAR
- POLYGON
- VBARBASIC
- HBARBASIC
- SCATTER
- VBARPARM
- HBARP ARM
- SERIES
- VECTOR
- HEATMAP
- SPLINE
- WATERFALL*

*applies to the SGPLOT procedure only

Here is an example of an SGPLOT procedure that references the range attribute map data set shown in Figure 19.1 on page 1757. The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class rattrmap=myrattrmap;
    scatter x=height y=weight / colorresponse=weight rattrid=myID;
run;
```

Example: Create a Panel That Uses COLORMODELn Variables

This example uses the SGPANEL procedure to generate range attribute map output. The graph uses a range attribute map to assign fill colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as a gradient of red, orange, and yellow.
Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

A DATA step creates the range attribute map data set. The data set contains one attribute map, which is specified by the ID variable. The data set defines three ranges. The third range uses the COLORMODEL1 – COLORMODEL3 variables to specify a custom gradient of three colors.

```sas
data clrresp;
  retain id "myid";
  length min $ 5 max $ 5;
  input min $ max $ color $ altcolor $ colormodel1 $ colormodel2 $ colormodel3 $;
  datalines;
  _min_ 90 purple purple . . .  
  90 100 gold gold . . .  
  100 _max_ . . red orange yellow
; 
run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the CLRRESP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
proc sgpanel data=sashelp.class rattrmap=clrresp;
  panelby sex;
  vbar age / colorresponse=weight rattrid=myid
    response=weight stat=mean colorstat=mean;
run;
```
Overview of SG Annotation

The ODS Statistical Graphics (SG) procedures provide a mechanism for adding shapes, images, and other annotations to graph output.

You can add the following annotation elements to a graph:

- text labels
- lines and arrows
- ovals (including circles)
- rectangles (including squares)
- polygons
- images

There are two main tasks required to add annotation elements to a graph:

1. Create an SG annotation data set, which contains the commands for creating the annotation elements. For more information, see “About the SG Annotation Data Set” on page 1768.
2 Modify the SG procedure to use the SG annotation data set. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures. For more information, see "Modifying an SG Procedure to Use the SG Annotation Data Set" on page 1772.

SG Annotation Data Sets

About the SG Annotation Data Set

Once you have determined which annotation you want and how you want it to appear in the output, you can create the SG annotation data set. This data set contains the commands for creating one or more annotation elements. The annotations drawn by these commands can be added to SG procedure output.

Each observation represents a command to draw an annotation element or to continue an element. Reserved keywords are used for functions that specify the drawing operation.

Note: The procedures do not support annotation commands that are stored in a CAS in-memory table.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the SG annotation data set uses reserved keywords for its variable names, and each observation represents a command to draw an annotation element.

Here is an example of an SG annotation data set named LINE. The observations in this data set contain the commands that create a blue text label and a blue line.

Figure 20.1 LINE SG Annotation Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>label</th>
<th>textcolor</th>
<th>linecolor</th>
<th>drawspac</th>
<th>function</th>
<th>x1</th>
<th>y1</th>
<th>x2</th>
<th>y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average Height 62 Inches</td>
<td>blue</td>
<td>datavalue</td>
<td>text</td>
<td>60 64</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>blue</td>
<td>datavalue</td>
<td>line</td>
<td>50 62 150 62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A blank denotes a missing value for a character variable. A '.' denotes a missing value for a numeric variable.

Each observation in this data set contains complete instructions for drawing an annotation. The value of the FUNCTION variable determines what the observation does. Other variables control how the function is performed.

This list describes each observation in LINE and the task that it performs:

1 This instruction writes a blue text inset at position (60, 64). The value of the FUNCTION variable (TEXT) tells the program what to do. The values of the coordinate variables X1 and Y1 tell where to do it. The value of the attribute variable TEXTCOLOR specifies the color of the text inset.
2 This instruction draws a blue line that begins at position (50, 62) and ends at (150, 62). The value of the FUNCTION variable (LINE) tells the program what to do. The values of the coordinate variables X1, Y1, X2, and Y2 tell where to do it. The value of the attribute variable LINECOLOR specifies the color of the line.

The following figure shows the blue text and line annotations created by the LINE data set displayed with an SGPLOT procedure that specifies a scatter plot.

Figure 20.2 LINE SG Annotation Output

Here is the SAS code step that creates the LINE data set and generates the graph.

```sas
ods graphics / reset;

data Line;
   infile datalines dlm='#';
   length label $ 27
   textcolor $ 9
   linecolor $ 9
   drawspace $ 9;
   retain drawspace "datavalue";
   input function $ x1 y1 label x2 y2 textcolor linecolor;
   datalines;
   text # 60 # 64 # Average Height 62 Inches # . # . # blue #
   line # 50 # 62 # # 150 # 62 # # blue
;
run;

proc sgplot data=sashelp.class sganno=Line;
```
SG Annotation Variables

When an SG annotation data set is processed, the SG procedure looks at the values of specific variables in order to draw annotation elements. Variables in the SG annotation data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

The variables can be categorized into the following main types:

- A FUNCTION variable specifies which annotation element to draw. For more information, see “SG Annotation Functions” on page 1770.
- Position variables specify the point or points at which to draw the graphics element.
- Coordinate system variables specify the drawing space to use for the annotation. For more information, see “Controlling the Drawing Space” on page 1773.
- Attribute variables specify the characteristics of the graphics element (for example, color, size, line style, text font).

All variables are described in the context of the functions and macros that support the variables.

SG Annotation Functions

In an SG annotation data set, the FUNCTION variable accepts a set of predefined values (functions) that insert annotation elements into the graph. The value of the FUNCTION variable specifies what drawing action the observation performs. These functions act in conjunction with other variables that determine where and how to perform the action.

The following table summarizes the functions:

Table 20.1 Summary of SG Annotation Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROW</td>
<td>Draws an arrow annotation. For more information, see “ARROW Function” on page 1777.</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Specifies a graphic file to use for an image annotation. For more information, see “IMAGE Function” on page 1784.</td>
</tr>
<tr>
<td>LINE</td>
<td>Draws a line annotation. For more information, see “LINE Function” on page 1789.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>OVAL</td>
<td>Draws an oval or circle annotation. For more information, see “OVAL Function” on page 1795.</td>
</tr>
<tr>
<td>POLYCONT</td>
<td>Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. For more information, see “POLYCONT Function” on page 1800.</td>
</tr>
<tr>
<td>POLYGON</td>
<td>Specifies the beginning point of a polygon. For more information, see “POLYGON Function” on page 1803.</td>
</tr>
<tr>
<td>POLYLINE</td>
<td>Specifies the beginning point of a polyline, which is a connected series of line segments. For more information, see “POLYLINE Function” on page 1807.</td>
</tr>
<tr>
<td>RECTANGLE</td>
<td>Draws a rectangle or square annotation. For more information, see “RECTANGLE Function” on page 1811.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Places text in the graph output. For more information, see “TEXT Function” on page 1817.</td>
</tr>
<tr>
<td>TEXTCONT</td>
<td>Continues a text string. For more information, see “TEXTCONT Function” on page 1824.</td>
</tr>
</tbody>
</table>

Using Variables as Arguments

The function parameters are either numeric or character. Numeric parameters can be numeric constants or numeric column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable column names for parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the data. See “Example 3: Create Custom Labels” on page 1830.
Modifying an SG Procedure to Use the SG Annotation Data Set

After you have created an SG annotation data set, you can modify the SG procedure to reference the annotation data. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To modify the procedure to use the SG annotation data set, add the following option to the procedure statement.

\[
\text{SGANNO=} \text{annotation-data-set}
\]

specifies the SG annotation data set that you want to use. For more information about SG annotation data sets, see “SG Annotation Data Sets” on page 1768.

You can also create margins around the graph by using the PAD= option.

\[
\text{PAD=} \text{dimension<units>} \mid (\text{pad-options})
\]

specifies the amount of extra space that is reserved along the edges of the graph. This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1659.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

\text{pad-options} can be one or more of the following:

\[
\text{LEFT=} \text{dimension<units>}
\]

specifies the amount of extra space to add to the left edge.

\[
\text{RIGHT=} \text{dimension<units>}
\]

specifies the amount of extra space to add to the right edge.

\[
\text{TOP=} \text{dimension<units>}
\]

specifies the amount of extra space to add to the top edge.

\[
\text{BOTTOM=} \text{dimension<units>}
\]

specifies the amount of extra space to add to the bottom edge.
Controlling the Drawing Space

About the Drawing Space

You can control the position and scaling of your annotations by specifying the drawing space and units in the SG annotation data set. You have the option to specify the drawing space for the X or Y axes individually, or for both axes.

All annotations are rendered in one of four drawing areas. In the figures, arrows indicate the extent of the horizontal and vertical drawing space:

- **graph area**: the entire region of the graph image. The graph area contains the axes, titles, footnotes, legends, and one or more cells.

- **layout area**: the area of the layout, not including any titles and footnotes. The layout area contains the axes, legends, and one or more cells.
wall area
the area within the axes, including the axis offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)

data area
the area within the axes, **not including** the axis offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)

Annotations can be rendered in the drawing areas using one of three units:
- percentage
- pixels
- data value (data area only)

Drawing Space Variables

You can specify the drawing space values for the following variables in the SG annotation data set:
Table 20.2 Data Set Variables That Are Used to Specify Drawing Space

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Supported Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWSPACE</td>
<td>specifies the drawing space for the annotation</td>
<td>all except POLYCONT and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEXTCONT</td>
</tr>
<tr>
<td>X1SPACE</td>
<td>specifies the drawing space of the annotation’s X coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>X2SPACE</td>
<td>specifies the drawing space of the annotation’s second X coordinate.</td>
<td>ARROW, LINE</td>
</tr>
<tr>
<td>Y1SPACE</td>
<td>specifies the drawing space of the annotation’s Y coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>Y2SPACE</td>
<td>specifies the drawing space of the annotation’s second Y coordinate.</td>
<td>ARROW, LINE</td>
</tr>
</tbody>
</table>

Drawing Space Values

Here are the values that are used in the SG annotation data set to control the drawing space.

Note: For more information about the data, graph, layout, or wall areas, see “About the Drawing Space” on page 1773.

DATAPERCENT
positioned and scaled as a percentage with respect to the data area.

DATAPIXEL
positioned and scaled as pixels with respect to the data area.

DATAVALUE
positioned and scaled with respect to the data values.

GRAPHPERCENT
positioned and scaled as a percentage of the graph area.

GRAPHPixel
positioned and scaled as pixels with respect to the graph area.

LAYOUTPERCENT
positioned and scaled as a percentage of the layout area.

Note: LAYOUTPERCENT is the default value.

LAYOUTPIXEL
positioned and scaled as pixels with respect to the layout area.
WALLPERCENT
positioned and scaled as a percentage of the wall area.

WALLPIXEL
positioned and scaled as pixels with respect to the wall area.

Note: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
SG Annotation Function

Dictionary

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROW Function</td>
<td>1777</td>
</tr>
<tr>
<td>IMAGE Function</td>
<td>1784</td>
</tr>
<tr>
<td>LINE Function</td>
<td>1789</td>
</tr>
<tr>
<td>OVAL Function</td>
<td>1795</td>
</tr>
<tr>
<td>POLYCONT Function</td>
<td>1800</td>
</tr>
<tr>
<td>POLYGON Function</td>
<td>1803</td>
</tr>
<tr>
<td>POLYLINE Function</td>
<td>1807</td>
</tr>
<tr>
<td>RECTANGLE Function</td>
<td>1811</td>
</tr>
<tr>
<td>TEXT Function</td>
<td>1817</td>
</tr>
<tr>
<td>TEXTCONT Function</td>
<td>1824</td>
</tr>
</tbody>
</table>

Examples

- Create an Arrow in a Paneled Graph
- Create a Tabular Text Annotation
- Create Custom Labels

Dictionary

ARROW Function

Draws an arrow annotation from the specified (X1, Y1) coordinates to the specified (X2,Y2) coordinates.
Syntax

FUNCTION= "ARROW";

Required Variables

\[X1=\text{numeric-value} | XC1= \text{"text-string"}\]
specifies the first X coordinate of the annotation.
Use one of the following arguments:

\[X1=\text{numeric-value}\]
specifies the X coordinate for numeric data.

\[XC1= \text{"text-string"}\]
specifies the X coordinate for character data.

Default none

\[X2=\text{numeric-value} | XC2= \text{"text-string"}\]
specifies the second X coordinate of the annotation.
Use one of the following arguments:

\[X2=\text{numeric-value}\]
specifies the X coordinate for numeric data.

\[XC2= \text{"text-string"}\]
specifies the X coordinate for character data.

Default none

\[Y1=\text{numeric-value} | YC1= \text{"text-string"}\]
specifies the first Y coordinate of the annotation.
Use one of the following arguments:

\[Y1=\text{numeric-value}\]
specifies the Y coordinate for numeric data.

\[YC1= \text{"text-string"}\]
specifies the Y coordinate for character data.

Default none

\[Y2=\text{numeric-value} | YC2= \text{"text-string"}\]
specifies the second Y coordinate of the annotation.
Use one of the following arguments:

\[Y2=\text{numeric-value}\]
specifies the Y coordinate for numeric data.

\[YC2= \text{"text-string"}\]
specifies the Y coordinate for character data.

Default none
Optional Variables

DIRECTION= "BOTH" | "IN" | "OUT"

specifies the direction for arrows.

"BOTH"
Places the arrowhead at both ends of the line.

"IN"
Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

"OUT"
Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default OUT

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.
LAYER= "BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

SCALE= numeric-value
specifies a scale factor for the arrowheads. Specify a positive number.

Default determined by the procedure

SHAPE= "BARBED" | "CLOSED" | "FILLED" | "OPEN"
specifies the shape of the arrowheads. Specify one of the following:

"BARBED"
a solid triangle with an indent at the base.

"CLOSED"
an outline of a triangle.
"FILLED"
 a solid triangle.

"OPEN"
 a triangle that resembles the letter "V".

Default OPEN

TRANSAPRENCY= numeric-value
 specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
 specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE= "draw-space-value"
 specifies the drawing space of the annotation’s first X coordinate.

 draw-space-value can be one of the following:

 - DATAPERCENT
 - DATAPIXEL
 - DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 - GRAPHPERCENT
 - GRAPHPIXEL
 - LAYOUTPERCENT
 - LAYOUTPIXEL
 - WALLPERCENT
 - WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

X2SPACE= ”draw-space-value”

specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"

specifies which X axis to use for data space annotations.

Default X

Y1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

Y2SPACE= "draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPixel
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.
For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= ”Y” | ”Y2”

specifies which Y axis to use for data space annotations.

Default Y

IMAGE Function

Specifies a graphic file to use for an image annotation. If no (X1, Y1) coordinates are provided, the image appears in the center of the graph.

Syntax

FUNCTION= ”IMAGE”;

Required Variable

IMAGE= ”file-name”

specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.

If you are working in SAS Studio, the path that you specify must be accessible to your SAS Studio server. For information about accessing files in SAS Studio, see *SAS Studio: User’s Guide* for your release of SAS Studio. See also “Using SAS Studio” on page 78.

For a list of image formats that can be used, see “Supported File Types for Output Destinations” on page 123.

Optional Variables

ANCHOR= ”TOPLEFT” | ”TOP” | ”TOPRIGHT” | ”RIGHT” | ”BOTTOMRIGHT” | ”BOTTOM” | ”BOTTOMLEFT” | ”LEFT” | ”CENTER”

specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER= ”TRUE” | ”FALSE”

turns the border on and off.

Default FALSE

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).
DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

HEIGHT= numeric-value
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default: Determined by the system

HEIGHTUNIT= "DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

IMAGESCALE= "FIT" | "FITHEIGHT" | "FITWIDTH" | "TILE"
specifies how the image is scaled within the width and height. You can specify the WIDTH and HEIGHT variables.

Defaults: FITWIDTH or FITHEIGHT if no size or if one size (either the width or the height) is specified (to preserve aspect)

FIT if width and height are both specified
LAYERS "BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SG PLOT statement (SG PLOT procedure) or in the PANELBY statement (SG PANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SG SCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a color of the border around the image, if displayed. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
specifies a line pattern of the border around the image, if displayed. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default: LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See "Style Elements for Use with ODS Graphics" on page 1708

LINETHICKNESS= n
specifies the thickness of the border around the image, if displayed. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness).

ROTATE= degrees
rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.
Positive angles rotate the image counterclockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0

Note When this option is used with a vector graph, the graph is rendered as an image.

TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTH= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
 specifies the X coordinate for numeric data.

XC1= "text-string"
 specifies the X coordinate for character data.

Default none

X1SPACE= "draw-space-value"
 specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

 - DATAPERCENT
 - DATAPIXEL
 - DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 - GRAPHPERCENT
 - GRAPHPIXEL
 - LAYOUTPERCENT
 - LAYOUTPIXEL
 - WALLPERCENT
 - WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"
 specifies which X axis to use for data space annotations.

Default X

Y1= numeric-value | YC1= "text-string"
 specifies the Y coordinate of the annotation. Use one of the following arguments:

 Y1= numeric-value
 specifies the Y coordinate for numeric data.

 Default 50

 YC1= "text-string"
 specifies the Y coordinate for character data.

 Default none
Y1SPACE= "draw-space-value"
 specifies the drawing space of the annotation’s Y coordinate.

 draw-space-value can be one of the following:
 - DATAPERCENT
 - DATAPIXEL
 - DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 - GRAPHPERCENT
 - GRAPHPIXEL
 - LAYOUTPERCENT
 - LAYOUTPIXEL
 - WALLPERCENT
 - WALLPIXEL

 Default: LAYOUTPERCENT

 Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

 See: For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"
 specifies which Y axis to use for data space annotations.

 Default: Y

LINE Function

Draws a line annotation from the specified (X1, Y1) coordinates to the specified (X2, Y2) coordinates.

Syntax

FUNCTION= "LINE";

Required Variable

X1= numeric-value | XC1= "text-string"
 specifies the first X coordinate of the annotation.
Use one of the following arguments:

- **X1= numeric-value**
 - specifies the X coordinate for numeric data.

- **XC1= "text-string"**
 - specifies the X coordinate for character data.

Default: none

X2= numeric-value | XC2= "text-string"
- specifies the second X coordinate of the annotation.

Use one of the following arguments:

- **X2= numeric-value**
 - specifies the X coordinate for numeric data.

- **XC2= "text-string"**
 - specifies the X coordinate for character data.

Default: none

Y1= numeric-value | YC1= "text-string"
- specifies the first Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
 - specifies the Y coordinate for numeric data.

- **YC1= "text-string"**
 - specifies the Y coordinate for character data.

Default: none

Y2= numeric-value | YC2= "text-string"
- specifies the second Y coordinate of the annotation.

Use one of the following arguments:

- **Y2= numeric-value**
 - specifies the Y coordinate for numeric data.

- **YC2= "text-string"**
 - specifies the Y coordinate for character data.

Default: none

Optional Variables

DISCRETEOFFSET= numeric-value
- specifies an amount to offset the annotation from a discrete value in data space.
 - Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

DRAWSPACE= "draw-space-value"
- specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.
draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

LAYER= ”BACK” | ”FRONT”

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= ”color” | ”style-attribute”

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= ”line-pattern”

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.
LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The
default unit of pixels is always used.

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation.

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed
when parts of the plot are selected within an HTML page.

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

Default: LAYOUTPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1775.

X2SPACE= "draw-space-value"

specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

Default: LAYOUTPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"

specifies which X axis to use for data space annotations.

Default

X

Y1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.
\textit{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

\textbf{Note:} When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

\textbf{Default} \text{LAYOUTPERCENT}

\textbf{Restriction} For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

\textbf{Note} If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

\textbf{See} For more information about these values, see “Drawing Space Values” on page 1775.

\texttt{Y2SPACE= "draw-space-value"} specifies the drawing space of the annotation’s second Y coordinate.

\textit{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

\textbf{Note:} When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

\textbf{Default} \text{LAYOUTPERCENT}
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS = "Y" | "Y2"

specifies which Y axis to use for data space annotations.

Default Y

OVAL Function

Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

Tip: An easy way to draw a circle is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

FUNCTION= "OVAL";

Required Variables

HEIGHT= numeric-value

specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | **XC1**= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= "text-string"

specifies the X coordinate for character data.
Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.
Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= "text-string"
specifies the Y coordinate for character data.

Default none

Optional Variables

ANCHOR= "TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the
specified X1 and Y1 positions.

Default CENTER

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space.
Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= "ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be
filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be
used rather than specify X1SPACE and Y1SPACE individually.
draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR= "color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

Interaction: This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= "style-element"

specifies a style element for the fill. Here is an example of a style element: GraphData2

Note: Only the COLOR attribute of the style element applies to the fill.

See: “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY= numeric-value

specifies the transparency for the fill portion of an annotation.

Default: 0.0

Range: 0.0 (completely opaque) to 1.0 (completely transparent)

Tip: To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.

HEIGHTUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

LAYER= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option
is also available in the PLOT and COMPARE statements of the
SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style
element attribute. Here is an example of a style attribute:

```
GraphData2:ContrastColor
```

You can specify colors using a number of different color-naming schemes. For
more information, see “Color-Naming Schemes” on page 1660.

Default ContrastColor attribute of the GraphAnnoLine style element in the
current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by
number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current
style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

```
GraphData2
```

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The
default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the
current style (GraphAnnoLine: LineThickness)

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a
horizontal line extended to the right through the oval anchor point as shown in
the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>RotATE=90</td>
</tr>
<tr>
<td>RotATE=180</td>
</tr>
<tr>
<td>RotATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counterclockwise, and negative angles
rotate the annotation clockwise. The angle specification can exceed 360 degrees
in absolute value.

Default 0 (no rotation)
TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation. This option affects both the outline and the fill, if specified.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Tip FILLTRANSPARENCY= overrides the fill transparency specified by this option.

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default Y

POLYCONT Function

Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. POLYCONT specifies each successive point in the polygon or polyline.
Requirements: If you are drawing a polyline, one or more POLYCONT function observations must immediately follow the POLYLINE observation in the SG annotation data set. The POLYLINE and subsequent POLYCONT observations must be contiguous.

If you are drawing a polygon, two or more POLYCONT function observations must immediately follow the POLYGON observation in the SG annotation data set. The POLYGON and subsequent POLYCONT observations must be contiguous. A polygon is similar to a polyline except that the segments of the polygon must form a closed shape.

Syntax

FUNCTION= "POLYCONT";

Required Variables

\textbf{X1= numeric-value | XC1= "text-string"}

specifies the X coordinate of the annotation.

Use one of the following arguments:

\textbf{X1= numeric-value}

specifies the X coordinate for numeric data.

\textbf{XC1= "text-string"}

specifies the X coordinate for character data.

Default none

\textbf{Y1= numeric-value | YC1= "text-string"}

specifies the Y coordinate of the annotation.

Use one of the following arguments:

\textbf{Y1= numeric-value}

specifies the Y coordinate for numeric data.

\textbf{YC1= "text-string"}

specifies the Y coordinate for character data.

Default none

Optional Variables

\textbf{X1SPACE= "draw-space-value"}

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.
POLYGON Function

Specifies the beginning point of a polygon. A polygon is a connected series of lines that form a closed shape. This function is used in conjunction with two or more POLYCONT functions to define vertex points for the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines the polygon.

Requirement: The SG annotation data set must also specify at least two instances of the POLYCONT function immediately after the POLYGON function.

Syntax

FUNCTION= "POLYGON";

Required Variable

X1= numeric-value | XC1= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
 specifies the X coordinate for numeric data.

- **XC1= "text-string"**
 specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"

specifies the Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
 specifies the Y coordinate for numeric data.

- **YC1= "text-string"**
 specifies the Y coordinate for character data.

Default none

Optional Variables

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)
DISPLAY= "ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default: OUTLINE

DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR= "color" | "style-attribute"
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

Interaction: This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= "style-element"
specifies a style element for the fill. Here is an example of a style element: GraphData2
Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY= numeric-value
specifies the transparency for the fill portion of an annotation.

Default 0.0

Range 0.0 (completely opaque) to 1.0 (completely transparent)

Tip To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.

LAYER= "BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SG PLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)
TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. This option affects both
the outline and the fill, if specified.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Tip FILLTRANSPARENCY= overrides the fill transparency specified by this
option.

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed
when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in
the ODS GRAPHICS statement. For more information, see “Using
the ODS GRAPHICS Statement” on page 1722.

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space
Values” on page 1775.
XAXIS= "X" | "X2"
specifies which X axis to use for data space annotations.
Default X

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.
draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGpanel and SGscatter procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"
specifies which Y axis to use for data space annotations.
Default Y

POLYLINE Function

Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more POLYCONT functions to draw a series of connected straight lines.

Requirement: The SG annotation data set must also specify at least one instance of the POLYCONT function immediately after the POLYLINE function.

Note: The POLYLINE object is similar to a POLYGON, except that the POLYLINE object does not need to be a closed shape.
Syntax

FUNCTION= "POLYLINE";

Required Variables

X1= numeric-value | XC1= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
 specifies the X coordinate for numeric data.

- **XC1= "text-string"**
 specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"

specifies the Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
 specifies the Y coordinate for numeric data.

- **YC1= "text-string"**
 specifies the Y coordinate for character data.

Default none

Optional Variables

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually. *draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
- GRAPHPERCENT

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see "Drawing Space Values" on page 1775.

LAYER= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default: LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT= "style-element"

specifies a style element for the line. Here is an example of a style element:

GraphData2

See: "Style Elements for Use with ODS Graphics" on page 1708

LINETHICKNESS= n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.
Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation.

 Default 0.0

 Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

 Default By default, no HTML links are created.

 Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

 This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s X coordinate.

 draw-space-value can be one of the following:

 - **DATAPERCENT**
 - **DATAPIXEL**
 - **DATAVALUE**

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 - **GRAPHPERCENT**
 - **GRAPHPIXEL**
 - **LAYOUTPERCENT**
 - **LAYOUTPIXEL**
 - **WALLPERCENT**
 - **WALLPIXEL**

 Default LAYOUTPERCENT

 Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

 See For more information about these values, see “Drawing Space Values” on page 1775.
XAXIS= "X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default Y

RECTANGLE Function

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

Tip: An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.
Syntax

```
FUNCTION= "RECTANGLE";
```

Required Variables

HEIGHT= numeric-value
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
 specifies the X coordinate for numeric data.

- **XC1= "text-string"**
 specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
 specifies the Y coordinate for numeric data.

- **YC1= "text-string"**
 specifies the Y coordinate for character data.

Default none

Optional Variables

ANCHOR= "Topleft" | "Top" | "Topright" | "Right" | "Bottomright" | "Bottom" | "Bottomleft" | "Left" | "Center"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

CORNERRADIUS= numeric-value
specifies the roundness of the corners of rectangles. Specify a value from 0.0 (completely rectangular) to 1.0 (oval).
Default 0.0

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= "ALL" | "FILL" | "OUTLINE"

specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= "draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR= "color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)
This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= "style-element"
 specifies a style element for the fill. Here is an example of a style element:
 GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1708

FILLETRANSPARENCY= numeric-value
 specifies the transparency for the fill portion of an annotation.

 Default 0.0

 Range 0.0 (completely opaque) to 1.0 (completely transparent)

 Tip To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.

HEIGHTUNIT= "DATA" | "PERCENT" | "PIXEL"
 specifies the dimension unit to use for the HEIGHT value.

 Default PERCENT

LAYER= "BACK" | "FRONT"
 specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

 Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SG PLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
 specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
 GraphData2:ContrastColor

 You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

 Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
 specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

 Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)
LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See "Style Elements for Use with ODS Graphics" on page 1708

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The
default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the
current style (GraphAnnoLine: LineThickness)

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a
horizontal line extended to the right through the rectangle anchor point as shown
in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counterclockwise, and negative angles
rotate the annotation clockwise. The angle specification can exceed 360 degrees
in absolute value.

Default 0 (no rotation)

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. This option affects both
the outline and the fill, if specified.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Tip FILLTRANSPARENCY= overrides the fill transparency specified by this
option.

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed
when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1718.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

X1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"

specifies which X axis to use for data space annotations.

Default: X

Y1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- `GRAPHPERCENT`
- `GRAPHPIXEL`
- `LAYOUTPERCENT`
- `LAYOUTPIXEL`
- `WALLPERCENT`
- `WALLPIXEL`

Default: `LAYOUTPERCENT`

Restriction: For the SGPANEL and SGSCATTER procedures, only `GRAPHPERCENT`, `GRAPHPIXEL`, `LAYOUTPERCENT`, and `LAYOUTPIXEL` values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default: `Y`

TEXT Function

Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the `(X1, Y1)` coordinates, the text is placed in the center of the graph.

Syntax

```
FUNCTION= "TEXT";
```

Required Variable

LABEL= "text-string"
specifies the text label. The `text-string` can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. Here is a simple example:

```
data anno;
  function="text";
  label="This label is rich(*ESC*){sup '2'}";
run;
proc sgplot data=sashelp.class sganno=anno;
```
scatter x=weight y=height;
run;

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, label="95%Conf Interval" and label="95%Conf Interval" both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: label="95% Conf Interval"
- use the %NRQUOTE macro function. For example: label="95%nrquote(&)Conf Interval"

Default none

Optional Variables

ANCHOR= "TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
 specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.
 Default CENTER

BORDER= "TRUE" | "FALSE"
 turns the border on and off.
 Default FALSE

DISCRETEOFFSET= numeric-value
 specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).
 Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"
 specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.
 draw-space-value can be one of the following:
 - DATAPERCENT
 - DATAPIXEL
 - DATAVALE

Note: When a DATAVALE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGSPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR= "color" | "style-attribute"

specifies the background color for the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

```
GraphData2:Color
```

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: The Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

FILLTRANSPARENCY= numeric-value

specifies the transparency for the fill portion of an annotation.

Default: 0.0

Range: 0.0 (completely opaque) to 1.0 (completely transparent)

Tip: To set both the fill and border transparency, if specified, use the TRANSPARENCY= option.

JUSTIFY= "CENTER" | "LEFT" | "RIGHT"

specifies the text justification.

Default: LEFT

LAYER= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.
LINECOLOR= "color" | "style-attribute"
specifies a line color for the border of the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
GraphData2:ContrastColor
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default The ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

Interaction This option takes effect only if BORDER= "TRUE".

LINEPATTERN= "line-pattern"
specifies a line pattern for the border of the text annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

Interaction This option takes effect only if BORDER= "TRUE".

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:
GraphData2
See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS= n
specifies the line thickness of the border of the text annotation. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

Interaction This option takes effect only if BORDER= "TRUE".

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.

Positive angles rotate the annotation counterclockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.
Default: 0 (no rotation)

TEXTCOLOR= "color" | "style-attribute"
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: COLOR attribute of the GraphAnnoText style element in the current style (GraphAnnoText:Color)

TEXTFONT= "font-family"
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “Managing Fonts in Universal Printing” in SAS 9.4 Universal Printing.

Default: FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE= \n
specifies the font size of the annotation.

Default: FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE= "ITALIC" | "NORMAL"
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default: FontStyle attribute of the GraphAnnoText style element in the current style.

TEXTSTYLEELEMENT= "style-element"
specifies a style element for the text. Here is an example of a style element: GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708.

TEXTWEIGHT= "BOLD" | "NORMAL"
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default: FontWeight attribute of the GraphAnnoText style element in the current style.

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTH= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default: Determined by the system

WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

X1= numeric-value | XC1= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

* X1= numeric-value
 specifies the X coordinate for numeric data.

* XC1= "text-string"
 specifies the X coordinate for character data.

Default: none

X1SPACE= "draw-space-value"

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS= "X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation. Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

Default 50

YC1= "text-string"
specifies the Y coordinate for character data.

Default none

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.
YAXIS= "Y" | "Y2"
 specifies which Y axis to use for data space annotations.
 Default Y

TEXTCONT Function

Continues a text string that was started using the TEXT function. You can set the continued text apart from
the main text by specifying different text attributes.

Requirement: To continue the text, immediately follow the initial TEXT observation with one or more
TEXTCONT observations. The TEXT and subsequent TEXTCONT observations must
be contiguous.

Syntax

FUNCTION= "TEXTCONT";

Required Variable

LABEL= "text-string"
 specifies the text label. The text-string can contain superscripts, subscripts, and
 Unicode characters by using ODS escapement notation. Here is a simple
 example:

 data anno;
 infile datalines dlm='#';
 length function $8 label $35;
 input function $ label $ textcolor $;
 datalines;
 text # This label is rich{*ESC*}{sup '2'} # black
 textcont # rich{*ESC*}{sup '2'} green # green
 ;
 run;

 proc sgplot data=sashelp.class sganno=anno;
 scatter x=weight y=height;
 run;

 You can invoke a macro that returns a string. For example: label="%mylabel",
 where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written
to the log. The actual warning varies with the types of characters. For example,
label="95&Conf Interval" and label="95%Conf Interval" both produce a
warning, although the annotation is drawn in both cases. There are several ways
to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: `label="95% %Conf Interval"`
- use the %NRQUOTE macro function. For example: `label="95%nrquote(&)Conf Interval"

Default none

Optional Variables

TEXTCOLOR= "color" | "style-attribute"
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: `GraphData2:Color`

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default COLOR attribute of the GraphAnnoText style element in the current style (GraphAnnoText:Color)

TEXTFONT= "font-family"
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see "Managing Fonts in Universal Printing" in *SAS 9.4 Universal Printing*.

Default FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE= n
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE= "ITALIC" | "NORMAL"
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.

TEXTSTYLEELEMENT= "style-element"
specifies a style element for the text. Here is an example of a style element: `GraphData2`

See "Style Elements for Use with ODS Graphics" on page 1708

TEXTWEIGHT= "BOLD" | "NORMAL"
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default FontWeight attribute of the GraphAnnoText style element in the current style.
Examples

Example 1: Create an Arrow in a Paneled Graph

Features: ARROW

This example uses the SGPANEL procedure to create an arrow near the middle data point for the height variable in each panel.

Output

Program

data annoArrow;
retain drawspace "layoutpercent" linecolor "blue";
input function $ x1 y1 x2 y2 shape $ direction $;
datalines;
arrown 30 50 40 50 barbed in

Program Description

Create an SG annotation data set.

```sas
data annoArrow;
  retain drawspace "layoutpercent" linecolor "blue";
  input function $ x1 y1 x2 y2 shape $ direction $;
  datalines;
  arrow 30 50 40 50 barbed in
  arrow 65 63 75 63 barbed out
  ;
run;
```

Create the panel with the annotation.

```sas
proc sgpanel data=sashelp.class sganno=annoArrow;
  panelby sex;
  scatter x=weight y=height;
run;
```

Example 2: Create a Tabular Text Annotation

Features:

- TEXT annotation
- PAD option

This example uses the SGPLOT procedure to create an axis-aligned table to the right of a horizontal bar chart.
Program

data anno;
length y1space $12 label $6;
set sashelp.class (keep=name weight);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
 textcolor "black" textweight "normal" y1 . anchor "right";
label=put(weight, F5.1);
run;

data temp;
length y1space $12 label $6;
set sashelp.class (keep=name age);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
 textcolor "black" textweight "normal";
label=put(age, F2.0);
run;

data headers;
length textweight $6;
retain y1space "graphpercent" x1space "graphpercent" function "text"
 y1 90
 textcolor "black" textweight "bold";
x1=87;
label="WEIGHT";
output;
x1=95;

Class Statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Height</th>
<th>WEIGHT</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip</td>
<td>72</td>
<td>150.0</td>
<td>15</td>
</tr>
<tr>
<td>Alfred</td>
<td>60</td>
<td>112.5</td>
<td>14</td>
</tr>
<tr>
<td>Ronald</td>
<td>70</td>
<td>133.0</td>
<td>15</td>
</tr>
<tr>
<td>Mary</td>
<td>60</td>
<td>112.0</td>
<td>15</td>
</tr>
<tr>
<td>William</td>
<td>60.5</td>
<td>98.0</td>
<td>13</td>
</tr>
<tr>
<td>Barbara</td>
<td>60.5</td>
<td>128.0</td>
<td>12</td>
</tr>
<tr>
<td>Robert</td>
<td>64.8</td>
<td>90.0</td>
<td>14</td>
</tr>
<tr>
<td>Judy</td>
<td>84.3</td>
<td>102.5</td>
<td>14</td>
</tr>
<tr>
<td>Henry</td>
<td>86.6</td>
<td>102.5</td>
<td>14</td>
</tr>
<tr>
<td>Carol</td>
<td>82.8</td>
<td>112.5</td>
<td>15</td>
</tr>
<tr>
<td>Janet</td>
<td>82.5</td>
<td>84.0</td>
<td>13</td>
</tr>
<tr>
<td>Jeffrey</td>
<td>82.6</td>
<td>84.5</td>
<td>12</td>
</tr>
<tr>
<td>Jane</td>
<td>59.8</td>
<td>93.5</td>
<td>12</td>
</tr>
<tr>
<td>John</td>
<td>59</td>
<td>85.0</td>
<td>11</td>
</tr>
<tr>
<td>Thomas</td>
<td>67.5</td>
<td>83.0</td>
<td>12</td>
</tr>
<tr>
<td>James</td>
<td>67.3</td>
<td>84.0</td>
<td>13</td>
</tr>
<tr>
<td>Alice</td>
<td>58.5</td>
<td>77.0</td>
<td>12</td>
</tr>
<tr>
<td>Louise</td>
<td>56.3</td>
<td>50.5</td>
<td>11</td>
</tr>
<tr>
<td>Joyce</td>
<td>51.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 21 / SG Annotation Function Dictionary
label="AGE";
output;
run;

proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;

proc append base=anno (drop=weight) data=headers force nowarn;
run;
title1 "Class Statistics";
title2 " ";
proc sgplot data=sashelp.class sganno=anno pad=(right=25%);
hbar name / response=height datalabel nostatlabel
 categoryorder=respdesc;
run;
title1;

Program Description

Create a data set with the Weight column. Use annotation variables to define attributes for the weight text.

data anno;
length y1space $ 12 label $ 6;
set sashelp.class (keep=name weight);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
 textcolor "black" textweight "normal" y1 . anchor "right";
label=put(weight, F5.1);
run;

Create a data set with the Age column. Use annotation variables to define attributes for the age text.

data temp;
length y1space $ 12 label $ 6;
set sashelp.class (keep=name age);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
 textcolor "black" textweight "normal";
label=put(age, F2.0);
run;

Create the positions for the two columns of the table in the graph area.

data headers;
length textweight $ 6;
retain y1space "graphpercent" x1space "graphpercent" function "text"
 y1 90
 textcolor "black" textweight "bold";
x1=87;
label="WEIGHT";
output;
x1=95;
label="AGE";
output;
run;
Append the observations of TEMP to ANNO, and then append the observations of HEADERS.

```
proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;

proc append base=anno (drop=weight) data=headers force nowarn;
run;
```

Create the plot with the annotation.

```
title1 "Class Statistics";
title2 "   ";
proc sgplot data=sashelp.class sganno=anno pad=(right=25%);
hbar name / response=height datalabel nostatlabel
    categoryorder=respdesc;
run;
title1;
```

Example 3: Create Custom Labels

Overview

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.

The following figure shows the final graph.
Program

```sas
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
  class type;
  var mpg_highway;
  output out=mileage mean(mpg_highway) = mpg_highway;
run;

/* Create the annotation data set. */
data anno;
  retain function "text" drawspace "datavalue"
      textfont "Arial" textweight "bold"
      textcolor "GraphData1:contrastColor"
      width 100 widthunit "pixel"
      anchor "left" x1 2
      discreteoffset 0.1;
  set mileage(keep=type);
  rename type=yc1;
  length label $12;
  label=type;
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
  hbarparm category=type response=mpg_highway /
      dataskin=sheen;
  xaxis label="Average Highway MPG";
  yaxis display=none;
run;
title;
```
Program Description

Summarize the highway mileage data in Sashelp.Cars. Because a label is needed for each unique value of vehicle type, the data in Sashelp.Cars is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type.

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;
 output out=mileage mean(mpg_highway) = mpg_highway;
run;

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column and is then renamed to YC1. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

/* Create the annotation data set. */
data anno;
 retain function "text" drawspace "datavalue"
 textfont "Arial" textweight "bold"
 textcolor "GraphData1:contrastColor"
 width 100 widthunit "pixel"
 anchor "left" x1 2
 discreteoffset 0.1;
 set mileage(keep=type);
 rename type=yc1;
 length label $12;
 label=type;
run;

Create the plot. The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
 hbarparm category=type response=mpg_highway /
 dataskin=sheen;
 xaxis label="Average Highway MPG";
 yaxis display=none;
run;
title;

Listing of the Mileage Data Set

Here is a listing of the Mileage data set.
<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th>TYPE</th>
<th>FREQ</th>
<th>mpg_city</th>
<th>highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>24</td>
<td>16.5000</td>
<td>21.0000</td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
</tr>
</tbody>
</table>
About the SG Annotation Macros

You can use SG annotation macros within a SAS DATA step to simplify the process of creating annotation observations. With a macro, you specify a function and assign variable values in one step without having to write explicit variable assignment statements. You can mix assignment statements and macro calls in the same DATA step.
The following sections describe all of the annotation macros and include information about accessing and using macros.

Using the SG Annotation Macros

Macro Structure

The general form of an SG annotation macro is:

```
%MACRO (parameters);
```

In general, the macro name represents a function and the parameters contain the values for the variables that can be used with the function.

The parameters can be specified in any order.

Each of the parameters in the SGANNO macros corresponds to a variable in the SG annotation data set.

The parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable names that have been initialized to the appropriate value. Character parameters must be enclosed in quotation marks or specified as character variable names. For more information about specifying variable names, see “Data-Driven Macro Parameters” on page 1839.

The SG annotation facility assigns the parameter values to the corresponding annotation variables. Therefore, the observations in an annotation data set that is created with macros look the same as the ones that you create with assignment statements. For example, the following two statements are equivalent:

```
%sgtext (x1=10, y1=15, label="My Text", justify="center");
```

```
function="text"; x1=10; y1=15; label="My Text"; justify="center"; output;
```

Making the Macros Available

To use the SG annotation macros, you must compile the macros by issuing the %SGANNO macro:

```
%SGANNO
```

The %SGANNO macro must be run before any other SG annotation macros are used in a SAS session. A message appears in the SAS log indicating that the SG annotation macros are available.
Example

The following sample program identifies the basic elements of an annotation program.

```sas
%sganno;                                            /* 1 */
data sgannodata;                                       /* 2 */
  %sgrectangle (x1=50, y1=50, height=30, width=40);    /* 3 */
  %sgarrow     (x1=51, x2=30, y2=35, linecolor="red");
proc sgplot data=sashelp.class sganno=sgannodata;      /* 4 */
  scatter x=age y=weight;
run;
```

1. The `%SGANNO` macro compiles all of the SG annotation macros and makes them available.
2. The DATA step creates the annotation data.
3. The `%SGRECTANGLE` macro draws a 30-by-40 rectangle, starting from point (50,50).
 The `%SGARROW` macro draws a red arrow from point (51, 50) to point (30, 35).
 The X1 value overrides the X1 value that was specified in the call to `%SGRECTANGLE`. The Y1 parameter is not specified, so the arrow uses the Y1 value that was specified in the call to `%SGRECTANGLE`.
 By default, the rectangle and the arrow are positioned and scaled as a percentage of the layout area.
4. The SGPLOT procedure statement uses the SGANNO= option to reference the annotation data set.

Here is the graphics output:

![Graphics output](image)

Here is the SGANNODATA data set:
Resetting Parameter Values

By default, a macro call retains all variable values that were set in previous macro calls.

You have two options for resetting the values:

- To reset individual variable values on a subsequent macro call, set new values for the corresponding parameters in that macro call.
- To re-initialize all variable values on any macro call, specify RESET=“ALL” among the macro’s parameters.

For example, the %SGARROW macro draws an arrow between two points and requires values for both points: (x1,y1) and (x2,y2). To draw two arrows from the same starting point but to different end points, you can omit the X1 and Y1 parameters in the second macro call.

```plaintext
%sgarrow(x1=34, y1=30, x2=62, y2=64, linecolor="red");
%sgarrow(x2=45, y2=40, linecolor="green");
%sgarrow(reset="all", x1=60, y1=83, x2=79, y2=83);
```

In the previous example:

- The first macro call draws a red arrow from point (34, 30) to point (62, 64).
- The second macro call draws a green arrow from point (34, 30) to point (45, 40).
- The third macro call resets all macro-variable values and draws a default-colored arrow from point (60, 83) to point (79, 83).

SG Annotation Macro Summary

The following table summarizes the tasks performed by the Annotate macros.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%SGANNO_HELP</td>
<td>displays help for using the SG annotation macros</td>
</tr>
<tr>
<td>%SGARROW</td>
<td>draws an arrow</td>
</tr>
<tr>
<td>%SGIMAGE</td>
<td>draws an image</td>
</tr>
<tr>
<td>%SGLINE</td>
<td>draws a line from one point to another</td>
</tr>
<tr>
<td>Macro</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>%SGOVAL</td>
<td>draws an oval or a circle</td>
</tr>
<tr>
<td>%SGPOLYCONT</td>
<td>continues drawing a polygon or a polyline</td>
</tr>
<tr>
<td>%SGPOLYGON</td>
<td>draws a polygon</td>
</tr>
<tr>
<td>%SGPOLYLINE</td>
<td>draws a polyline</td>
</tr>
<tr>
<td>%SGRECTANGLE</td>
<td>draws a rectangle or a square</td>
</tr>
<tr>
<td>%SGTEXT</td>
<td>begins drawing text</td>
</tr>
<tr>
<td>%SGTEXTCONT</td>
<td>continues drawing text</td>
</tr>
</tbody>
</table>

Data-Driven Macro Parameters

The macro parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable names for macro parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the second data set. For an example of using variable names, see "Example: Create Custom Labels" on page 1891.

Dictionary

%SGANNO_HELP Annotate Macro

displays help for using the SG annotation macros.

Syntax

```
%SGANNO_HELP(macro-name) | (ALL)
```
Required Argument

(macro-name) | (ALL)
- To request help for a specific macro, use the form %SGANNO_HELP(macro-name), where macro-name is the name of the desired macro. For example:

%sganno_help(sgrectangle);
- To request help for all of the SG annotation macros, use the form %SGANNO_HELP(ALL).

%SGARROW Annotate Macro

Draws an arrow from (X1, Y1) to (X2,Y2).

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.

Syntax

%SGARROW (X1=numeric-value | XC1="text-string",
 Y1=numeric-value | YC1="text-string",
 X2=numeric-value | XC2="text-string",
 Y2=numeric-value | YC2="text-string",
 <options>)

Required Arguments

X1= numeric-value | XC1="text-string"
specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= "text-string"
specifies the X coordinate for character data.

Default none

X2= numeric-value | XC2="text-string"
specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2= numeric-value
specifies the X coordinate for numeric data.

XC2= "text-string"
specifies the X coordinate for character data.

Default none
Y1= numeric-value | YC1= "text-string"
specifies the first Y coordinate of the annotation.
Use one of the following arguments:

\[Y1= \text{numeric-value} \]
specifies the Y coordinate for numeric data.

\[YC1= "\text{text-string}" \]
specifies the Y coordinate for character data.

Default: none

Y2= numeric-value | YC2= "text-string"
specifies the second Y coordinate of the annotation.
Use one of the following arguments:

\[Y2= \text{numeric-value} \]
specifies the Y coordinate for numeric data.

\[YC2= "\text{text-string}" \]
specifies the Y coordinate for character data.

Default: none

Optional Arguments

DIRECTION="BOTH" | "IN" | "OUT"
specifies the direction for arrows.

"BOTH"
Places the arrowhead at both ends of the line.

"IN"
Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

"OUT"
Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default: OUT

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see "Drawing Space Values" on page 1775.

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).
LINEPATTERN="line-pattern"
 specifies a line pattern for the annotation. You can reference SAS patterns by
 number or by name. See the list of line patterns on page 1651.
 Default LineStyle attribute of the GraphAnnoLine style element in the current
 style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT="style-element"
 specifies a style element for the line. Here is an example of a style element:
 GraphData2
 See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS=n
 specifies the thickness of the line. You cannot specify the unit of measure. The
 default unit of pixels is always used.
 Default LineThickness attribute of the GraphAnnoLine style element in the
 current style (GraphAnnoLine: LineThickness)

RESET="ALL"
 Re-initializes all variables.

SCALE=numeric-value
 specifies a scale factor for the arrowheads. Specify a positive number.
 Default determined by the procedure

SHAPE="BARBED" | "CLOSED" | "FILLED" | "OPEN"
 specifies the shape of the arrowheads. Specify one of the following:
 "BARBED"
 a solid triangle with an indent at the base. ➔
 "CLOSED"
 an outline of a triangle. ➔
 "FILLED"
 a solid triangle. ➔
 "OPEN"
 a triangle that resembles the letter "\(\sqrt{\)}". ➔
 Default OPEN

TRANSPARENCY=numeric-value
 specifies the degree of transparency for the annotation.
 Default 0.0
 Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
 specifies a URL for a web page to be displayed when parts of the plot are
 selected within an HTML page.
 Default By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE="draw-space-value"

specifies the drawing space of the annotation’s first X coordinate.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

X2SPACE="draw-space-value"

specifies the drawing space of the annotation’s second X coordinate.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

See: For more information about these values, see "Drawing Space Values" on page 1775.

XAXIS="X" | "X2"

specifies which X axis to use for data space annotations.

Default: X

Y1SPACE="draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPixel
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.
Y2SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS="Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default Y

%SGIMAGE Annotate Macro

displays an image.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.
%SGIMAGE (IMAGE="file-specification" <x1, y1, options>)

Required Argument

IMAGE="file-specification"
specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.

If you are working in SAS Studio, the path that you specify must be accessible to your SAS Studio server. For information about accessing files in SAS Studio, see SAS Studio: User’s Guide for your release of SAS Studio. See also "Using SAS Studio" on page 78.

For a list of image formats that can be used, see “Supported File Types for Output Destinations” on page 123.

Optional Arguments

ANCHOR="TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER="TRUE" | "FALSE"
turns the border on and off.

Default FALSE

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SG PANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

HEIGHT= numeric-value

Specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default: Determined by the system

HEIGHTUNIT= "DATA" | "PERCENT" | "PIXEL"

Specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

ID= "annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

IMAGESCALE= "FIT" | "FITHEIGHT" | "FITWIDTH" | "TILE"

Specifies how the image is scaled within the width and height. You can specify the WIDTH and HEIGHT variables.

Defaults: FITWIDTH or FITHEIGHT if no size or if one size (either the width or the height) is specified (to preserve aspect)

FIT if width and height are both specified

LAYER= "BACK" | "FRONT"

Specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the
PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a color of the border around the image, if displayed. You can specify a color or a style element attribute. Here is an example of a style attribute:

```
GraphData2:ContrastColor
```

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default: LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

```
GraphData2
```

See "Style Elements for Use with ODS Graphics" on page 1708

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

RESET="ALL"
Re-initializes all variables.

ROTATE= degrees
rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>
Positive angles rotate the image counterclockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0

Note When this option is used with a vector graph, the graph is rendered as an image.

TRANSPARENCY=numeric-value

specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTH=numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= "text-string"

specifies the X coordinate for character data.

Default none

X1SPACE="draw-space-value"

specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

GRAPHPERCENT
GRAPHPIXEL
LAYOUTPERCENT
LAYOUTPIXEL
WALLPERCENT
WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default: X

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= "text-string"
specifies the Y coordinate for character data.

Default: none

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation's second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the YSPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see "Drawing Space Values" on page 1775.

YAXIS="Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default Y

%SGLINE Annotate Macro

Draws a line from (X1, Y1) to (X2, Y2).

You must run the %SGANNO macro before using any other SG annotation macros. For more information, see "Making the Macros Available" on page 1836.

Syntax

%SGLINE (X1=numeric-value | XC1="text-string",
Y1=numeric-value | YC1="text-string",
X2=numeric-value | XC2="text-string",
Y2=numeric-value | YC2="text-string",
<options>)

Required Arguments

X1= numeric-value | XC1= "text-string"
specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.
XC1 = "text-string"
specifies the X coordinate for character data.

Default: none

X2 = numeric-value | XC2 = "text-string"
specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2 = numeric-value
specifies the X coordinate for numeric data.

XC2 = "text-string"
specifies the X coordinate for character data.

Default: none

Y1 = numeric-value | YC1 = "text-string"
specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1 = numeric-value
specifies the Y coordinate for numeric data.

YC1 = "text-string"
specifies the Y coordinate for character data.

Default: none

Y2 = numeric-value | YC2 = "text-string"
specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2 = numeric-value
specifies the Y coordinate for numeric data.

YC2 = "text-string"
specifies the Y coordinate for character data.

Default: none

Optional Arguments

DISCRETEOFFSET = numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE = "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- **DATAPERCENT**
DATAPIXEL
DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

GRAPHPERCENT
GRAPHPIXEL
LAYOUTPERCENT
LAYOUTPIXEL
WALLPERCENT
WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SG PLOT statement (SG PLOT procedure) or in the PANEL BY statement (SG PANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SG SCATTER procedure.

LINECOLOR="color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.
Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

RESET="ALL"
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

X2SPACE="draw-space-value"

specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.
XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

Y2SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See For more information about these values, see "Drawing Space Values" on page 1775.

YAXIS="Y" | "Y2" specifies which Y axis to use for data space annotations.

Default Y

%SGOVAL Annotate Macro

Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see "Making the Macros Available" on page 1836.

Syntax

%SGOVAL (HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

HEIGHT=numeric-value
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.
X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= "text-string"
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= "text-string"
specifies the Y coordinate for character data.

Default none

Optional Arguments

ANCHOR="TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE=draw-space-value
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

GRAPHPERCENT

GRAPHPIXEL

LAYOUTPERCENT

LAYOUTPIXEL

WALLPERCENT

WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR="color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT="style-element"

specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY=numeric-value

specifies the transparency for the fill portion of an annotation.

Default 0.0

Range 0.0 (completely opaque) to 1.0 (completely transparent)

Tip To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.
HEIGHTUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See "Style Elements for Use with ODS Graphics" on page 1708

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.
Default: LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

RESET="ALL"
Re-initializes all variables.

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.

Positive angles rotate the annotation counterclockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default: 0 (no rotation)

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation. This option affects both the outline and the fill, if specified.

Default: 0.0
Range: 0 (completely opaque) to 1 (completely transparent)
Tip: FILLTRANSPARENCY= overrides the fill transparency specified by this option.

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.
Interactions: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the WIDTH value.
X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS= "Y" | "Y2"

specifies which Y axis to use for data space annotations.

Default Y

%SGPOLYCONT Annotate Macro

Continues drawing a polygon that was begun with the %SGPOLYGON macro, or a line that was begun with the %SGPOLYLINE macro. %SGPOLYCONT specifies each successive point in the polygon or polyline.

Requirements:
You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.

If you are drawing a polyline, one or more %SGPOLYCONT macros must immediately follow the %SGPOLYLINE macro to specify the segments of the polyline. The %SGPOLYLINE and subsequent %SGPOLYCONT macros must be contiguous.

If you are drawing a polygon, two or more %SGPOLYCONT macros must immediately follow the %SGPOLYGON macro to specify the segments of the polygon. The %SGPOLYGON and subsequent %SGPOLYCONT macros must be contiguous. A polygon is similar to a polyline except that the segments of the polygon must form a closed shape.

Syntax

```plaintext
%SGPOLYCONT (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)
```
Required Arguments

X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
 specifies the X coordinate for numeric data.

- **XC1= "text-string"**
 specifies the X coordinate for character data.

Default: none

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
 specifies the Y coordinate for numeric data.

- **YC1= "text-string"**
 specifies the Y coordinate for character data.

Default: none

Optional Arguments

ID= "annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

RESET= "ALL"
Re-initializes all variables.

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation's first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.
%SGPOLYGON Annotate Macro

Specifies the beginning point of a polygon. A polygon is a connected series of lines that form a closed shape. This function is used in conjunction with two or more %SGPOLYCONT macros to define vertex points for the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines the polygon.

Requirements: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see "Making the Macros Available" on page 1836. The SG annotation data set must also specify at least two instances of the %SGPOLYCONT macro immediately after the %SGPOLYGON macro.

Syntax

%SGPOLYGON (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

X1= numeric-value | XC1="text-string"
specifies the X coordinate of the annotation.
Use one of the following arguments:
X1= numeric-value
specifies the X coordinate for numeric data.
XC1= "text-string"
specifies the X coordinate for character data.
Default none

Y1= numeric-value | YC1="text-string"
specifies the Y coordinate of the annotation.
Use one of the following arguments:
Y1= numeric-value
specifies the Y coordinate for numeric data.
YC1= "text-string"
specifies the Y coordinate for character data.
Default none

Optional Arguments

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.
DISPLAY="ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
 - DATAPERCENT
 - DATAPIXEL
 - DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 - GRAPHPERCENT
 - GRAPHPIXEL
 - LAYOUTPERCENT
 - LAYOUTPIXEL
 - WALLPERCENT
 - WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR="color" | "style-attribute"
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.
FILLSTYLEELEMENT="style-element"
specifies a style element for the fill. Here is an example of a style element:
GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation.

Default 0.0

Range 0.0 (completely opaque) to 1.0 (completely transparent)

Tip To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:LineStyle)
LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

RESET="ALL"
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation. This option affects both the outline and the fill, if specified.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Tip FILLTRANSPARENCY= overrides the fill transparency specified by this option.

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see "Drawing Space Values" on page 1775.

XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default: X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.
YAXIS="Y" | "Y2"
specifies which Y axis to use for data space annotations.

Default Y

%SGPOLYLINE Annotate Macro

Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more %SGPOLYCONT functions to draw a series of connected straight lines.

Requirements: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see "Making the Macros Available" on page 1836. The SG annotation data set must also specify at least one instance of the %SGPOLYCONT macro immediately after the %SGPOLYLINE macro.

Syntax

%SGPOLYLINE (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= "text-string"
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= "text-string"
specifies the Y coordinate for character data.

Default none
Optional Arguments

DISCRETEOFFSET= *numeric-value*

specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1775.

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

LINEPATTERN= "line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

LINETHICKNESS= \(n \)

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

RESET= "ALL"

Re-initializes all variables.

TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation.

URL= "text-string"

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.
Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS="Y" | "Y2"

specifies which Y axis to use for data space annotations.

Default: Y

%SGRECTANGLE Annotate Macro

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.

Tip: An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

```plaintext
%SGRECTANGLE (HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)
```
Required Arguments

HEIGHT= *numeric-value*

specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= *numeric-value*

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= *numeric-value* | **XC1=** "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= *numeric-value*

specifies the X coordinate for numeric data.

XC1= "text-string"

specifies the X coordinate for character data.

Default none

Y1= *numeric-value* | **YC1=** "text-string"

specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= *numeric-value*

specifies the Y coordinate for numeric data.

YC1= "text-string"

specifies the Y coordinate for character data.

Default none

Optional Arguments

ANCHOR= "TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"

specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

CORNERRADIUS= *numeric-value*

specifies the roundness of the corners of rectangles. Specify a value from 0.0 (completely rectangular) to 1.0 (oval).

Default 0.0

DISCRETEOFFSET= *numeric-value*

specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | "FILL" | "OUTLINE"

specifies the fill and outline properties. You can specify that the annotation be
filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be
used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE,
and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default LAYOUTPERCENT (unless overridden by a coordinate draw space,
such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space
Values” on page 1775.

FILLCOLOR="color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element
attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For
more information, see “Color-Naming Schemes” on page 1660.

Default Color attribute of the GraphAnnoShape style element in the current
style (GraphAnnoShape:Color)

Interaction This option takes effect only if the DISPLAY option is specified as
FILLED or ALL.

FILLSTYLEELEMENT="style-element"

specifies a style element for the fill. Here is an example of a style element:
GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation.

 Default 0.0

Range 0.0 (completely opaque) to 1.0 (completely transparent)

Tip To set both the fill and outline transparency, if specified, use the TRANSPARENCY= option.

HEIGHTUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the HEIGHT value.

 Default PERCENT

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

 Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

 Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

 Default ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.
Default LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESTYLEELEMENT="style-element"

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1708

LINETHICKNESS=n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

RESET="ALL"

Re-initializes all variables.

ROTA:TE= degrees

rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
<th>No Rotation</th>
<th>ROTATE=90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counterclockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

TRANSPARENCY=numeric-value

specifies the degree of transparency for the annotation. This option affects both the outline and the fill, if specified.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Tip FILLTRANSPARENCY= overrides the fill transparency specified by this option.

URL="text-string"

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.
By default, no HTML links are created.

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

X1SPACE="draw-space-value"

specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

XAXIS="X" | "X2"

specifies which X axis to use for data space annotations.

Default: X

Y1SPACE="draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.
draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS=“Y” | “Y2”
specifies which Y axis to use for data space annotations.

Default: Y

%SGTEXT Annotate Macro

Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the (X1, Y1) coordinates, the text is placed in the center of the graph.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.

Syntax

%SGTEXT (LABEL="text-string", <options>)
Required Argument

LABEL="text-string"
specifies the text label. The *text-string* can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*) \{sup '2'

You can invoke a macro that returns a string. For example: `label="%mylabel"`, where *mylabel* is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, `label="%95%Conf Interval"` and `label="95% Conf Interval"` both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: `label="95% Conf Interval"`
- use the %NRQUOTE macro function. For example: `label="95%nRquote(&)Conf Interval"`

Default: none

Optional Arguments

ANCHOR="TOLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default: CENTER

BORDER="TRUE" | "FALSE"
turns the border on and off.

Default: FALSE

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

GRAPHPERCENT

GRAPHPIXEL

LAYOUTPERCENT

LAYOUTPIXEL

WALLPERCENT

WALLPIXEL

Default: LAYOUTPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1775.

FILLCOLOR="color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: The Color attribute of the GraphAnnoShape style element in the current style (GraphAnnoShape:Color)

FILLSTYLEELEMENT="style-element"

specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note: Only the COLOR attribute of the style element applies to the fill.

See: “Style Elements for Use with ODS Graphics” on page 1708

FILLTRANSPARENCY=numeric-value

specifies the transparency for the fill portion of an annotation.

Default: 0.0

Range: 0.0 (completely opaque) to 1.0 (completely transparent)

Tip: To set both the fill and border transparency, if specified, use the TRANSPARENCY= option.

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified
annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

JUSTIFY= "CENTER" | "LEFT" | "RIGHT"
specifies the text justification.

Default: LEFT

LAYER= "BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:ContrastColor

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default: ContrastColor attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:ContrastColor).

LINEPATTERN= "line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1651.

Default: LineStyle attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine:lineStyle)

LINESYLETELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See "Style Elements for Use with ODS Graphics" on page 1708.

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute of the GraphAnnoLine style element in the current style (GraphAnnoLine: LineThickness)

Interaction: This option takes effect only if BORDER= "TRUE".
RESET="ALL"
Re-initializes all variables.

ROTATE= *degrees*
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counterclockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

**TEXTCOLOR="color" | "style-attribute"
**
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1660.

Default COLOR attribute of the GraphAnnoText style element in the current style (GraphAnnoText:Color)

**TEXTFONT="font-family"
**
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see "Managing Fonts in Universal Printing" in *SAS 9.4 Universal Printing*.

Default FontFamily attribute of the GraphAnnoText style element in the current style.

**TEXTSIZE=n
**
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

**TEXTSTYLE="ITALIC" | "NORMAL"
**
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.
TEXTWEIGHT="BOLD" | "NORMAL"
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default FontWeight attribute of the GraphAnnoText style element in the current style.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1718.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1722.

WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
 specifies the X coordinate for numeric data.

XC1= "text-string"
 specifies the X coordinate for character data.

Default none

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: LAYOUTPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1775.

XAXIS="X" | "X2"

specifies which X axis to use for data space annotations.

Default: X

Y1= numeric-value | YC1= "text-string"

specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value

specifies the Y coordinate for numeric data.

YC1= "text-string"

specifies the Y coordinate for character data.

Default: none

Y1SPACE="draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
GRAPHPIXEL
LAYOUTPERCENT
LAYOUTPIXEL
WALLPERCENT
WALLPIXEL

Default LAYOUTPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1775.

YAXIS=“Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default Y

%SGTEXTCONT Annotate Macro

Continues a text string that was begun with the TEXT macro. You can set the continued text apart from the main text by specifying different text attributes.

Requirements: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1836.

To continue the text, immediately follow the initial %SGTEXT macro with one or more %SGTEXTCONT macros. The %SGTEXT and subsequent %SGTEXTCONT macros must be contiguous.

Syntax

%SGTEXTCONT (LABEL="text-string", <options>)

Required Argument

LABEL="text-string"

specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*){sup '2'}

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.
Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, `label="95&Conf Interval"` and `label="95%Conf Interval"` both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: `label="95%Conf Interval"`
- use the %NRQUOTE macro function. For example: `label="95%nrquote(&)Conf Interval"

Default: none

Optional Arguments

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

RESET="ALL"

Re-initializes all variables.

TEXTCOLOR="color" | "style-attribute"

specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: `GraphData2:Color`

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1660.

Default: COLOR attribute of the GraphAnnoText style element in the current style (GraphAnnoText:Color)

TEXTFONT="font-family"

specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “Managing Fonts in Universal Printing” in SAS 9.4 Universal Printing.

Default: FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE=n

specifies the font size of the annotation.

Default: FontSize attribute of the GraphAnnoText style element in the current style.
Example: Create Custom Labels

Example 1: Create Custom Labels

Overview

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.

The following figure shows the final graph.
Program

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;
 output out=mileage mean(mpg_highway) = mpg_highway;
run;

%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
 set mileage;
 %sgText(label=type,
 x1=2,yc1=type,drawspace="datavalue",
 textfont="Arial",textweight="bold",
 textcolor="GraphData1:contrastColor",width=100,
 widthunit="pixel",anchor="left",discreteoffset=0.1);
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
 hbarparm category=type response=mpg_highway /
 dataskin=sheen;
 xaxis label="Average Highway MPG";
 yaxis display=none;
run;
title;
Program Description

Summarize the highway mileage data in Sashelp.Cars. Because a label is needed for each unique value of vehicle type, the data in Sashelp.Cars is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type.

```sas
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
    class type;
    var mpg_highway;
    output out=mileage mean(mpg_highway) = mpg_highway;
run;
```

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

```sas
%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
    set mileage;
    %sgText(label=type,
            x1=2,y1=type,drawspace="datavalue",
            textfont="Arial",textweight="bold",
            textcolor="GraphData1:contrastColor",width=100,
            widthunit="pixel",anchor="left",discreteoffset=0.1);
run;
```

Create the plot. The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

```sas
/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
    hbarparm category=type response=mpg_highway /
        dataskin=sheen;
    xaxis label="Average Highway MPG";
    yaxis display=none;
    run;
title;
```

Listing of the Mileage Data Set

Here is a listing of the Mileage data set.
<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th>TYPE</th>
<th>FREQ</th>
<th>mpg_city</th>
<th>highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>24</td>
<td>16.5000</td>
<td>21.0000</td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
</tr>
</tbody>
</table>
Appendix

Appendix 1
Units of Measurement ... 1897

Appendix 2
Reserved Keywords and Unicode Values 1899

Appendix 3
ODS Graphics Software ... 1903

Appendix 4
Comparisons with the SAS/GRAPH Procedures 1905
Units of Measurement

Some options enable you to specify the unit of measurement as part of the value. For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
Reserved Keywords and Unicode Values

Overview

The tables in this section show some of the reserved keywords and Unicode values that can be used with the UNICODE text command. For information about rendering Unicode characters, see “Managing the String on Text Statements” in SAS Graph Template Language: User’s Guide.

Note the following:

- Keywords and Unicode values are not case-sensitive: "03B1"x is the same code point as "03b1"x.
- The word blank is the keyword for a blank space.
Lowercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
<td>03B1</td>
<td>lowercase alpha</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
<td>03B2</td>
<td>lowercase beta</td>
</tr>
<tr>
<td>gamma</td>
<td>γ</td>
<td>03B3</td>
<td>lowercase gamma</td>
</tr>
<tr>
<td>delta</td>
<td>δ</td>
<td>03B4</td>
<td>lowercase delta</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
<td>03B5</td>
<td>lowercase epsilon</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
<td>03B6</td>
<td>lowercase zeta</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
<td>03B7</td>
<td>lowercase eta</td>
</tr>
<tr>
<td>theta</td>
<td>θ</td>
<td>03B8</td>
<td>lowercase theta</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
<td>03B9</td>
<td>lowercase iota</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
<td>03BA</td>
<td>lowercase kappa</td>
</tr>
<tr>
<td>lambda</td>
<td>λ</td>
<td>03BB</td>
<td>lowercase lambda</td>
</tr>
<tr>
<td>mu</td>
<td>μ</td>
<td>03BC</td>
<td>lowercase mu</td>
</tr>
<tr>
<td>nu</td>
<td>ν</td>
<td>03BD</td>
<td>lowercase nu</td>
</tr>
<tr>
<td>xi</td>
<td>ξ</td>
<td>03BE</td>
<td>lowercase xi</td>
</tr>
<tr>
<td>omicron</td>
<td>ο</td>
<td>03BF</td>
<td>lowercase omicron</td>
</tr>
<tr>
<td>pi</td>
<td>π</td>
<td>03C0</td>
<td>lowercase pi</td>
</tr>
<tr>
<td>rho</td>
<td>ρ</td>
<td>03C1</td>
<td>lowercase rho</td>
</tr>
<tr>
<td>sigma</td>
<td>σ</td>
<td>03C3</td>
<td>lowercase sigma</td>
</tr>
<tr>
<td>tau</td>
<td>τ</td>
<td>03C4</td>
<td>lowercase tau</td>
</tr>
<tr>
<td>upsilon</td>
<td>υ</td>
<td>03C5</td>
<td>lowercase upsilon</td>
</tr>
<tr>
<td>phi</td>
<td>φ</td>
<td>03C6</td>
<td>lowercase phi</td>
</tr>
<tr>
<td>chi</td>
<td>χ</td>
<td>03C7</td>
<td>lowercase chi</td>
</tr>
</tbody>
</table>
Uppercase Greek Letters

Table A11.1 Uppercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_u</td>
<td>А</td>
<td>0391</td>
<td>uppercase alpha</td>
</tr>
<tr>
<td>beta_u</td>
<td>Β</td>
<td>0392</td>
<td>uppercase beta</td>
</tr>
<tr>
<td>gamma_u</td>
<td>Γ</td>
<td>0393</td>
<td>uppercase gamma</td>
</tr>
<tr>
<td>delta_u</td>
<td>Δ</td>
<td>0394</td>
<td>uppercase delta</td>
</tr>
<tr>
<td>epsilon_u</td>
<td>Ε</td>
<td>0395</td>
<td>uppercase epsilon</td>
</tr>
<tr>
<td>zeta_u</td>
<td>Ζ</td>
<td>0396</td>
<td>uppercase zeta</td>
</tr>
<tr>
<td>eta_u</td>
<td>Η</td>
<td>0397</td>
<td>uppercase eta</td>
</tr>
<tr>
<td>theta_u</td>
<td>Θ</td>
<td>0398</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>iota_u</td>
<td>Ι</td>
<td>0399</td>
<td>uppercase iota</td>
</tr>
<tr>
<td>kappa_u</td>
<td>Κ</td>
<td>039A</td>
<td>uppercase kappa</td>
</tr>
<tr>
<td>lambda_u</td>
<td>Λ</td>
<td>039B</td>
<td>uppercase lambda</td>
</tr>
<tr>
<td>mu_u</td>
<td>М</td>
<td>039C</td>
<td>uppercase mu</td>
</tr>
<tr>
<td>nu_u</td>
<td>Н</td>
<td>039D</td>
<td>uppercase nu</td>
</tr>
<tr>
<td>xi_u</td>
<td>Ξ</td>
<td>039E</td>
<td>uppercase xi</td>
</tr>
<tr>
<td>omicron_u</td>
<td>О</td>
<td>039F</td>
<td>uppercase omicron</td>
</tr>
<tr>
<td>pi_u</td>
<td>Π</td>
<td>03A0</td>
<td>uppercase pi</td>
</tr>
<tr>
<td>rho_u</td>
<td>Р</td>
<td>03A1</td>
<td>uppercase rho</td>
</tr>
<tr>
<td>Keyword</td>
<td>Glyph</td>
<td>Unicode</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>sigma_u</td>
<td>Σ</td>
<td>03A3</td>
<td>uppercase sigma</td>
</tr>
<tr>
<td>tau_u</td>
<td>Τ</td>
<td>03A4</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>upsilon_u</td>
<td>Υ</td>
<td>03A5</td>
<td>uppercase upsilon</td>
</tr>
<tr>
<td>phi_u</td>
<td>Φ</td>
<td>03A6</td>
<td>uppercase phi</td>
</tr>
<tr>
<td>chi_u</td>
<td>Χ</td>
<td>03A7</td>
<td>uppercase chi</td>
</tr>
<tr>
<td>psi_u</td>
<td>Ψ</td>
<td>03A8</td>
<td>uppercase psi</td>
</tr>
<tr>
<td>omega_u</td>
<td>Ω</td>
<td>03A9</td>
<td>uppercase omega</td>
</tr>
</tbody>
</table>

Special Characters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime</td>
<td>´</td>
<td>00B4</td>
<td>single prime sign</td>
</tr>
<tr>
<td>bar</td>
<td>̅</td>
<td>0305</td>
<td>combining overline¹</td>
</tr>
<tr>
<td>bar2</td>
<td>̿</td>
<td>033F</td>
<td>combining double overline¹</td>
</tr>
<tr>
<td>tilde</td>
<td>̃</td>
<td>0303</td>
<td>combining tilde¹</td>
</tr>
<tr>
<td>hat</td>
<td>̂</td>
<td>0302</td>
<td>combining circumflex accent¹</td>
</tr>
</tbody>
</table>

¹ This is an overstriking character that requires a Unicode font to render properly.
Overview of ODS Graphics Software

SAS ODS Graphics, sometimes called SAS ODS Statistical Graphics, is an extension of the SAS Output Delivery System (ODS). ODS manages all output created by procedures and enables you to display the output in a variety of forms, such as HTML, PDF, and others. ODS uses a template-based system, providing a variety of templates such as table templates that define the structure of tabular output.

For graphical output, ODS Graphics uses the Graph Template Language (GTL) syntax. The GTL is a comprehensive language for defining statistical graphics. It provides the power and flexibility to create many types of complex graphs. You can customize an existing graph template, or create your own using the GTL. Either way, the result is a template useful for making persistent changes to your graphs.

You can use ODS Graphics software to generate commonly used graphs independent of SAS analytical procedures. Although ODS Graphics software was initially designed to facilitate the production of statistical graphs, its capabilities are also well suited for the production of non-statistical, business graphs. These graphs can be used for preliminary exploration of data and the construction of specialized displays for analyses. These situations require general-purpose graphical tools for the creation of stand-alone plots.

The ODS Graphics system contains the following software:

ODS GRAPHICS statement

adds graphics capabilities to many SAS analytical and Base procedures. The statement enables or disables ODS Graphics processing and sets graphics environment options. ODS Graphics is enabled by default on all platforms except z/OS.

You can use the **ODS GRAPHICS statement** options to control many aspects of your graphics. For example, you can use options to specify the size and format of your output images. The settings that you specify remain in effect for all
graphics until you change or reset these settings with another ODS GRAPHICS statement.

SAS ODS Graphics procedures
provide a concise syntax for creating effective statistical graphs. The **SGPLOT**, **SGPANEL**, and **SGSCATTER** procedures provide a traditional SAS procedure interface for the most commonly used features of the SAS Graph Template Language. These procedures enable you to create single-cell plots and charts, multi-page classification panels, comparative scatter plots, and scatter plot matrices. The procedures provide many options for customizing the appearance of your graphs.

Starting with SAS 9.4M6, a new **SGPIE** procedure enables you to create pie and donut charts. This procedure is preproduction.

Starting with SAS 9.4M5, ODS Graphics software includes the capability to render maps. The **SGMAP** procedure is based on the functionality of ODS Graphics. Use the SGMAP procedure to create maps and then overlay plots such as text, scatter, or bubble plots.

SAS Graph Template Language (GTL)
provides the power and flexibility to create advanced statistical graphics. Advanced users can create customized layouts and graphs with **Graph Template Language**.

SAS ODS Graphics Designer
enables you to interactively create and design custom graphs. The **ODS Graphics Designer** provides a graphical user interface for designing graphs easily without having to know the details of the Graph Template Language.

SAS ODS Graphics Editor
enables you to edit and enhance graphs that are produced by the ODS Graphics procedures or by the Graph Template Language. The **ODS Graphics Editor** is an interactive editor. It enables you to modify the elements of a graph or to add new features, such as titles, arrows, and text boxes.
Appendix 4

Comparisons with the SAS/GRAPH Procedures

SAS/GRAPH Output versus ODS Graphics

Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

SAS/GRAPH Output versus ODS Graphics

SAS produces graphics using two very distinct systems. SAS/GRAPH produces graphics using a device-based system. Base SAS produces graphics through the Output Delivery System (ODS) using a template-based system.

device-based graphics (SAS/GRAPH output)

output that is produced by SAS/GRAPH, which uses devices to generate output. Devices determine the type of output. Examples of device drivers are SVG, PNG, GIF, ACTIVEX, and SASPRTC. Device drivers supplied by SAS are stored in the SASHELP.DEVICES catalog. Most procedures that produce device-based graphics also produce GRSEG catalog entries in addition to any image files, vector files, or displayed output that are produced. SAS/GRAPH procedures that produce device-based graphics and GRSEG catalog entries include the GCHART, G PLOT, GMAP, GBARLINE, GCONTOUR, and G3D procedures. The device-based procedures that do not produce GRSEG catalog entries are the GAREABAR, GKPI, and GTILE procedures. For device-based graphics, you can use the GOPTIONS statement to control the graphical environment. For example, you can specify which device is used to generate SAS/GRAPH output by specifying the DEVICE= option in the GOPTIONS statement. Information about device-based graphics is in this document, SAS/GRAPH: Reference.
template-based graphics (ODS Graphics) output that is produced from a compiled ODS template of type STATGRAPH. Templates supplied by SAS are stored in SASHELP.TMPLMST. Device drivers and most SAS/GRAPH global statements (such as AXIS, LEGEND, PATTERN, and SYMBOL) have no effect on template-based graphics. The Base SAS procedures that produce template-based graphics are the SGPLOT, SGPANEL, SGSCATTER, SGDESIGN, and SGRENDER procedures. Many SAS/STAT, SAS/ETS, and SAS/QC procedures also produce template-based graphics automatically by default. Template-based graphics are always produced as image files and never as GRSEG catalog entries. For template-based graphics, you must use the ODS GRAPHICS statement to control the graphical environment. For example, you can specify the type of image file (SVG, PNG, GIF, and so on) that is produced by specifying the OUTPUTFMT= option in the ODS GRAPHICS statement. Template-based graphics are referred to as ODS Graphics. In addition to this SAS ODS Graphics: Procedures Guide, information about ODS Graphics is in SAS ODS Graphics: Getting Started with Business and Statistical Graphics, SAS Graph Template Language: User’s Guide, SAS Graph Template Language: Reference, SAS ODS Graphics Designer: User’s Guide, and SAS ODS Graphics Editor: User’s Guide.

Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

SAS produces graphics using two very distinct systems. SAS/GRAPH produces graphics using a device-based system. The Graph Template Language and ODS Graphics produce graphics through the Output Delivery System (ODS) using a template-based system.

Though the ODS Graphics procedures do not require SAS/GRAPH, you might have SAS/GRAPH installed. For more information about SAS/GRAPH, see SAS/GRAPH: Reference.

The following table lists some of the differences between the ODS Graphics procedures and SAS/GRAPH:

<table>
<thead>
<tr>
<th>ODS Graphics Procedures</th>
<th>SAS/GRAPH Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates image files. GRSEGs and device drivers are not used. You can select your image format by using the OUTPUTFMT= option in the ODS GRAPHICS statement.</td>
<td>Most SAS/GRAPH procedures produce a GRSEG entry in a SAS catalog. Other output formats, such as an image or metagraphics file, can be created by selecting an appropriate device driver.</td>
</tr>
</tbody>
</table>
Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

<table>
<thead>
<tr>
<th>ODS Graphics Procedures</th>
<th>SAS/GRAPH Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>User control over visual properties is set with statements or options within the procedure.</td>
<td>Properties for text, markers, and lines can be set with global statements such as GOPTIONS, AXIS, LEGEND, PATTERN, SYMBOL, and NOTE.</td>
</tr>
<tr>
<td>The plot type is determined by the plot statement only.</td>
<td>For some graphs, the plot type is determined by global options. For example, the INTERPOL= option in the SYMBOL statement might determine whether a graph is a scatter plot or a box plot.</td>
</tr>
<tr>
<td>The size, format, and name of output images can be controlled with the HEIGHT=, WIDTH=, OUTPUTFMT=, and IMAGENAME= options in the ODS GRAPHICS statement. The ODS GRAPHICS statement is similar in purpose to the GOPTIONS statement, but it is used with the ODS Graphics procedures only.</td>
<td>The size and format of graphical output is controlled with options such as the HSIZE=, VSIZE=, and DEVICE= options in the GOPTIONS statement.</td>
</tr>
<tr>
<td>All of the ODS destinations are supported. For the LISTING destination, an image node is created for the graph in the Results tree.</td>
<td>All of the ODS destinations are supported. For the LISTING destination, a GRSEG node is created in the Results tree and the image appears in the graph window.</td>
</tr>
<tr>
<td>Some options for the TITLE and FOOTNOTE statements are not supported. See “TITLE, FOOTNOTE Statements” on page 127.</td>
<td>All options for the TITLE and FOOTNOTE statements are supported.</td>
</tr>
<tr>
<td>Only system fonts are supported.</td>
<td>SAS/GRAPH supports SAS/GRAPH fonts (such as SWISSB), device-resident fonts, and system fonts (such as Arial).</td>
</tr>
<tr>
<td>Marker symbols can be selected only from a predefined set of named marker symbols. The named marker symbols are different from the named marker symbols in SAS/GRAPH.</td>
<td>Marker symbols can be either created from fonts or selected from a predefined set of named marker symbols.</td>
</tr>
<tr>
<td>Scaling of fonts and markers is on by default. This means that the sizes of fonts and markers are adjusted as appropriate to the size of your graph. You can disable scaling by using the NOSCALE option in the ODS GRAPHICS statement.</td>
<td>Scaling of fonts and markers is not supported.</td>
</tr>
<tr>
<td>ODS Graphics Procedures</td>
<td>SAS/GRAPH Procedures</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>RUN-group processing is not supported.</td>
<td>Some procedures support RUN-group processing.</td>
</tr>
<tr>
<td>An SG Annotation facility is supported. The ODS Graphics procedures do not support the SAS/GRAPH Annotate facility.</td>
<td>The SAS/GRAPH Annotate facility is supported.</td>
</tr>
<tr>
<td>You can also use the ODS Graphics Editor to annotate your graphs.</td>
<td></td>
</tr>
</tbody>
</table>

1908 Appendix 4 / Comparisons with the SAS/GRAPH Procedures