
SAS® Job Execution Web
Application 2.1: User’s Guide

Overview

A SAS Viya job consists of a program and its definition, which includes information such as the job name, author,
and creation date and time. You can use jobs for web reporting, performing analytics, building web applications,
and delivering content to clients. One such client is the SAS Job Execution Web Application. This client works
with jobs that contain SAS code. These jobs can access any SAS data source or external file and create new
tables, files, or other data targets that are supported by SAS.

By default, jobs that are submitted through the SAS Job Execution Web Application begin with the %JESBEGIN
macro and end with the %JESEND macro. These macros produce HTML output by default.

An HTML input form can be created to provide a user interface to the job. The job definitions and HTML input
forms are assigned unique identifiers, stored in the SAS Infrastructure Data Server, and executed in real time by
client applications.

The SAS Job Execution Web Application is a web-based client used to create, manage, and execute jobs. This
application, written in Java, provides access to data in combination with a powerful array of analysis and
presentation procedures running on a server. No SAS software is required on the client machine.

To access and analyze data, a web user typically completes an HTML input form displayed by the SAS Job
Execution Web Application. When the user selects the option to submit the information, data specified in the
form is passed to a waiting SAS session as global macro variables. The SAS program runs and the results are
returned to the web browser.

You do not need Java or script programming experience to use the SAS Job Execution Web Application. You
can create the web user interface and retrieve SAS data for display on the web using only HTML and SAS code.

Use the SAS Job Execution Web Application if you

n want to analyze and display information dynamically on the web and let your web users immediately retrieve
the information that they need.

n have SAS programming experience but little or no web programming experience. You can create the web
user interface and retrieve the SAS data for display on the web.

n want to create applications that provide web output without investing a lot of programming time.

n want to create applications that run on a variety of web browsers.

The SAS Job Execution Web Application has several types of users, as follows:

n End users enter information in an HTML input form, select a link, or view an inline image that is displayed in
a web browser.

n Web page authors create the HTML input forms or pages that collect and submit input to the SAS job. These
individuals could be SAS application developers.

n SAS job program component developers create the SAS programs that receive information entered in the
HTML input form.

The SAS Job Execution Web Application executes a stored job when it receives a request with a parameter
indicating the location of the job. The request is initiated by accessing a URL with the following general format:

http://host:port/SASJobExecution/?_program=/SomeFolder/Hello World

In this example, the Hello World job stored in the /SomeFolder location is executed.

Various SAS Viya services are used to retrieve the job, submit it for processing, and display the job output. The
following figure shows the components that are used to run a job:

Figure 1 Components of Running a Job

Browser

SAS Job Execution
Web Application

Folders
service

Files
service

Job
Definitions

service

SAS
Launcher

Server

Embedded web
application server Job Execution

service
Compute
service

SAS
Compute

Server

Launcher
service

The execution flow consists of the following steps:

1 A request is submitted to the SAS Job Execution Web Application, usually initiated by a web browser client.

2 If the job is referenced using a folder path, then the job location is obtained from the Folders service. This
step is skipped if the job location was specified in the _JOB parameter.

3 The job definition is retrieved from the Job Definitions service by using the job location obtained in step 2.

4 Input parameters, execution parameters, and the job definition are submitted to the Job Execution service.

5 The request is passed to the Compute service, which uses the Launcher service to start a Compute Server.

Note: Each client user must have a user account on the Compute Server machine to run a request.

6 The SAS program runs in the Compute Server and creates output in the SAS Infrastructure Data Server
using the Files service. The files are associated with the job execution object to facilitate retrieval.

2

Note: The Compute Server can access the SAS Cloud Analytic Services (CAS) server though the CAS
procedure or through the CAS LIBNAME engine. For more information, see SAS Cloud Analytic Services:
CASL Reference and SAS Cloud Analytic Services: User’s Guide, respectively.

7 The Job Execution service monitors the job execution and alerts the SAS Job Execution Web Application
when the job has completed.

8 The SAS Job Execution Web Application instructs the web browser to use the Files service to retrieve the
desired output files linked to the job execution object. If the _SAVEFOLDER option is used, then the output is
saved to the specified folder.

9 The job execution object has an expiration time, which is set when the job has finished executing. When it
expires, the job execution object and all files associated with it are deleted.

Working with the SAS Job Execution Web
Application

Accessing the Application

Access the SAS Job Execution Web Application using this URL:

http://host:port/SASJobExecution

If you do not specify a value for port, the default value of 80 is used.

Accessing Content

The SAS Content page enables you to locate, manage, and execute job-related files. If the output of a job is
saved to SAS content folders, it can also be displayed from this page. The SAS Content page appears by
default when you enter the SAS Job Execution Web Application, but if you are on another page, you can click
to access it. The left pane displays folders and their contents, and the right pane is used as a presentation and
working area for the various job functions:

See the Creating a Simple Job that Uses DATA Step Code and Passing User Input to Your Job Using an HTML
Input Form sections in “Development Concepts” on page 19 for more information about creating and editing
files.

3

The full version of the SAS Content page is available to users who have authorization to develop jobs. It can be
accessed using the /developer path. A more limited SAS Content page is available to users who are allowed
only to execute existing jobs and view output. It can be accessed using the /user path. The display and
capabilities are automatically adjusted according to the authorization of each user. For example, HTML input
forms are displayed only for developers. By default, all users have authorization to develop jobs. See “Changing
Access to Application Functions” on page 17 for more information about how to assign users access to
developer or user views.

Click to view general properties of a job or to add parameters to the job. See “Passing User Input to a Job
Using a Job Definition Parameter” on page 23 for more information about setting parameters.

Click to retrieve the output from the most recent execution of the job, if it is still available. The output is
displayed in the right pane.

Select a job and then click to submit a job for execution. The following dialog box with execution options
appears when you click :

4

You can add parameters using the format name1=value1&name2=value2. Select the New window option to
display the job output in a new browser window. The Show log option adds the _debug=log parameter setting
to the request. These options remain in effect for job submissions during the current browser session.

The following two URL parameters can be used to alter the folder list for the SAS Content page:

Parameter Description

_folder=/SomeFolder Opens the display at the indicated folder path

_path=/SomeFolder Makes the root of the display the indicated folder path and
displays items only in this folder and its subfolders

Here is a sample usage:

http://host:port/SASJobExecution/?_folder=/SomeFolder

See “Accessing Application Pages through a URL” on page 6 for more information about accessing pages
through a URL.

Managing Jobs

Click to access the Jobs page, where you can display and maintain jobs that have run previously and have
not yet expired.

Click to specify the date and time at which to delete a job.

Click to display the job output in a new browser tab or window.

Click to save all output from the job. In the Save As dialog box, specify the folder location and file name for
the output. If multiple output files were created, then you are prompted for a location and file name for each file.

SAS Environment Manager is used to schedule jobs. Click to open the Jobs page, where you can access the
Scheduling tab. See SAS Viya Administration: Jobs for more information about scheduling. See “Scheduling a
Job” on page 12 for more information about using the _ACTION parameter to schedule a job.

Each row of the table lists a previously submitted job, with information about the location of the job, its status,
run time, who submitted the job and when, and when the job expires.

You can specify the _PROGRAM input parameter to display results for a single job. For example, the following
URL displays results only for the Hello World job:

http://host:port/SASJobExecution/jobs?_program=/SomeFolder/Hello World

The value of the _PROGRAM parameter is case-sensitive and must exactly match the location and name of the
job.

5

Installing the Samples

A set of sample jobs and HTML input forms is available for installation. These samples illustrate various SAS
program coding techniques and how jobs are executed with the SAS Job Execution Web Application.

Click to access the Samples administration page, where you can view a table of available samples. This is a
list of items available for installation, not those that have already been installed.

To install samples and use them, copy the sample job definitions and HTML input forms supplied by SAS to a
folder. Select the desired items and then click Copy to. In the folder selector dialog box, select a destination
folder and then click OK to copy the items. If an item already exists in that location, an option to skip, replace the
item, or quit copying is presented.

Copying sample job definitions and HTML input forms to a folder is typically a one-time operation performed as a
post-installation step.

Accessing Application Pages through a URL

The page that appears when you access the application is determined by the authorization that is enabled. The
default page lists job files and provides access to editing and administration tools. You can use SAS
Environment Manager to create authorization rules that determine which users have access to different pages.
See “Changing Access to Application Functions” on page 17 for more information.

Several pages are available with the SAS Job Execution Web Application. The different pages are displayed by
adding paths to the base SAS Job Execution Web Application URL:

Path Page Description

/developer Displays all files and administration tools. Depending on a
user’s authorization, this might be the default SAS Content
page, which is used to create and maintain job-related files.

/env Displays system environment information such as
properties and parameters (restricted to SAS
Administrators).

/jobs Administers previous job runs.

/logout Logs out of the application.

/samples Administers sample jobs.

6

Path Page Description

/user Displays and executes job files. Depending on a user’s
authorization, this might be the default SAS Content page.

For example, use the following URL to display and execute job files:

http://host:port/SASJobExecution/user

Executing Jobs

Specifying a Job to Run

Jobs are typically referenced by a multi-level path in the Folders service. Jobs can be created in any folder, and
they are referenced using the _PROGRAM parameter:

_program=/SomeFolder/jobname

When the SAS Job Execution Web Application receives this parameter, the job location is obtained from the
program path and the job definition is retrieved from the Job Definitions service.

Alternatively, an exact location can be entered using the _JOB parameter. The Job Definitions URI, which
contains the unique identifier for the job, is specified in the following form:

_job=/jobDefinitions/definitions/3b9f3a5e-deb1-4873-a90a-be6280e35deb

Using Job Input Parameters

Job input parameters pass data to your SAS program as a list of name/value pairs. The name/value pairs can be
specified in the URL, in fields in an HTML input form, in job definition parameters, or in the SAS Job Execution
Web Application configuration pane. SAS global macro variables, which are created from these name/value
pairs, are available for use in your program.

For example, when a job is executed using the following URL:

http://host:port/SASJobExecution/form/?_program=/Folder1/myJob&p=123

The following macro variables are created:

Macro Variable Name Macro Variable Value

_program /Folder1/myJob

p 123

Prompting for Input Parameters with HTML Input Forms

The location of the HTML input form file can be specified using the _FORM parameter. This parameter can be
specified in the URL as an input parameter or preset as a job definition parameter using the Properties function
of the SAS Content page.

Note: You must have access to developer functionality to modify properties for a job.

7

Here is an example of specifying the HTML input form using an input parameter:

http://host:port/SASJobExecution/form/?_program=/Folder1/myJob&_form=/Folder2/myJobForm

The HTML input form named myJobForm stored in /Folder2 is displayed. Note that the HTML input form does
not need to be in the same folder as the job (/Folder1) nor does it need to have the same name as the job
(myJob).

If the _FORM parameter is not specified, then an HTML input form with the same name and location as the
corresponding job is displayed, if it exists:

http://host:port/SASJobExecution/form/?_program=/Folder1/myJob

The HTML input form named myJob stored in /Folder1 is displayed. The sample jobs provided by SAS take
advantage of this feature.

Alternatively, you can use the _ACTION input parameter in the URL instead of the /form path. The previous
examples become:

http://host:port/SASJobExecution/?_action=form&_program=/Folder1/myJob&_form=/Folder2/myJobForm

and

http://host:port/SASJobExecution/?_action=form&_program=/Folder1/myJob

Use the Properties function of the SAS Content page to specify _FORM as a preset job parameter. This
technique is useful when you have multiple jobs that need to use the same HTML input form.

Note: You must have access to developer functionality to modify properties for a job.

Suppose that you have two jobs that use the HTML input form name Shared Input Form stored in the /Folder2
folder. Specify /Folder2/Shared Input Form for the _FORM parameter of each job. The input form is then
displayed when both jobs are run using /form or _action=form, without the need for specifying _FORM in
the URL:

http://host:port/SASJobExecution/form/?_program=/Folder1/myJob1

and

http://host:port/SASJobExecution/?_action=form&_program=/Folder1/myJob2

See “Passing User Input to a Job Using an HTML Input Form” on page 24 for an example of how to use an
HTML input form to pass input to a job.

Specifying Output Files

When a job is run by the Compute Server, files stored in the SAS Infrastructure Data Server by the Files service
can be returned to the web browser for display. After the job has completed, the SAS Job Execution Web
Application directs the web browser to retrieve and display the desired files.

A file matching the pattern _webout.* is returned by default. If more than one file matches this pattern, they are
all returned in alphabetical order, with the case and file extension considered in the ordering. The first file is
displayed in an IFRAME in the HTML page, and links are provided to display the remaining files. Click a link to
display the content of the file in the IFRAME. If the IFRAME is unable to render the content (for example, an RTF
file or a SAS data set), then the file is downloaded.

Use the _RESULTFILE parameter to indicate which files should be returned. The parameter accepts a comma–
separated list and supports the "*" (multi-character) and "?" (single-character) wildcards. The following table
provides some examples:

_RESULTFILE Value Returns

* All files

8

_RESULTFILE Value Returns

*.csv Only CSV files

.html,.htm HTML and HTM files, in that order

.htm,*.pdf,*.csv HTM, HTML, CSV, and PDF files, in that order

state??.csv CSV files beginning with state and ending with any two
characters (for example, state01.csv)

retail.htm,retail.pdf,class.htm,class.p
df

Only the files that are listed in the order in which they are
listed

Use _action=json if you have an application that requires a list of result files in JSON format. Here is an
example:

http://host:port/SASJobExecution/?_program=/Folder1/myJob&_action=json

This returns the following JSON instead of the _webout.htm file:

[
 {
 "name": "_webout.htm",
 "href": "/files/files/a680029d-da79-4d1a-83be-2440c6e6b89e/content"
 }
]

Use the URI in the HREF property to retrieve the _webout.htm file.

The following example uses the _RESULTFILE and _OMITTEXTLOG parameters to return all files, including the
SAS log:

http://host:port/SASJobExecution/?_program=/Folder1/myJob&_action=json
&_resultfile=*&_omittextlog=false

The following JSON is returned:

[
 {
 "name": "7BC34A5D-42BD-FD4C-AAF1-87D3A55AB8D9.log.txt",
 "href": "/files/files/bff66afe-eaf3-4af1-8261-b64ec9b72198/content"
 },
 {
 "name": "Class.pdf",
 "href": "/files/files/7ffad6f2-f6f4-4093-af4e-0548c4dfe8b0/content"
 },
 {
 "name": "Class.xml",
 "href": "/files/files/1987b95d-196c-4fad-9590-7afc2f6e8be3/content"
 },
 {
 "name": "_webout.htm",
 "href": "/files/files/6ded3921-0ae7-4e97-bf97-a654df996d27/content"
 }
]

9

Using Output Job Parameters

A status message can be displayed to the user at the end of the job execution. If the SAS macro variable
_STATUS_MESSAGE contains a value, then the value is displayed in a dialog box. See “Sending ODS Output
to an Email Recipient” on page 33 for an example of how to use _STATUS_MESSAGE.

Modifying the Job Execution

Job parameters can be used in the URL to change how jobs are executed. Default values for many of these job
parameters can be set as configuration properties. See “Setting Configuration Properties” on page 14 for more
information about setting configuration properties. Job parameters specified in the URL become macro
variables, and they are available for use within your SAS program.

The _ACTION job parameter performs many different functions, as described in the following sections. See
“Prompting for Input Parameters with HTML Input Forms” on page 7 for more information about how to use it to
display HTML input forms. The prompts and nobanner values are reserved for future use.

Specifying SAS System Options

You can use special input parameters to set SAS system options for a job. These options are specified upon
SAS invocation. The general format is as follows:

%opt-unique-name option-specification

Always begin with %opt- (case insensitive) followed by a name not used by another input parameter. These
parameters can be specified in an HTML input form, as job definition parameters, or in the query string. No SAS
macro variables are created for this type of input parameter.

The following table shows sample values for setting a single option using an HTML input form or job definition
parameter:

Parameter Name Value

%opt-myopt linesize=max

The following table shows sample values for setting more than one option using an HTML input form or job
definition parameter:

Parameter Name Value

%opt-myopt1 linesize=max

%opt-myopt2 nobyline

When specifying the parameter as part of the query string, be sure to URL encode the percent sign ("%") in
%OPT- and also the equal sign ("=") if it is present in your option value. For example, use this URL parameter to
specify 200 for the LINESIZE option:

http://host:port/SASJobExecution/?_program=/Folder1/myJob&%25opt-myopt=linesize%3d200

Job Execution Time-out

By default, the SAS Job Execution Web Application waits 120 seconds for a job to complete. You can change
this for a request by specifying the _TIMEOUT job parameter in the URL:

10

_timeout=60

The default value can be set using the EXECUTETIMEOUT configuration parameter.

Job Output Expiration

The output files created by a job are available for 30 minutes by default. Use the _EXPIRATION job parameter to
specify a different duration. The value is formatted according to the W3C XML duration data type. For example,
this specifies that the job expires within 60 minutes after execution has completed:

_expiration=PT60M

Specifying zero (0) indicates no expiration, and the output files is not deleted. The default value can be set using
the EXPIRATION configuration parameter.

Background Processing

Use the _ACTION job parameter to perform several operations. Specify the following value to execute a job in
the background without waiting for completion:

_action=background

The following message is displayed after the job is submitted:

Job /Folder/job-name submitted for background processing.

You can use the Jobs page or in the SAS Content page to view the results once the job has finished running.

For all jobs that are submitted, the job ID is returned in the HTTP header X-SAS-JOBEXEC-ID. For jobs that run
in the background, the job ID can be used as follows to poll the jobExecution service to identify the state of the
job:

/jobExecution/jobs/5d21f17b-5f85-4a49-9c34-319174eb741f/state

When the job has finished running, you can use the job ID as follows to view the results:

/SASJobExecution/?_jobexec=/jobExecution/jobs/5d21f17b-5f85-4a49-9c34-319174eb741f

Jobs run in the background expire after 24 hours, unless a different duration is specified using the
_EXPIRATION parameter. Use the Jobs page to set the expiration after a job has executed.

Perform the following steps to use the BACKGROUND configuration parameter to specify a custom HTML page
to display instead of the default message:

1 Create an HTML file with your customized message and then save it to a folder. See “Passing User Input to a
Job Using an HTML Input Form” on page 24 for more information about creating an HTML file.

2 Follow the instructions in “Setting Configuration Properties” on page 14 to create the BACKGROUND
property with the full path and name of the HTML file. For example, specify /Folder/My Custom
Background Message as the value.

Wait Screen

You can use the _ACTION job parameter to display a wait screen with informational text while the job is
executing:

_action=wait

The default value for the text is Please wait. Use the WAITTEXT configuration parameter to specify the text
of the wait message.

Note: The wait value works only when _ACTION is being used as a URL parameter.

11

Retrieving Previous Results

Output from a previous job execution can be displayed if it has not yet expired:

_action=lastjob

This avoids the time needed to execute the job in the Compute Server and can be used to provide semi-static
reports. This feature can improve performance and reduce server load if multiple users request a job that
produces exactly the same results.

If there is no previous output, then you receive an error message indicating that previous job output does not
exist.

The _ACTION job parameter also accepts a comma-separated list of values. Add execute to force the job to
execute if the previous job output does not exist:

_action=lastjob,execute

Scheduling a Job

When you execute a job, you can use the _ACTION parameter as follows to save the job definition and
parameter values in the Scheduling table in SAS Environment Manager:

_action=schedule

Use SAS Environment Manager to complete the steps needed to schedule the job. See SAS Viya
Administration: Jobs for more information about scheduling.

See “Managing Jobs” on page 5 for more information about manually performing this action.

Saving Job Output

Job output files can be saved for later viewing. Use the _SAVEFOLDER parameter as follows to specify the
folder in which to save the output:

_savefolder=/Folder1/Folder2

By default, the file names that are specified in the NAME option of the Files service access method FILENAME
statement are used. Existing files are replaced. See the sections about assigning a FILEREF in “Development
Concepts” on page 19 for more information about how to use the FILENAME statement.

The _SAVEFILE parameter specifies the file to save:

_savefile=_webout.html

Only the _webout.html file, specified in the NAME option of the Files service access method FILENAME
statement, is saved. Omit this parameter to save all job output files or if the job creates only one file. Note that
by default, only files named with the pattern _webout.* are returned. Use the _RESULTFILE parameter to
specify return files with names that do not match this pattern.

Specify the parameter multiple times to save only some of the output files created by a job. Only the
_webout.html and _webout.pdf files are saved from a job that creates multiple files:

_savefile=_webout.html&_savefile=_webout.pdf

and

_resultfile=*&_savefile=MyOutput.html&_savefile=MyOutput.pdf

The _SAVEFILE parameter can be used to save a file with a new name:

_savefile=original-name,new-name

The _webout.html file is saved as MyOutput.htm:

12

_savefile=_webout.html,MyOutput.html

See “Managing Jobs” on page 5 for more information about manually saving job output.

After the job output is saved, it is available in SAS Drive. From there, it can be downloaded, displayed, and
accessed by other applications.

Debugging

Debugging information can be returned to assist in program development and execution. Like the _ACTION job
parameter, _DEBUG accepts a single value or a comma-separated list of values:

_debug=fields,log,time,trace

The following values are available:

Value Information Returned

fields List of all input parameters. Those listed in the Arguments
section become SAS global macro variables.

log SAS job log.

time Total time in seconds to execute the job; incremental and
total time are reported when used in conjunction with
trace.

trace Information for each step of the job.

Use trace to display detailed information about the job execution, including preset and input parameters, the
job definition and SAS code, and results created by the job.

By default, the _DEBUG parameter can be used by any authenticated user. To restrict its usage on a group or
user basis, change the authorization rules for the /SASJobExecution/debug/ key using SAS Environment
Manager. See “Security for SAS Viya Jobs” on page 17 for more information.

Use the DEBUGDISALLOW configuration property to disallow the use of specific debug values for all users.

You can use SAS Environment Manager to view log messages generated by the SAS Job Execution Web
Application. Click to display the Logs Filter and Messages panels. Select jobexecapp in the Logs Filter
and then click Apply to display only the pertinent messages.

Perform the following steps to change the amount of information that is generated in the log:

1 Click in SAS Environment Manager, and then select Definitions from the View drop-down list.

2 Click logging.level to display the properties that are used to configure logging levels.

3 Specify com.sas.jobexec in the Filter field at the top of the right panel.

4 If no properties are found, then you must add one. Click New Configuration and then supply the required
value in the New logging.level Configuration dialog box. Otherwise, select the desired value from the level
drop-down list. For example, specify the following values to set the level to report debug messages:

n For Services, specify SAS Job Execution.

n For level, specify DEBUG.

n For name, specify com.sas.jobexec.

13

Administrative Tasks
Administration of the SAS Job Execution Web Application consists of setting configuration properties and preset
job parameters, enabling logon options, and installing sample programs. An account belonging to the
SASAdministrators group is required to perform these actions.

Setting Configuration Properties

Configuration properties control the default behavior of the SAS Job Execution Web Application. Use SAS
Environment Manager to view and modify these parameters.

Start SAS Environment Manager and then select in the left pane. Select All services from the drop-down
menu in the left pane and then select SAS Job Execution.

The configuration properties are displayed in the right pane and can be changed by selecting in the upper
right corner of the sas.jobexecapp section. To add a new property, scroll to the bottom of the list, click Add
property, and then specify the property name and value in the Add Property dialog box.

The following properties can be changed or added:

Property Default Value Description

actiondisallow Comma-separated list of action values
to disallow

background SAS folder path and name of HTML
file to display for background
processing

contextname SAS Job Execution compute context Compute service context name

14

Property Default Value Description

debugdisallow Comma-separated list of debug values
to disallow

executetimeout 120 Job run time-out in seconds

expiration PT30M Job expiration duration (30 minutes) in
the format defined in the W3C XML
duration data type

indextitle SAS Job Execution Banner title for the application

maxfilecount 5 File upload maximum file count

maxfilesize 100000000 File upload maximum file size in bytes

waittext Please wait Message to display on job wait display

welcome SAS folder path of HTML file to display
if no parameters are specified

Setting Preset Parameters

Like configuration properties, preset parameters are defined using SAS Environment Manager. The parameter
name/value pairs are set when a job executes and SAS global macro variables are created from the name/value
pairs. The preset parameter definitions are in the same pane as the configuration properties. Follow the
instructions in “Setting Configuration Properties” on page 14 to access this pane, and then scroll to the Preset
Parameters section.

These parameters can be set to fixed strings or values that are substituted when the job is run. The properties
that are available for substitution are listed in the Request Properties, System Properties, and HTTP Request
Headers sections displayed by the System Environment page. The following table lists some common request
properties:

Recommended SAS Variable Name Request Property Name Description

_AUTHTYP jobexec.auth.type Name of the authentication scheme
that is used (for example, BASIC, SSL,
or blank if no protection).

jobexec.character.encoding Name of the character encoding that is
used in the body of the request.

jobexec.content.length Length (in bytes) of the request body,
which is made available by the data
source. If the length is not known, the
value is –1.

jobexec.content.type MIME type of the body of the request.
If the type is not known, the value is
blank.

jobexec.context.path Portion of the request URL that
indicates the context of the request.

15

Recommended SAS Variable Name Request Property Name Description

jobexec.cookies Cookie strings that the client sent with
this request.

jobexec.header All HTTP request headers.

jobexec.header.name A particular HTTP request header line
as it was received, where name is the
header name.

_HTUA jobexec.header.user-agent A particular HTTP request header line
as it was received, where user-agent is
the name of the user agent.

jobexec.jsessionid Web application session ID.

_USERLOCALE jobexec.locale Preferred locale in which the client
accepts content, based on the Accept-
Language header.

jobexec.method HTTP method used when this request
was made (for example, GET, POST,
or PUT).

jobexec.path URL pathname.

jobexec.protocol Name and version of the protocol that
the request uses in the form
protocol/
majorVersion.minorVersion
(for example, HTTP/1.1).

jobexec.query.string Query string that is contained in the
request URL after the path.

_RMTADDR jobexec.remote.addr Internet Protocol (IP) address of the
client that sent the request.

_RMTHOST jobexec.remote.host Fully qualified name of the client that
sent the request or the IP address of
the client if the name cannot be
determined.

jobexec.request.inputencoding Request input encoding. The default
encoding is UTF-8.

jobexec.scheme Name of the scheme that was used to
make this request (for example, HTTP,
HTTPS, or FTP).

jobexec.secure A value of true or false, indicating
whether this request was made using
a secure channel, such as HTTPS.

jobexec.user Login ID of the user that made this
request if the user has been
authenticated. If the user has not been
authenticated, the value is blank.

16

Recommended SAS Variable Name Request Property Name Description

_URL jobexec.uri Part of this request's URL from the
protocol name up to the query string in
the first line of the HTTP request.

_VERSION jobexec.version SAS Job Execution Web Application
version.

_XFORWARD jobexec.header.x-forwarded-host Request HTTP header value for x-
forwarded-host.

_CLIENTNAME SASJobExecution Name of the client.

Use a dollar sign character ($) followed by the property name to perform run-time substitution. Any unresolved
values result in the corresponding parameter being set to a zero-length string. The following table provides some
examples:

Macro Variable Name Value Description

_SOME_TEXT This is some text Hardcoded text

_JAVA_VERSION $java.version Version of Java on the Java
Application Server

_SCHEME $jobexec.scheme Name of the scheme for the request

_HTTP_HOST $jobexec.header.host Host and port number for the request

The last example illustrates how to assign the value of an HTTP request header to a macro variable using the
general syntax $jobexec.header.name. Be sure to specify header when referencing an HTTP header.

It is good practice to use an underscore character (_) at the beginning of system macro variable names. Refrain
from creating macro variables in your SAS program that begin with an underscore character to avoid overwriting
system macro variable values.

Security for SAS Viya Jobs

Setting Authorization for a Folder

By default, the authorization for a top-level folder allows the owner full access to the folder. For more information
about viewing and editing authorization for folders and folder objects, see SAS Viya Administration: Content
Management.

Changing Access to Application Functions

Access to the SAS Content page for developers and other functions is determined by authorization rules applied
to object URIs. Use SAS Environment Manager to locate and then edit or add rules that control which users and
groups can access the object URIs.

17

Using an administrative account, click in the left navigation bar to access the SAS Environment Manager
Rules page. If you want to restrict who can create job definitions and job forms, change the rule on /
SASJobExecution/developer/** to specify the specific users or groups that should have developer
capabilities. Specify /SASJobExecution/developer/** in the Object URI field of the Rules Filter and then
click Apply to filter the rules of this URI:

For more information about general authorization and working with authorization rules or about permissions that
you can grant or prohibit, see SAS Viya Administration: General Authorization. For most functions, the SAS Job
Execution Web Application checks permissions based on the HTTP request method used to access the URI.

Use the Read permission to control access to the _DEBUG job parameter. For all other URIs, use the Read
permission to control access to the URI using the HTTP GET method and CREATE for the POST method.

The following table lists the URIs and default principals for all of the application functions:

18

Function Object URI Default Principal

Web application root /SASJobExecution/ Authenticated Users

Administration interface /SASJobExecution/developer/** Authenticated Users

_DEBUG job parameter /SASJobExecution/debug/** Authenticated Users

Display system environment /SASJobExecution/env/** SASAdministrators

Display an HTML input form before the
job executes

/SASJobExecution/form/** Authenticated Users

Standard interface to display and
execute jobs

/SASJobExecution/user/** Authenticated Users

Administration of previous job runs /SASJobExecution/jobs/** Authenticated Users

Administer sample jobs /SASJobExecution/samples/** Authenticated Users

Testing the Installation

Executing the Ping Program

A special internal program is available to determine whether the system is functioning correctly:

http://host:port/SASJobExecution/?_program=ping

An HTML page is returned when this job runs to completion with the message:

Job completed successfully

Running a Sample Job

You can further test the installation by running one or more sample jobs, if they are installed on your system.
See “Samples” on page 42 for a list of samples and their expected output.

Development Concepts

Creating Jobs Using the %JESBEGIN and %JESEND
Macros

Overview of %JESBEGIN and %JESEND Macros

The %JESBEGIN utility macro sets up the job execution environment and executes before your SAS code. You
use job input parameter values to control the macro.

19

For example, specify _OUTPUT_TYPE=ods_html5 if your job uses ODS to create HTML output. The macro
assigns a FILEREF named _WEBOUT to return output to the web browser or client application and issues an
ODS HTML5 statement.

Note: The %JESBEGIN macro creates HTML5 output by default.

The %JESEND autocall macro cleans up the job execution environment and executes after the SAS code.

If you specify _OUTPUT_TYPE=none, the %JESBEGIN macro displays a list of global macro variables in the
SAS log. Specify _ADDJESBEGINENDMACROS=false to prevent the macros from being added to your code
stream.

See “Samples” on page 42 and “%JESBEGIN and %JESEND AutoCall Macros” on page 84 for more
information about using these macros.

Creating a Simple Job That Uses DATA Step Code

The following example creates a simple job that uses DATA step code to return HTML to the client. The
FILENAME statement shown in “Assigning a FILEREF for HTML Output” on page 33 is used.

You can use the SAS Job Execution Web Application to create jobs by using the SAS Content page:

http://host:port/SASJobExecution

Note: You must have access to developer functionality to create jobs.

Perform the following steps to create the sample job:

1 Navigate to a folder location where you want to store the job, and then click .

2 Specify the name for the file (this example uses Simple HTML) and accept the default values for the File
type field. Click OK.

3 Click the Simple HTML job and then click to display the Properties dialog box.

20

4 Expand the Parameters group and then click Add a new parameter. Specify the following properties for the
parameter:

Property Value

Name _OUTPUT_TYPE

Field Type Character

Default Value html

Click Save.

This job creates HTML output but not HTML output generated by ODS. See “Creating Simple HTML Output
Using ODS” on page 26 for more information about creating ODS output from a job.

5 Click .

6 Enter the following code into the editor window:

* Write the custom HTML to _webout;

data _null_;
file _webout;
put '<html>';
put '<head><title>Hello World!</title></head>';

21

put '<body>';
put '<h1>Hello World!</h1>';
put '</body>';
put '</html>';
run;

7 Click , and then click Close to save the job and close the editor window.

This code writes HTML to the _WEBOUT FILEREF that is assigned by the %JESBEGIN macro. This FILEREF
is assigned based on the value specified for the _OUTPUT_TYPE job parameter. The SAS Job Execution Web
Application displays the HTML written to this FILEREF. See the sections about assigning a FILEREF in
“Development Concepts” on page 19 for more information about this type of FILENAME statement.

Executing a Job Using Direct URL Access

You can execute a job by entering a URL into the address bar of your web browser. The URL for the example in
“Creating a Simple Job That Uses DATA Step Code” on page 20 is:

http://host:port/SASJobExecution/?_program=/SomeFolder/Simple HTML

Specify the complete path and name of the job in the _PROGRAM URL parameter. Perform the following steps
to get a copy of the URL without input parameters:

1 Click a job to select it, and then click to display the Properties dialog box.

2 Expand the Advanced group to see the location of the job definition details and the URL for submitting the
job. For the Simple HTML example, you might see values such as the following:

Job details /jobDefinitions/definitions/493ba851-303b-4fb1-ac12-22199e085320

Job submit http://host:port/SASJobExecution/?_program=/SomeFolder/Simple HTML

3 Copy the value for Job submit.

SAS global macro variables are created from all query string parameters to the right of the question mark (?) in
the URL. These macro variables are available for use in your SAS program. In this case, a macro variable
named _PROGRAM is created with a value of /SomeFolder/Simple HTML.

The program creates the following output:

You can also execute a job by accessing a link in a web page. Specify the previous URL in the HREF attribute of
an anchor tag:

<a href="http://host:port/SASJobExecution/?_program=/SomeFolder/
 Simple HTML">Click here to execute job

Executing a Job Using the SAS Job Execution Web Application

The SAS Content page of the SAS Job Execution Web Application provides a basic user interface to list and
execute jobs.

Note:

Users who do not have access to developer functionality see fewer icons and files. (Developers see the job
forms as well as the job definitions. Other users see only the job definitions.)

Use the content selector pane to navigate to the job that you want to execute, select it, and then click to
execute the job.

22

The job output is displayed in the right pane.

Passing User Input to a Job Using the Query String

Most jobs require information from the client to perform their intended function. This information can be in the
form of presentation options for a report, selection criteria for data to be analyzed, names of data tables to be
used or created, or an unlimited number of other possibilities.

Input parameters are the most common way to deliver information from a client to a job. They are defined as
name/value pairs and appear in your SAS program as global macro variables. The _PROGRAM parameter used
in “Executing a Job Using Direct URL Access” on page 22 is an example of an input parameter.

The simplest way to pass user input to a job is by specifying name/value pairs in the SAS Job Execution Web
Application query string. Consider this modification to the web address:

http://host:port/SASJobExecution/?_program=/SomeFolder1/Simple HTML&myname=John

A global macro variable named MYNAME with a value of John is created before the SAS code is executed, and
it is available for use in your SAS program. Make the following change to the code from “Creating a Simple Job
That Uses DATA Step Code” on page 20:

* Declare input parameter;

%global MYNAME;

* Write the custom HTML to _webout;

data _null_;
file _webout;
put '<html>';
put '<head><title>Hello World! </title></head>';
put '<body>';
put "<h1>Hello %sysfunc(htmlencode(&MYNAME))!</h1>";
put '</body>';
put '</html>';
run;

It is good practice to declare input parameters at the beginning of the program so that macro variables resolve.
Also, use double quotation marks in the PUT statement to resolve the macro variable.

Executing the job using the previous web address creates the following output:

Passing User Input to a Job Using a Job Definition Parameter

Run the Simple HTML job that was created in the previous section without specifying a value for the MYNAME
input parameter in the URL:

http://host:port/SASJobExecution/?_program=/SomeFolder/Simple HTML

The following output is displayed:

23

Perform the following steps to specify a default value for the MYNAME input parameter by adding a job definition
parameter:

1 Use the SAS Content page to navigate to the Simple HTML job, select it, and then click .

Note: You must have access to developer functionality to modify properties for a job.

2 Expand the Parameters group and then click Add a new parameter. Specify the following properties for the
parameter:

Property Value

Name myname

Field Type Character

Default Value John

3 Select Required only if you want to ensure that a non-blank value be specified for the parameter at run time.

4 Click Save to save the parameter.

5 Run the job again using the previous URL. The output is now:

Passing User Input to a Job Using an HTML Input Form

You can use the SAS Content page to create HTML input forms that accept input from a user and then pass that
input to the SAS code. This example uses the Simple HTML job that was created in “Passing User Input to a Job
Using the Query String” on page 23. The example creates an input form to replace the technique of passing
input to the SAS program using the query string.

Note: You must have access to developer functionality to create job input forms.

When you create an input form with the same name as the job and located in the same folder as the job, it can
be automatically displayed when the job executes. Create a job parameter named _ACTION with the following
properties to take advantage of this behavior:

Property Value

Name _ACTION

Field Type Character

Default Value form,execute

If an HTML input form exists, then it is displayed. Otherwise, the job executes.

Perform the following steps to create a job form named Simple HTML in the same folder as the job:

1 Navigate to the specified location and then click .

24

2 Specify Simple HTML for the name of the file. Select Job form from the File type drop-down list. Click OK
to create the file.

3 Click the Simple HTML form file that you just created and then click .

4 Enter the following HTML code into the editor window, ensuring that you specify the appropriate folder
location in the _PROGRAM attribute:

<!DOCTYPE html>
<head>
<title>Simple HTML Example</title>
</head>
<body>

<h1>Simple HTML Example</h1>

<form action="/SASJobExecution/" target="_blank">
 <input type="hidden" name="_program" value="/SomeFolder/Simple HTML">
 <input type="hidden" name="_action" value="execute">

<label>Specify a name for the greeting: </label>
<input type="text" name="myname" value="World" required>

<input type="submit" value="Run code">
</form>

</body>
</html>

Alternatively, you can use a text editor or web development tool to create the HTML, and then copy and
paste it into the editor window.

Always specify /SASJobExecution/ in the ACTION attribute of the FORM tag to indicate that the form
data is submitted to the SAS Job Execution Web Application for processing. You can specify _blank in the
TARGET attribute to force the output to always appear in a new browser window or tab. Omit this attribute if
you do not want this behavior.

The first input tag specifies that a non-visual object named _PROGRAM has a value of /SomeFolder/
Simple HTML. This input tag indicates the location and name of the program to execute. The value that you
specify is case-sensitive.

The second input tag specifies a value of execute for the _ACTION parameter, which overrides the default
value specified in the job parameter and executes the job.

The third input tag prompts the user for the name to use in the greeting. This object is named MYNAME and
its default value is World.

The last input tag displays a button with the label Run code.

Click , and then click Close to save the input form and close the editor window.

5 Click the Simple HTML job to select it, and then click . The following HTML input form appears in the right
pane:

25

6 Specify Jane as the name for the greeting and then click Run code.

The web browser uses data from all form elements except the submit button to automatically construct a URL
similar to the URL in “Passing User Input to a Job Using the Query String” on page 23. The form data is
submitted when the button is clicked, resulting in the following URL:

http://host:port/SASJobExecution/?_program=/SomeFolder/Simple HTML&myname=Jane

The results are displayed in a new browser window or tab, using the updated value of the MYNAME macro
variable:

Creating Simple HTML Output Using ODS

The Output Delivery System (ODS) enables you to generate different types of output from your procedure code.
An ODS destination controls the type of output that is generated (HTML, RTF, PDF, and so on). An ODS style
controls the appearance of the output.

Many jobs create ODS HTML as their primary type of output. The %JESBEGIN macro can issue an ODS
statement in addition to the _WEBOUT FILEREF. Add the following parameters to the job to use the ODS
HTML5 destination and the HTMLBlue style:

Property Value

Name _ODSSTYLE

Field Type Character

Default Value HTMLBlue

This job uses PROC PRINT to display all of the data in the SASHELP.CLASS table:

* Display the SASHELP.CLASS table;

title 'Student Data';

proc print data=sashelp.class noobs;
 var name sex age height weight;
run; quit;

Here is a partial view of the output:

26

Creating Simple PDF or RTF Output Using ODS

You can make small changes to the sample in “Creating Simple HTML Output Using ODS” on page 26 to create
PDF or RTF output. Specify ods_pdf for the _OUTPUT_TYPE input parameter to create PDF output and
ods_rtf to create RTF output. The PDF output is rendered by the web browser, and the RTF output is
downloaded as a file named SASResults.rtf that can be opened using an application such as Microsoft Word.

Using Input Parameters with Multiple Values

Parameters with multiple values (or, alternatively, multiple input parameters with the same name) can be useful
in some jobs. For example, an HTML input form might contain a multiple selection list box named COLS that
allows the user to choose which columns of a table to display. This example shows a parameter with multiple
values.

The example uses a multiple selection list box to choose the columns to display from the SASHELP.CLASS
table. Use the SAS Content page of the SAS Job Execution Web Application to create a job form named
Multiple Input Values with the following HTML:

<!DOCTYPE html>
<head>
<title>Multiple Input Values Example</title>
</head>
<body>

<h1>Multiple Input Values Example</h1>

<form action="/SASJobExecution/" target="_blank">
<input type="hidden" name="_program" value="/SomeFolder/Multiple Input Values">
<input type="hidden" name="_action" value="execute">

<div>Use Ctrl+Click to choose columns to display: </div>

<select name="cols" multiple required size="5">
 <option value='name'>First Name</option>
 <option value='sex'>Gender</option>
 <option value='age'>Age (y) </option>
 <option value='height'>Height (in) </option>
 <option value='weight'>Weight (lb) </option>
</select>

27

<input type="submit" value="Run code">
</form>

</body>
</html>

The MULTIPLE attribute of the SELECT tag indicates that multiple selections are allowed, and the optional SIZE
attribute specifies the number of rows to display when the HTML page is rendered. The name of the SAS macro
variable, COLS, is specified in the NAME attribute.

The OPTION tags specify the values sent to the SAS program as well as the values displayed when the HTML
page is rendered. This example uses display values that differ from the macro variable values:

Display Value Macro Variable Value

First Name name

Gender sex

Age (y) age

Height (in) height

Weight (lb) weight

Here is a partial view of the rendered HTML file:

If you select only First Name and then submit the form, a global macro variable named COLS is created with a
value of name. If you select First Name, Age (y), and Height (in) and then submit the form, the following macro
variables are created:

Macro Variable Name Macro Variable Value Description

COLS name Specifies the first value

COLS0 3 Specifies the number of values

COLS1 name Specifies the first value

COLS2 age Specifies the second value

COLS3 weight Specifies the third value

COLS_COUNT 3 Specifies the number of values

28

Because macro variables cannot hold more than one value, a numeric suffix is added to the parameter name to
distinguish between values. The number of values is set in the param-name0 and param-name_COUNT
variables. The first value is set in the param-name1 variable, and so on, as shown in the previous table. Note
that the original parameter macro variable is always set to the first parameter value.

This format is seldom useful in SAS code. For example, the pseudo-array of user selections must be
transformed before they can be used in a VAR or SELECT statement. You can use the PARAM_LIST macro
available in “PARAM_LIST Macro” on page 90 to convert the user selections into a usable format.

Create a job named Multiple Input Values with the following job parameters:

Name Field Type Default Value

_ACTION Character form, execute

_OUTPUT_TYPE Character ods_html5

_ODSSTYLE Character HTMLBlue

Add the following code:

<param_list macro definition here>

* Convert the selections to a space-separated list;

%param_list(mvar=cols, outvar=column_list)

title 'Student Data';

proc print data=sashelp.class;
 var &COLUMN_LIST;
run; quit;

The COLS selection list in the HTML input form is used to choose one or more columns in the SASHELP.CLASS
table. The PARAM_LIST macro takes the individual selections and converts them to a single list that is used in
the VAR statement.

For example, if the user selects First Name, Age (y), and Height (in), then the macro variable COLUMN_LIST,
created by the PARAM_LIST macro, resolves to the following:

name age height

See “PARAM_LIST Macro” on page 90 for more information and examples.

Linking One Job to Another (Drill Down)

You might want to display summarized information with the option to click a link to display more detailed data.
This is an example of performing drill down. Developing this type of application usually involves at least two
different jobs: one to create the summarized information with the links and a second that displays the detailed
data related to that link.

This example summarizes sales data in the SASHELP.SHOES table by sales region and then uses PROC
PRINT to display it with links to the detailed data:

29

Detailed sales information is displayed when you click a link. Here is the detailed data for Asia:

Create a job named Drilldown with the following job parameters:

Name Field Type Default Value

_OUTPUT_TYPE Character ods_html5

_ODSSTYLE Character HTMLBlue

Add the following code to produce the summarized report with the drill–down links:

30

* Summarize the data;

proc means data=sashelp.shoes sum noprint;
 var sales;
 class region;
 output out=work.shoes_summary(where=(_type_ eq 1)) sum=sales;
run; quit;

* Define the base URL for the drill–down link;

%let BASE_URL=&_URL.?_program=
 /SomeFolder/Drilldown2&_action=wait%nrstr(®ion=);

* Set the ODS escape character;

ods escapechar='^';

* Add the drill–down links to the summarized data;

data work.shoes_summary;
set work.shoes_summary;

length region_link varchar(1024);

region_link = "^{style [url='&BASE_URL" ||
 urlencode(strip(region)) ||
 "']" ||
 strip(region) ||
 '}';
run;

* Display the summarized data with drill–down links;

title 'Sales Totals by Region';

proc print data=work.shoes_summary noobs label;
 var region_link sales;
 sum sales;
 label region_link = 'Region'
 sales = 'Sales';
 format sales dollar11.;
run; quit;

The BASE_URL macro variable is used to create a portion of the drill–down link. The _URL reserved macro
variable ensures that the URL is valid. The job that displays the detail data, Drilldown2, is referenced here. This
job is created in the next step, and you must specify the full path to that job.

The complete drill–down link text is stored in the REGION_LINK variable. ODS inline formatting is used to create
the link using the URL style attribute. This technique creates links for HTML as well as other ODS output
formats. The general syntax of the inline style is:

^{style [url='URL-of-second-job']link-text}

Here is an example of the value of the REGION_LINK variable created in the code:

^{style [url='/SASJobExecution/?_program=
 /SomeFolder/Drilldown2®ion=Asia']Asia}

The value of the sales region of interest is passed to the Drilldown2 job using the REGION input parameter.

31

The STRIP function removes any trailing blanks in the data value, and the URLENCODE function handles
parameter values that need to be encoded:

^{style [url='/SASJobExecution/?_program=
 /SomeFolder/Drilldown2®ion=Central%20America%2FCaribbean']
 Central America/Caribbean}

The PRINT procedure displays the summarized data with links to execution of the detail data program.

Next, create a job named Drilldown2 that displays the detail data using the following job parameters:

Name Field Type Default Value

_OUTPUT_TYPE Character ods_html5

_ODSSTYLE Character HTMLBlue

Add the following code to produce the detailed report for a specified region:

* Declare input parameter;

%global REGION;

* Include the value of the REGION input parameter in the report title;

title "Detailed Sales Information for ®ION";

proc report data=sashelp.shoes nowd;
 where (region eq "®ION");

 column region subsidiary product sales inventory returns;

 define region / order noprint 'Region';
 define subsidiary / order 'Subsidiary';
 define product / order 'Shoe Style';
 define sales / sum 'Sales';
 define inventory / sum 'Inventory';
 define returns / sum 'Returns';

 break after subsidiary / summarize suppress style=header;
 rbreak after / summarize;
run; quit;

Though not required, it is good practice to declare all input parameters using a %GLOBAL statement.

The value of the REGION input parameter, passed to the program as a URL parameter from the link in the
Drilldown job, is used in the report title and also to subset the data so that only the detailed information is
displayed for the specified region.

Run the Drilldown job and then click a link for a sales region. The detailed data for the region appears.

32

Creating Jobs without Using the %JESBEGIN and
%JESEND Macros

Overview of Jobs without the %JESBEGIN and %JESEND Macros

In some cases, you might need to use very specific FILENAME and ODS statements. In these cases, it is best
to prevent the %JESBEGIN utility macro from generating these statements for you.

Specify the input parameter _OUTPUT_TYPE=none to suppress the generation of these statements.
Alternatively, you can specify the _ADDJESBEGINENDMACROS=false input parameter. An advantage of
specifying _OUTPUT_TYPE=none is that the %JESBEGIN macro displays the macro variables created from
input parameters.

This section provides a sample job that requires specific FILENAME and ODS statements. It also provides
information to help you construct your own FILENAME statements. All of the techniques discussed in previous
sections can be used when you specify your own FILENAME and ODS statements.

Sending ODS Output to an Email Recipient

The following example sends ODS output as the body of an email message.

Create a job named Email Report where the _OUTPUT_TYPE job parameter has a value of none. Add the
following code:

* Close all open destinations;

ods _all_ close;

* ODS output is sent directly to the email recipient;

filename mail email 'email-recipient@email-recipient-domain'
 subject='Your SAS Report' type='text/html';

* The HTML3 destination provides better rendering in some email clients;

ods html3 file=mail style=HTMLBlue;

title 'Student Data';

proc print data=sashelp.class; run; quit;

ods html3 close;

%let _STATUS_MESSAGE=Email sent.;

Specify appropriate values for email-recipient and email-recipient-domain. Use the HTML3 destination because
some email clients do not support the HTML created by the HTML4 and HTML5 destinations.

The job does not create visual output displayed by the web browser client. You can use _STATUS_MESSAGE to
display a message in the web browser.

You might have to specify one or more system options to successfully send email. See SAS System Options:
Reference for more information about email communications system options.

Assigning a FILEREF for HTML Output

A FILENAME statement is required to define the location of your output. You can choose any valid name for the
FILEREF, but the device type (FILESRVC) and the PARENTURI option should be specified exactly as follows:

33

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.htm';

Unlike the DISK device type, the FILESRVC device writes files to the SAS Infrastructure Data Server using the
Files service, not the external file system. The FILESRVC access method creates global macro variables of the
form _FILESRVC_fileref, where FILEREF is the fileref used in the FILENAME statement. This macro variable
provides a relative URL that can be used to reference and retrieve the file using the Files service (for example, /
files/files/74d8179e-e922-4b58-a8fe-0863b2aa3bfc). See “Report with Download Links” on page
77 for an example that uses this macro variable.

The SYS_JES_JOB_URI macro variable provides a reference to the job execution object. When used with the
PARENTURI option, this ensures that the file is associated with the job execution object. All files associated with
a job execution object can be displayed by the SAS Job Execution Web Application until the job expires. By
default, job output is deleted 30 minutes after it is created. See “Job Output Expiration” on page 11 for more
information about how to change the expiration time. See “Saving Job Output” on page 12 for more information
about how to save a permanent copy of your job output files.

In most cases, you should use the name _webout.htm because the SAS Job Execution Web Application
searches the job results object for an entry named _webout.* and displays the first result that it finds. This
behavior can be altered using the _RESULTFILE parameter.

Assigning a FILEREF for Other Types of Output

The FILENAME statement that supports other types of ODS output is similar to the format used for HTML. The
following examples show some common ODS output formats. See SAS Global Statements: Reference for more
information about the FILENAME statement.

Use the following format if your web browser supports rendering PDF files:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.pdf';

Use the following format if your web browser does not support rendering PDF files or if you want the content to
be downloaded as a file. Specify the desired file name in the FILENAME attribute of the CONTENTDISP option:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.pdf'
 contentdisp='attachment; filename="MyFile.pdf"';

See “Report with Download Links” on page 77 for an example that uses this format.

Use the following format to download RTF content:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.rtf'
 contentdisp='attachment; filename="MyFile.rtf"';

Most web browsers support rendering XML content:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.xml';

Use the following format to download XML content:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.xml'
 contentdisp='attachment; filename="MyFile.xml"';

Use one of the following formats to handle JSON content:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.json';

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"

34

 name='_webout.json'
 contentdisp='attachment; filename="MyFile.json"';

Use the following format if your program uses the tagsets.ExcelXP ODS destination:

filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.xml'
 contenttype='application/vnd.ms-excel'
 contentdisp='attachment; filename="MyFile.xml"';

See “Report with Download Links” on page 77 for an example that uses this format.

Advanced Programming

Sending JSON Data to a Job Using an Input Parameter

Data in JSON format can be sent to a job as an input parameter if the data contains fewer than 32,767 bytes.
Data that is sent in this way can be accessed as a macro variable in the SAS job. In the following example, the
MYJSON parameter contains JSON data that was sent to the JSON1 job. Note that %7B and %7D represent
the URL-encoded values for the left and right brace characters, { and }, respectively:

http://server:port/SASJobExecution/?_program=/Test/json1&myjson=%7B"aaa":"AAA",
"bbb":222, "ccc":false%7D

The SAS program for the JSON1 job uses the JSON LIBNAME engine to read the JSON data from the input
parameter and then to convert it to SAS tables:

* Declare input parameter;

%global MYJSON;

* Copy the JSON data from input parameter to a file;

filename indata temp;

data _null_;
file indata;
length str $32767;
str = resolve(symget('myjson'));
put str;
run;

* Use the JSON engine to provide read-only sequential access to JSON data;

libname indata json;

title 'ALLDATA Table from JSON Input';
proc print data=indata.alldata; run; quit;

title 'ROOT Table from JSON Input';
proc print data=indata.root; run; quit;

The PROC PRINT output is shown in the following figure:

35

Sending JSON Data to a Job By Uploading a File

JSON data that exceeds 32,767 bytes can be sent to the job as a file. See “Upload a File” on page 68 for
information about how to upload a file. Use the following SAS program to access the uploaded data:

* Reference the uploaded JSON data;

filename indata filesrvc "&_WEBIN_FILEURI";

* Use the JSON engine to provide read-only sequential access to JSON data;

libname indata json;

title 'ALLDATA Table from JSON Input';
proc print data=indata.alldata; run; quit;

title 'ROOT Table from JSON Input';
proc print data=indata.root; run; quit;

The output is shown in “Sending JSON Data to a Job Using an Input Parameter” on page 35.

Executing a Job Using JavaScript - Sending Small Data
to the Job

You can use this technique to control how job output is handled. The following example uses the FormData
JavaScript object and strings to send input parameters to the previous JSON1 job. This is another way to send
JSON data containing less than 32,767 bytes to a job.

The JavaScript code in the following HTML input form dynamically creates a form with parameters, submits the
form using the POST method, and then displays the output in a DIV element:

<!DOCTYPE html>
<html>

<head>
<title>JavaScript Job Execution</title>

<script>
function submitForm() {
 var formData = new FormData();
 // Your small JSON object here
 var json = {aaa:"AAA", bbb:222, ccc:false};

36

 // Create the input parameter for the JSON data
 formData.append("myjson", JSON.stringify(json));
 // Create other input parameters
 formData.append("_program", "/Folder/json1");
 formData.append("_action", "execute");
 formData.append("_csrf" , "$CSRF$");
 // Create the request object
 var request = new XMLHttpRequest();
 request.addEventListener("error", function(event) {
 alert("Something went wrong.");
 });
 request.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 // Display the results in the DIV
 document.getElementById("JobResults").innerHTML = this.responseText;
 }
 else {
 document.getElementById("JobResults").innerHTML = "Status: " + this.status;
 }
 }
 };
 request.open("post", "/SASJobExecution/");
 // Submit the form
 request.send(formData);
 // Display a temporary message in the DIV
 document.getElementById("JobResults").innerHTML = "Please wait ...";
}
</script>

</head>
<body>

<!-- Other content of your web application here -->

<div id="JobResults"></div>

<script>submitForm();</script>

<!-- Other content of your web application here -->

</body>
</html>

When you make a POST request, you must specify the _CSRF input parameter exactly as shown. This tag
ensures that the request is considered non-malicious by sending a Cross-Site Request Forgery token to the
server.

See “Sending JSON Data to a Job Using an Input Parameter” on page 35 for the results and the SAS code used
to process the data.

Executing a Job Using JavaScript - Sending Large Data
to the Job

The following example is like the previous one, except that more than 32,767 bytes of data can be sent to the
job. This is accomplished using the JavaScript Blob object in the HTML input form:

37

<!DOCTYPE html>
<html>

<head>
<title>JavaScript Job Execution</title>

<script>
function submitForm() {
 var formData = new FormData();
 // Your large JSON object here
 var json = {aaa:"AAA", bbb:222, ccc:false};
 var blob = new Blob([JSON.stringify(json)], {type : 'application/json'});
 // Create the input parameter for the JSON data
 formData.append("myjsonfile", blob);
 // Create other input parameters
 formData.append("_program", "/Folder/json2");
 formData.append("_action", "execute");
 formData.append("_csrf" , "$CSRF$");
 // Create the request object
 var request = new XMLHttpRequest();
 request.addEventListener("error", function(event) {
 alert("Something went wrong.");
 });
 request.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 // Display the results in the DIV
 document.getElementById("JobResults").innerHTML = this.responseText;
 }
 else {
 document.getElementById("JobResults").innerHTML = "Status: " + this.status;
 }
 }
 };
 request.open("post", "/SASJobExecution/");
 // Submit the form
 request.send(formData);
 // Display a temporary message in the DIV
 document.getElementById("JobResults").innerHTML = "Please wait ...";
}
</script>

</head>
<body>

<!-- Other content of your web application here -->

<div id="JobResults"></div>

<script>submitForm();</script>

<!-- Other content of your web application here -->

</body>
</html>

38

The JSON data is uploaded as a file, using the technique in “Sending JSON Data to a Job By Uploading a File”
on page 36. See that section for the results and the SAS code used to process the data.

Returning JSON Data from a Job

The Simple JSON sample (see “Simple JSON” on page 82) displays the SASHELP.CLASS table in JSON
format. You can use JavaScript to execute the job and then post-process the JSON data instead of displaying it.
For example, you might want to use the returned JSON data with a JavaScript object, such as a grid or a chart
object.

The following HTML input form executes the Simple JSON sample and then stores the returned JSON in the
JSONString variable:

<!DOCTYPE html>
<html>

<head>
<title>JavaScript Job Execution</title>

<script>
function submitForm() {
 var formData = new FormData();
 // Create input parameters
 formData.append("_program", "/Folder/Simple JSON");
 formData.append("_action", "execute");
 formData.append("_csrf" , "$CSRF$");
 // Create the request object
 var request = new XMLHttpRequest();
 request.addEventListener("error", function(event) {
 alert("Something went wrong.");
 });
 request.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 // Store the returned JSON data in a variable for later use
 var JSONString = this.responseText;
 // Your code to post process the JSON data here
 }
 else {
 alert("Status: " + this.status); }
 }
 };
 request.open("post", "/SASJobExecution/");
 // Submit the form
 request.send(formData);
}
submitForm();
</script>

</head>
<body>

<!-- Content of your web application here -->

</body>
</html>

39

Returning a List of Output Files in JSON Format

The Report with Download Links sample (see “Report with Download Links” on page 77) creates XML for use
with Microsoft Excel, PDF, and HTML output files. Your application might retrieve this output and provide special
handling of the files. You can use the _ACTION and _RESULTFILE input parameters, discussed in “Specifying
Output Files” on page 8, to return a list of output files in JSON format:

[
 {
 "name": "Class.pdf",
 "href": "/files/files/3dba9d66-106b-4403-aea9-65a6ea3cb514/content"
 },
 {
 "name": "Class.xml",
 "href": "/files/files/dcef367b-4c37-48c8-b53d-29e6189c2dc2/content"
 },
 {
 "name": "_webout.htm",
 "href": "/files/files/3ee1ceef-8ff3-46ae-8193-6e408dfa0a4f/content"
 }
]

Your application can use the URIs in the HREF keys to retrieve the file content and handle it appropriately.

The following HTML input form executes the Report with Download Links sample and then stores the returned
list of files in the JSONString variable:

<!DOCTYPE html>
<html>

<head>
<title>JavaScript Job Execution</title>

<script>
function submitForm() {
 var formData = new FormData();
 // Create input parameters
 formData.append("_program", "/Folder/Report with Download Links");
 formData.append("_action", "json,execute");
 formData.append("_resultfile", "*");
 formData.append("_csrf" , "$CSRF$");
 // Create the request object
 var request = new XMLHttpRequest();
 request.addEventListener("error", function(event) {
 alert("Something went wrong.");
 });
 request.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 // Store the returned JSON data in a variable for later use
 var JSONString = this.responseText;
 // Your code to post process the JSON data here
 }
 else {
 alert("Status: " + this.status); }
 }
 };

40

 request.open("post", "/SASJobExecution/");
 // Submit the form
 request.send(formData);
}
submitForm();
</script>

</head>
<body>

<!-- Content of your web application here -->

</body>
</html>

Working with SAS Viya Services

You can use the HTTP procedure to access any resource that supports HTTP requests. This includes external
web services and SAS Viya services. See Base SAS Procedures Guide for more information about PROC
HTTP. See https://developer.sas.com/apis/rest/ for more information about SAS Viya services.

You can use the following code to call the Job Definitions service to retrieve the first 50 job definitions in JSON
format stored on your system and then display some of the fields:

* Base URI for the service call;

%let BASE_URI=%sysfunc(getoption(servicesbaseurl));

* FILEREFs for the response and the response headers;

filename resp temp;
filename resp_hdr temp;

proc http url="&BASE_URI/jobDefinitions/definitions/?limit=50"
 method='get'
 oauth_bearer=sas_services
 out=resp
 headerout=resp_hdr
 headerout_overwrite;
run; quit;

* Use the JSON engine to provide read-only sequential access to JSON data;

libname resp json;

title 'Job Definitions';

proc print data=resp.items;
 var name creationTimeStamp createdBy modifiedTimeStamp modifiedBy description;
run; quit;

The SAS_SERVICES keyword specified in the OAUTH_BEARER option ensures that an access token is
obtained using the identity of the user executing the job.

41

https://developer.sas.com/apis/rest/

Samples

Accessing the Samples

Information about the sample jobs that are supplied by SAS is provided in this section. Use the Standard user
interface to navigate to the location of the sample jobs, click a job to select it, and then click to execute it. The
HTML input form is displayed in the right pane, and the output is displayed in a new browser tab or window.

Items Common to Most Samples

Many samples use the same or similar job input parameters and HTML markup in their input forms. These
common items are explained in this section instead of repeating the explanation for each sample.

Job Input Parameters

All sample jobs include the _ACTION input parameter to display their respective HTML input form. Additional
parameters are specified to ensure that the jobs run successfully if no parameters are specified in the URL, as
discussed in “Executing a Job Using Direct URL Access” on page 22. The following table contains commonly
used parameters:

Name Value Description

_ACTION form, execute Displays the HTML input form if one is
available; otherwise, executes the job

_OUTPUT_TYPE varies Specifies the type of output created by
the job, which can be none

_ODSSTYLE HTMLBlue Specifies the name of the ODS style if
the job creates ODS output

%JESBEGIN and %JESEND Macros

The %JESBEGIN macro is automatically executed before the first line of the program code. This macro uses the
values of the _OUTPUT_TYPE and _ODS* parameters to configure job output. In most cases, a FILENAME
statement is issued to return output to the web browser. An ODS statement is issued in addition to the
FILENAME statement for samples that use ODS to create output. If the _OUTPUT_TYPE and _ODS*
parameters are not defined, the %JESBEGIN macro configures the job to create HTML output using ODS.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

Cascading Style Sheet Code in HTML Input Forms

The following Cascading Style Sheet (CSS) code that appears at the beginning of the HTML input form controls
the appearance of the input form:

<style type="text/css">

.pointer {
 cursor: pointer;
}

42

[Other Cascading Style Sheet code here]

</style>

The pointer class displays the web browser's pointer cursor when positioned over certain fields. You can
provide your own CSS code or omit the STYLE element if you do not want to use CSS in your HTML input
forms.

HTML Attributes to Support Accessibility

The HTML in the job forms that are included with the samples includes the following attributes, which support
US government Section 508 accessibility standards:

<html lang="en">

<body role="main">

< ... for="element-ID" ... />

< ... aria-label="label-text" ... />

< ... aria-labelledby="checkboxfields element-ID" ... />

Hello World

This example creates HTML output using DATA step code and returns it to the web browser. An HTML input
form, which accepts a name for the greeting, provides a basic user interface to the program.

Output

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE html Specifies that non-ODS HTML output
is created by the job

myname World Specifies the default value used in the
greeting

43

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Hello World</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

1 <div>SAS[®] Job Execution</div>

2 <h1>Hello World</h1>

<p>
This sample uses a DATA Step with simple PUT statements to create the output.
</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">
<input type="hidden" name="_program" value="/Folder/Hello World"/>
<input type="hidden" name="_action" value="wait"/><input type="hidden" name="_output_type" value="html"/>

44

3 <label for="myname">Specify a name for the greeting:</label>
<input type="text" name="myname" id="myname" value="World" required/>

<hr/>

4 <input type="submit" value="Run code" class="pointer"/>

<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>
</html>

1 The DIV tag displays a page heading.

2 The name of the sample is displayed in the H1 tag.

3 The code prompts the user to specify a name used in the greeting. This field is required, and the default
value for the name is World.

4 The Run Code button submits the job for execution. Select the Show SAS Log check box if you want to
view the SAS log with the output. A pointer cursor is displayed when positioned over these fields.

Always specify /SASJobExecution/ for the value of the ACTION attribute of the FORM tag. This ensures that
the SAS Job Execution Web Application processes the form data when the form is submitted.

As the name implies, HIDDEN elements are not displayed on screen, but they pass data to the application
specified in the ACTION attribute. For the value of _PROGRAM, specify the path and name of the program to
execute. A Please wait message is displayed while the program is running when the value for _ACTION is
set to wait, execute. Specify only execute if you do not want to see this message. The value of
_OUTPUT_TYPE specifies that non-ODS HTML output is created by the job. The %JESBEGIN macro issues a
FILENAME statement that supports HTML output.

When the form is submitted, the following global macro variables are defined just before SAS code execution:

Macro Variable Name Macro Variable Value

_ODSDEST blank

_OUTPUT_TYPE html

_PROGRAM /Folder/Hello World

myname World

_DEBUG log (if the check box is selected)

The _ODSDEST macro variable is derived from the value of _OUTPUT_TYPE. It is blank because ODS is not
being used. The MYNAME macro variable is used in the program code.

Program

* Declare input parameter;

45

%global MYNAME;

* Write the custom HTML to _webout;

data _null_;
file _webout;
put '<!DOCTYPE html>';
put '<html lang="en">';
put '<head><title>Hello World!</title></head>';
put '<body role="main">';
put "<h1>Hello %sysfunc(htmlencode(&MYNAME))!</h1>";
put '</body>';
put '</html>';
run;

Program Description

The %JESBEGIN macro assigns a FILENAME statement to return HTML output to the web browser because
html is specified as the value for the _OUTPUT_TYPE input parameter.

The DATA step code writes simple HTML to the _WEBOUT FILEREF that is assigned by the %JESBEGIN
macro, and that HTML is rendered and displayed by the web browser. The value of the MYNAME macro
variable used in the PUT statement is obtained from the value that was specified in the HTML input form. The
HTMLENCODE function is used here to prevent execution of malicious code in the web browser.

The %JESEND macro executes after the last line of code, but it does not close all open ODS destinations
because this sample does not use ODS.

Simple ODS HTML

This example creates HTML output using ODS and returns it to the web browser. An HTML input form provides
a basic user interface to the program.

46

Output

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

47

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Simple ODS HTML</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

1 <div>SAS[®] Job Execution</div>

2 <h1>Simple ODS HTML</h1>

<p>
The PRINT procedure creates a simple HTML page that displays the data in the SASHELP.CLASS table.
</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">
3 <input type="hidden" name="_program" value="/Folder/Simple ODS HTML"/>
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="ods_html5"/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

48

</body>

</html>

1 This HTML is similar to the HTML in the Hello World input form.

2 This HTML is similar to the HTML in the Hello World input form.

3 For the value of _PROGRAM, specify the path and name of the program to execute.

_ACTION is set to execute to ensure that the program executes when you click Run Code. The value of
_OUTPUT_TYPE indicates that ODS HTML5 output is created by the job. The %JESBEGIN macro issues a
FILENAME statement that supports HTML output, and it issues an ODS statement using the HTML5
destination.

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but they are not used by the program:

Macro Variable Name Macro Variable Value

_ACTION execute

_ODSDEST html5

_ODSSTYLE HTMLBlue

_OUTPUT_TYPE ods_html5

_PROGRAM /Folder/Simple ODS HTML

_DEBUG log (if the check box is selected)

The _ODSDEST macro variable is derived from the value of _OUTPUT_TYPE, and it indicates the ODS
destination that is used.

Program

title 'Student Data';
proc print data=sashelp.class noobs;
 var name sex age height weight;
run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return HTML output to the web browser because ods_html5 is specified as the value for the _OUTPUT_TYPE
input parameter. An ODS statement for the HTML5 destination is also issued.

The ODS HTML5 destination is used because it is the most up-to-date destination for creating HTML output.
The HTML is written to the _WEBOUT FILEREF assigned by the %JESBEGIN macro, and the HTMLBLUE
style, specified in the _ODSSTYLE input parameter, controls the appearance of the output.

The PRINT procedure displays the SASHELP.CLASS table.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

49

ODS Output with Embedded Graphics

This example creates HTML, PDF, or RTF output using ODS and returns it to the web browser. An HTML input
form, which accepts the ODS destination, style, and graphic output type, provides a basic user interface to the
program.

Output

50

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

_ODS_DEVICE png Specifies the ODS graphic image
format

51

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>ODS Output with Embedded Graphics</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS[®] Job Execution</div>

<h1>ODS Output with Embedded Graphics</h1>

<p>
The SGPLOT procedure creates a bar chart using the SASHELP.CLASS
table, followed by a display of the data using the PRINT procedure.
</p>

52

<p>
The SVG image format is not supported for the RTF output.
</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">
<input type="hidden" name="_program"
 value="/Folder/ODS Output with Embedded Graphics"/>

<input type="hidden" name="_action" value="execute"/>

<label for="_output_type">Output format:</label>
1 <select name="_output_type" id="_output_type" class="pointer">
 <option value="ods_html5">HTML5</option>
 <option value="ods_pdf">Portable Document Format (PDF) </option>
 <option value="ods_rtf">Rich Text Format (RTF) </option>
</select>

<label for="_ods_device">Graphic image format: </label>
2 <select name="_ods_device" id="_ods_device" class="pointer">
 <option value="" selected>(default based on output format)</option>
 <option value="svg">SVG</option>
 <option value="png">PNG</option>
</select>

<label for="_odsstyle">ODS style: </label>
3 <select name="_odsstyle" id="_odsstyle" class="pointer">
 [More values here]
 <option value="HTMLBlue" selected>HTMLBlue</option>
 [More values here]
</select>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

1 The first SELECT tag creates a drop-down list output format values. A macro variable named
_OUTPUT_TYPE is created with the corresponding value in the VALUE attribute of the OPTION tag.

53

2 The second SELECT tag creates a drop-down list that enables you to select the ODS graphic image format.
The first item is initially selected and results in a blank value for the _ODS_DEVICE macro variable.

3 The final SELECT tag creates a drop-down list that enables you to select the ODS style to apply to your
output. The HTMLBlue style is selected by default. The selected value is stored in the _ODSSTYLE global
macro variable.

For the value of _PROGRAM, specify the path and name of the program to execute.

The following table lists the display values for the first drop-down list and the corresponding values for the
_OUTPUT_TYPE global macro variable:

Display Value Macro Variable Value

HTML5 ods_html5

Portable Document Format (PDF) ods_pdf

Rich Text Format (RTF) ods_rtf

The following table lists the display values for the second drop-down list and the values for the _ODS_DEVICE
global macro variable:

Display Value Macro Variable Value

(default based on the output format) blank

SVG svg

PNG png

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but they are not used by the program:

Macro Variable Name Macro Variable Value

_ACTION execute

_ODS_DEVICE Depends on selection (blank, svg, or png)

_ODSDEST Depends on selection (html5, pdf, or rtf)

_ODSSTYLE Depends on selection (for example, HTMLBlue)

_OUTPUT_TYPE Depends on selection (ods_html5, ods_pdf, or
ods_rtf)

_PROGRAM /Folder/ODS Output with Embedded Graphics

_DEBUG log (if the check box is selected)

The _ODSDEST macro variable is derived from the value of _OUTPUT_TYPE and indicates the ODS
destination that is used.

54

The HTML in this form uses some of the same fields as “Simple ODS HTML” on page 46. See that section for
more information.

Program

title 'Student Data - SGPLOT';
proc sgplot data=sashelp.class; hbar age; run; quit;

title 'Student Data';
proc print data=sashelp.class; run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return the type of output that is specified in the _OUTPUT_TYPE input parameter to the web browser.

An ODS statement using the HTML5, PDF, or RTF destination is issued based on the value of
_OUTPUT_TYPE. The HTML5 destination is used because it is the most up-to-date destination for creating
HTML output. ODS writes the output to the _WEBOUT FILEREF assigned by the %JESBEGIN macro, and the
style specified in the _ODSSTYLE input parameter controls the appearance of the output.

An ODS GRAPHICS statement that specifies the graphic image format is issued if a value is specified for the
_ODS_DEVICE input parameter. If no value is specified for _ODS_DEVICE, then the best format is used, based
on the ODS destination.

The SGPLOT procedure creates the graphic image using data from the SASHELP.CLASS table, and the PRINT
procedure displays the data.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

The HTML output and the PDF output are displayed by the web browser, and the RTF output is downloaded so
that it can be saved and opened with an appropriate application, such as Microsoft Word.

Display Macro Variables

This example illustrates how fields from an HTML input form are converted to global macro variables. The global
and system macro variables are displayed in HTML format.

Output

The following sample output contains selected values, assuming that default selections were made in the HTML
input form.

55

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

56

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Display Macro Variables</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

57

<div>SAS[®] Job Execution</div>

<h1>Display Macro Variables</h1>

<p>
The program invoked by this HTML page is used to display the macro variables created for a job.
The SAS Job Execution Web Application creates multiple macro variables when the same name is used
for multiple fields in the HTML input form.
</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">
<input type="hidden" name="_program" value="/Folder/Display Macro Variables"/>
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="ods_html5"/>

<p>
The following three text fields are all named TEXT.
</p>

1 <input type="text" name="text" value="First" aria-label="First text
field"/>
<input type="text" name="text" value="Second" aria-label="Second text
field"/>
<input type="text" name="text" value="Third" aria-label="Third text
field"/>

<p id="checkboxfields">
The next three checkboxes are all named CBOX. The value shown is the value
specified in the INPUT tag.
</p>

2 <input type="checkbox" name="cbox" id="cbox1" value="First" checked
 class="pointer" aria-labelledby="checkboxfields cbox1"/>
<label for="cbox1">First</label>

<input type="checkbox" name="cbox" id="cbox2" value="Second"
 class="pointer" aria-labelledby="checkboxfields cbox2"/>
<label for="cbox2">Second</label>

<input type="checkbox" name="cbox" id="cbox3" value="Third" checked
 class="pointer" aria-labelledby="checkboxfields cbox3"/>
<label for="cbox3">Third</label>

<p>
Now we have a selection box, LBOX, that allows multiple selections.
</p>

3 <select name="lbox" multiple class="pointer" aria-label="Selection box named LBOX">
 <option value="First">First</option>
 <option value="Second" selected>Second</option>
 <option value="Third">Third</option>
 <option value="Fourth" selected>Fourth</option>
</select>

58

4 <label for="_odsstyle">ODS style:</label>
<select name="_odsstyle" id="_odsstyle" class="pointer">
 [More values here]
 <option value="HTMLBlue" selected>HTMLBlue</option>
 [More values here]
</select>

5 <input type="checkbox" name="blanks" id="blanks" value="ExcludeBlanks"
 class="pointer"/>
<label for="blanks">Exclude blank macro variables from the report.</label>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

1 This element, along with elements 2 and 3, enables you to specify multiple values. The creation of multiple
value global macro variables and their usage is discussed in “Using Input Parameters with Multiple Values”
on page 27. The output shows the values for the macro variables created from these elements when the
default values are selected and the form is submitted.

2 This element enables you to specify multiple values.

3 This element enables you to specify multiple values.

4 The final SELECT tag creates a drop-down list that enables you to select the ODS style to apply to your
output. The HTMLBlue style is selected by default. The selected value is stored in the _ODSTYLE global
macro variable.

5 All macro variables are displayed in the output by default. Select the BLANKS check box to exclude macro
variables with blank values.

For the value of _PROGRAM, specify the path and name of the program to execute.

View the output to see the macro variables that are created when the form is submitted.

The HTML in this form has some of the same elements that are used in “ODS Output with Embedded Graphics”
on page 50. See that section for more information.

Program

* Declare input parameter;

%global BLANKS;

59

%macro blanks;
 %if %length(&BLANKS) ne 0 %then and compress(value) ne ' ';
%mend;

*;
* Get the macro variables in the current SAS session.
* The RESOLVE function insures that the unmasked macro
* variable values are obtained.
*;

proc sort data=sashelp.vmacro out=work.vmacro sortseq=ebcdic;
 by scope name offset;
run; quit;

data work.globalvars
 work.systemvars;
set work.vmacro;
where (name ne 'TCPLISTN' %BLANKS) and
 (name not like '_RR_%') and
 (name not like 'SQL%') and
 (name not like 'SYS_SQL%');
by scope name;
length full_value $32767;
retain full_value;
keep name full_value;

if (first.name)
 then full_value=value;
 else full_value=cats(full_value, value);

if last.name then do;
 full_value = htmlencode(resolve(full_value));

 if (scope eq 'GLOBAL') then output work.globalvars;
 else if (scope eq 'AUTOMATIC') then output work.systemvars;
end;

label name = 'Macro Variable Name'
 full_value = 'Macro Variable Value';

run;

* Specify PROTECTSPECIALCHARS=off to prevent "double encoding" the values;

title 'Global Macro Variables';
footnote;

proc print data=work.globalvars label noobs
 style(header)=[just = center]
 style(column)=[protectspecialchars=off];
run;
quit;

title 'Automatic (System) Macro Variables';
footnote;

60

proc print data=work.systemvars label noobs
 style(header)=[just = center]
 style(column)=[protectspecialchars=off];
run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return HTML output to the web browser because ods_html5 is specified as the value for the _OUTPUT_TYPE
input parameter. An ODS statement for the HTML5 destination is also issued.

The ODS HTML5 destination is used because it is the most up-to-date destination for creating HTML output.
The HTML is written to the _WEBOUT FILEREF assigned by the %JESBEGIN macro, and the style specified in
the _ODSSTYLE input parameter controls the appearance of the output.

The BLANKS macro generates code to omit blank macro variables from the output, if this option was selected in
the input form.

Macro variable information spans multiple records in the SASHELP.VMACRO view when the value exceeds 200
characters. The DATA step code collects information from multiple records and then stores the first 32,767
characters of the value.

The HTMLENCODE function is used when resolving the full value to prevent execution of malicious code in the
web browser.

The PRINT procedure displays the global and system macro variable names and values.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

Multiple Output Formats

This example uses ODS to create different output formats. An HTML input form, which accepts the data set to
display and the ODS destination and style, provides a basic user interface to the program.

Output

The following HTML output is one representation of the variety of formats that ODS can produce.

61

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

DATASET SASHELP.CLASS Specifies the SAS table to display

62

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Multiple Output Formats</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS[®] Job Execution</div>

<h1>Multiple Output Formats</h1>

<p>
This sample shows different output formats supported by the
Output Delivery System (ODS). Sample data sets can be printed
to any of the output formats listed below.
</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">

63

<input type="hidden" name="_program" value="/Folder/Multiple Output
 Formats"/>

<input type="hidden" name="_action" value="execute"/>

1 <label for="dataset">Data set:</label>
<select name="dataset" id="dataset">
 <option value="" selected> </option>
 <option value="sashelp.retail">SASHELP.RETAIL</option>
 <option value="sashelp.class">SASHELP.CLASS</option>
 <option value="sashelp.revhub2">SASHELP.REVHUB2</option>
 <option value="does_not_exist">does_not_exist</option>
</select>

2 <label for="_output_type">Output format:</label>
<select name="_output_type" id="_output_type">
 <option value="" selected>(default)</option>
 <option value="ods_html">HTML</option>
 <option value="ods_html5">HTML5</option>
 <option value="ods_pdf">Portable Document Format (PDF)</option>
 <option value="ods_rtf">Rich Text Format (RTF)</option>
 <option value="ods_csv">Comma-separated Value (CSV)</option>
 <option value="ods_xml">Extensible Markup Language (XML)</option>
 <option value="ods_tagsets.rtf">RTF Tagset</option>
 <option value="ods_tagsets.excelxp">Excel (XML)</option>
 <option value="ods_ps">Postscript (PS)</option>
 <option value="ods_latex">LaTeX</option>
</select>

3 <label for="_odsstyle">ODS style:</label>
<select name="_output_style" id="_odsstyle">
 [More values here]
 <option value="HTMLBlue" selected>HTMLBlue</option>
 [More values here]
</select>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

64

1 The first SELECT tag creates a drop-down list with the names of the data set to be displayed, and the first
item is selected by default. A macro variable named DATASET is created with the corresponding value in the
VALUE attribute of the OPTION tag when you select an item. The first and last items are used to test the
cases when no data set is specified and when a non-existent data set is selected, respectively. The SAS
program handles these two error conditions.

2 The second SELECT tag creates a drop-down list that enables you to select the ODS output format. The first
item is selected by default and results in a blank value for the _OUTPUT_TYPE macro variable. The SAS
program handles this case, and the ODS HTML5 destination creates the output.

3 The final SELECT tag creates a drop-down list that enables you to choose the ODS style to apply to your
output. The HTMLBlue style is selected by default. The selected value is stored in the _ODSSTYLE global
macro variable.

The following table contains the display values for the first drop-down list and the values for the DATASET global
macro variable:

Display Value Macro Variable Value

blank blank

SASHELP.RETAIL sashelp.retail

SASHELP.CLASS sashelp.class

SASHELP.REVHUB2 sashelp.revhub2

does_not_exist does_not_exist

The following table contains the display values for the first drop-down list and the values for the
_OUTPUT_TYPE global macro variable:

Display Value Macro Variable Value

(default)

HTML ods_html

HTML5 ods_html5

Portable Document Format (PDF) ods_pdf

Rich Text Format (RTF) ods_rtf

Comma-Separated Value (CSV) ods_csv

Extensible Markup Language (XML) ods_xml

RTF_Tagset ods_tagsets.rtf

Excel (XML) ods_tagsets.excelxp

PostScript (PS) ods_ps

65

Display Value Macro Variable Value

LaTeX ods_latex

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but only the _ODSDEST and DATASET variables are used by the program:

Macro Variable Name Macro Variable Value

_ACTION execute

_ODSDEST Depends on selection (for example, tagsets.rtf)

_ODSSTYLE Depends on selection (for example, HTMLBlue)

_OUTPUT_TYPE Depends on selection (see previous table)

_PROGRAM /Folder/Multiple Output Formats

_DEBUG log (if the check box is selected)

DATASET Depends on selection (see previous table)

The _ODSDEST macro variable is derived from the value of _OUTPUT_TYPE and indicates the ODS
destination that is used.

The HTML in this form uses some of the same fields as “Simple ODS HTML” on page 46. See that section for
more information.

Program

* Declare input parameter;

%global DATASET;

%macro setup;

%local ERRORTEXT RC;

%* Verify that a valid data set was specified;

%if (%qcmpres(&DATASET) eq)
 %then %let ERRORTEXT=ERROR: You must specify a data set.;
 %else %if not %sysfunc(exist(&DATASET))
 %then %let ERRORTEXT=ERROR: Data set ""%sysfunc(htmlencode(&DATASET))""
 not found.;

%if (%bquote(&ERRORTEXT) ne) %then %do;

 %* Close the currently open destination and write message to the browser;

 ods _all_ close;

 %let RC=%sysfunc(fdelete(_webout));

66

 filename _webout filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.htm';

 title;

 ods html5 file=_webout
 text="&ERRORTEXT";
 ods html5 close;

 data _null_;
 abort cancel;
 run;
%end;

%mend setup;

%SETUP

title "%sysfunc(htmlencode(%qupcase(&DATASET))) Table in
 %sysfunc(htmlencode(%qupcase(&_ODSDEST))) Format";

proc print data=&DATASET noobs label n; run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return the type of output that is specified in the _OUTPUT_TYPE input parameter to the web browser.

An ODS statement for the appropriate destination is also issued. If a blank value is specified for the
_OUTPUT_TYPE input parameter, then a FILENAME statement for HTML output is issued, and the ODS
HTML5 destination is used. The ODS HTML5 destination is used because it is the most up-to-date destination
for creating HTML output.

ODS writes the output to the _WEBOUT FILEREF assigned by the %JESBEGIN macro, and the style specified
in the _ODSSYLE input parameter controls the appearance of the output.

The SETUP macro checks the validity of the value specified for the DATSASET input parameter. If no value is
specified or if the specified table does not exist, then an error message is created and returned to the web
browser using the HTML5 ODS destination. The HTMLENCODE function is used here, and later in the TITLE
statement, to prevent execution of malicious code in the web browser.

All ODS destinations are closed, and the current content of the _WEBOUT FILEREF is deleted to ensure that
only the error message is returned to the web browser. A FILENAME statement is issued to return HTML output
to the web browser, and an ODS statement for the HTML5 destination writes the error message to the
_WEBOUT FILEREF. See “Assigning a FILEREF for HTML Output” on page 33 for more information about this
type of FILENAME statement. No additional program statements are executed after the ABORT statement
executes.

The PRINT procedure displays the data in the specified table.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

HTML and PDF output are displayed by the web browser, and all other output is downloaded so that it can be
saved and opened with an appropriate application.

67

Upload a File

This example uploads an arbitrary file to the server and then displays information about the file. An HTML input
form, which enables you to select a file to upload, provides a basic user interface to the program.

Output

The following output is an example of a file that could be uploaded.

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

68

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Upload a File</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS[®] Job Execution</div>

<h1>Upload a File</h1>

<p>
Use this page to upload a file from your local
machine to the SAS server machine. The program displays
the macro variables with information about the file.
</p>

<p>
Optionally, you can choose to download the file from the
SAS server machine by clicking a link in the output.
</p>

69

<hr/>

1 <form action="/SASJobExecution/" method="post" target="_SASResults"
 enctype="multipart/form-data">
<input type="hidden" name="_program" value="/Folder/Upload a File">
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="ods_html5"/>
2 <input type="hidden" name="_csrf" value="$CSRF$">

<label for="myfile">Choose a file to upload:</label>
3 <input type="file" name="myfile" id="myfile" required/>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

1 When you upload a file, be sure to specify the METHOD and ENCTYPE attributes exactly as shown.

2 When you make a POST request, you must specify the _CSRF input tag exactly as shown. This tag ensures
the request is considered non-malicious by sending a Cross-Site Request Forgery token to the server.

3 A special form of the INPUT tag displays a file selector dialog box when you click a button. Navigate to the
file that you want to upload, select it, and then run the code. The file is transferred to the SAS server and
stored in the SAS Infrastructure Data Server using the Files service.

For the value of _PROGRAM, specify the path and name of the program to execute.

The HTML in this form has some of the same elements and features of the form used in “Simple ODS HTML” on
page 46. See that section for more information.

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but they are not used by the program:

Macro Variable Name Macro Variable Value

_CSRF Cross-Site Request Forgery token for this request

_ACTION execute

_ODSDEST html5

_ODSSTYLE HTMLBlue

_OUTPUT_TYPE ods_html5

70

Macro Variable Name Macro Variable Value

_PROGRAM /Folder/Upload a File

_DEBUG log (if the check box is selected)

The _ODSDEST macro variable is derived from the value of _OUTPUT_TYPE and indicates the ODS
destination that is used.

Additional macro variables with information about the uploaded file are created. See the Output and Program
Description sections for more information.

Program

* Create a data set with information about the upload;

data work.upload_info;

length varname $25 value $1024 description $256;

varname = '_WEBIN_CONTENT_LENGTH';
value = symget('_WEBIN_CONTENT_LENGTH');
description = 'Specifies the size of the file that was uploaded in bytes
 (supplied automatically by the Web browser).';
output;

varname = '_WEBIN_CONTENT_TYPE';
value = resolve(symget('_WEBIN_CONTENT_TYPE'));
description = 'Specifies the content type that corresponds to the file that was uploaded
 (supplied automatically by the Web browser).';
output;

varname = '_WEBIN_FILE_COUNT';
value = symget('_WEBIN_FILE_COUNT');
description = 'Specifies the number of files that were uploaded.';
output;

varname = '_WEBIN_FILEEXT';
value = resolve(symget('_WEBIN_FILEEXT'));
description = 'Specifies the extension of the file that was uploaded.';
output;

varname = '_WEBIN_FILENAME';
value = resolve(symget('_WEBIN_FILENAME'));
description = 'Specifies the name and original location of the file that was uploaded.';
output;

varname = '_WEBIN_FILEURI';
value = resolve(symget('_WEBIN_FILEURI'));
description = 'Specifies the URI of the location of the uploaded file';
output;

varname = '_WEBIN_NAME';
value = resolve(symget('_WEBIN_NAME'));
description = 'Specifies the value that corresponds to the NAME attribute of the INPUT tag.';

71

output;

label varname = 'Variable Name'
 value = 'Value'
 description = 'Description';

run;

title 'SAS Macro Variables Generated for Uploaded File '
 """&_WEBIN_FILENAME""";
footnote link="&_WEBIN_FILEURI/content" 'Click here to download file';

proc print data=work.upload_info
 label
 style(header)=[just=center]
 style(column)=[verticalalign=middle];
run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return HTML output to the web browser because ods_html5 is specified as the value for the _OUTPUT_TYPE
input parameter. An ODS statement for the HTML5 destination is also issued.

The ODS HTML5 destination is used because it is the most up-to-date destination for creating HTML output.
The HTML is written to the _WEBOUT FILEREF assigned by the %JESBEGIN macro, and the HTMLBLUE
style, specified in the _ODSSTYLE input parameter, controls the appearance of the output.

Additional global macro variables with information about the file are created as part of the upload process. This
information is retrieved and stored in the WORK.UPLOAD_INFO table.

The _WEBIN_FILEURI macro variable is of special interest because it provides a reference to the temporary
location of the uploaded file. This location is associated with the job execution object and deleted when the job
expires.

The FOOTNOTE statement shows an example of downloading the file by adding /content to the end of the
_WEBIN_FILE_URI macro variable. The “Upload a CSV File” on page 72 provides an example of referencing
the uploaded file using a FILENAME statement.

The PRINT procedure displays information about the uploaded file.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

Upload a CSV File

This example uploads a Comma-Separated Value (CSV) file to the server, imports it into a SAS table, and then
displays the first 10 records of the SAS table. An HTML input form, which enables you to select a file to upload,
provides a basic user interface to the program.

Output

The following output is an example of a CSV file that could be uploaded.

72

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE ods_html5 Specifies that ODS HTML5 output is
created by the job

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

HTML Input Form

73

<!DOCTYPE html>
<html lang="en">

<head>
<title>Upload a CSV File</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS[®] Job Execution</div>

<h1>Upload a CSV File</h1>

<p>
Use this page to upload a CSV file from your local
machine to the SAS server machine. The program imports the
file into a SAS table and then uses PROC PRINT to display the
first 10 records.
</p>

<p>
Optionally, you can choose to download the file from the
SAS server machine by clicking a link in the output.
</p>

<hr/>

<form action="/SASJobExecution/" method="post" target="_SASResults"
 enctype="multipart/form-data">
<input type="hidden" name="_program" value="/Folder/Upload a CSV File">
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="ods_html5"/>
<input type="hidden" name="_csrf" value="$CSRF$">

<label for=" myfile">Choose a CSV file to upload:</label>
<input type="file" name="myfile" id=" myfile" required class="pointer"/>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>

74

<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

This input form is functionally equivalent to the form used in “Upload a File” on page 68.

The file that you choose to upload should be a CSV file with the .csv file extension.

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but they are not used by the program:

Macro Variable Name Macro Variable Value

_CSRF Cross-Site Request Forgery token for this request

_ACTION execute

_ODSDEST html5

_ODSSTYLE HTMLBlue

_OUTPUT_TYPE ods_html5

_PROGRAM /Folder/Upload a CSV File

_DEBUG log (if the check box is selected)

Additional macro variables with information about the uploaded file are created. See “Upload a File” on page 68
for more information.

Program

* Check the file extension to verify that it is a CSV file;

data _null_;
length filename $1024;
filename = htmlencode(strip("&_WEBIN_FILENAME"));
call symputx('_WEBIN_FILENAME', filename);
if (upcase("&_WEBIN_FILEEXT") ne 'CSV') then do;
 rc = dosubl('ods all close;');
 file _webout;
 put '<!DOCTYPE html>';
 put '<html lang="en">';
 put '<head><title>Program Error</title></head>';
 put '<body role="main">';
 put '<h1>ERROR: Uploaded file "' filename +(-1) '" is not a CSV file.</h1>';
 put '</body>';
 put '</html>';
 abort cancel;
end;
run;

75

* Create a FILEREF for the uploaded file;

filename upload filesvc parenturi="&SYS_JES_JOB_URI"
 name="&_WEBIN_FILENAME"
 contenttype="&_WEBIN_CONTENT_TYPE";

* Set options to support non-SAS name;

options validvarname=any validmemname=extend;

* Import the uploaded CSV file;

proc import datafile=upload
 out=work.mydata
 dbms=csv
 replace;
 getnames=yes;
run; quit;

title 'First 10 Records of Uploaded File ' """&_WEBIN_FILENAME""";
footnote link="&_WEBIN_FILEURI/content" 'Click here to download file';

proc print data=work.mydata(obs=10)
 style(header)=[just=center]
 style(column)=[verticalalign=middle];
run; quit;

Program Description

The %JESBEGIN macro performs several tasks before executing the code. A FILENAME statement is issued to
return HTML output to the web browser because ods_html5 is specified as the value for the _OUTPUT_TYPE
input parameter. An ODS statement for the HTML5 destination is also issued.

The ODS HTML5 destination is used because it is the most up-to-date destination for creating HTML output.
The HTML is written to the _WEBOUT FILEREF that is assigned by the %JESBEGIN macro, and the
HTMLBLUE style, specified in the _ODSSTYLE input parameter, controls the appearance of the output.

Additional macro variables with information about the uploaded file are created during the upload process. See
“Upload a File” on page 68 for more information.

The HTMLENCODE function encodes the values of input parameters to prevent execution of malicious code in
the web browser.

If the value of the _WEBIN_FILEEXT macro variable indicates that a CSV file was not uploaded, then action is
taken to prevent further code execution. The DOSUBL function closes all open ODS destinations, and an error
message is returned to the web browser. No additional program statements are executed after the ABORT
statement executes.

The FILENAME statement creates a reference to the temporary location of the uploaded file. The file can be
used with PROC IMPORT or with any other code that accepts a FILEREF. For example, you can use the
FCOPY function to make a copy of the file.

PROC IMPORT creates the WORK.MYDATA table from the uploaded CSV file.

The PRINT procedure displays the first 10 records of the SAS table that is created by the IMPORT procedure,
and a link to download the CSV file is created by the FOOTNOTE statement.

The %JESEND macro executes after the last line of code and closes all open ODS destinations.

76

Report with Download Links

This example creates a report in HTML format and provides links to download the report in Excel Spreadsheet
XML and PDF formats. An HTML input form provides a basic user interface to the program.

Output

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

_OUTPUT_TYPE none Suppresses automatic issuing of
FILENAME and ODS statements

_ODSSTYLE HTMLBlue Specifies the name of the ODS style

77

HTML Input

<!DOCTYPE html>
<html lang="en">

<head>
<title>Report with Download Links</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS^{®} Job Execution</div>

<h1>Report with Download Links</h1>

<p>
The PRINT procedure displays data in the SASHELP.CLASS table in HTML format. Links are provided
to download the output in the Excel and PDF formats.
</p>

<form action="/SASJobExecution/" target="_SASResults">
<input type="hidden" name="_program" value="/Folder/Report with Download Links"/>
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="none"/>

<label for="_odsstyle">ODS style:</label>
<select name="_odsstyle" id="_odsstyle" class="pointer">
 [More values here]
 <option value="HTMLBlue" selected>HTMLBlue</option>
 [More values here]

78

</select>

<hr/>

<input type="submit" value="Run code" class="pointer"/>
<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

The HTML in this form uses some of the same fields as “Simple ODS HTML” on page 46. See that section for
more information.

For the value of _PROGRAM, specify the path and name of the program to execute.

The FILENAME and ODS statements issued by the %JESBEGIN macro do not meet the needs of this program.
Specifying none for _OUTPUT_TYPE suppresses the issuing of these statements. The appropriate statements
are issued within the program.

When the form is submitted, the following global macro variables are defined just before SAS code execution,
but only _ODSSTYLE is used by the program:

Macro Variable Name Macro Variable Value

_ACTION execute

_ODSDEST blank

_ODSSTYLE Depends on selection (for example, HTMLBlue)

_OUTPUT_TYPE none

_PROGRAM /Folder/Report with Download Links

_DEBUG log (if the check box is selected)

Program

* Close all open destinations;

ods _all_ close;

options nodate nonumber;

* Declare input parameter;

%global _ODSSTYLE;

* Define the escape character for ODS inline formatting;

79

ods escapechar='^';

* Create a format for the student gender;

proc format;
 value $gender 'F' = 'Female'
 'M' = 'Male';
run; quit;

* Prepare the data;

proc sql;
 create view work.class as
 select name label = 'Name',
 sex label = 'Gender' format=$gender.,
 age label = 'Age',
 height label = 'Height',
 weight label = 'Weight'
 from sashelp.class
 order by sex;
quit;

* Create an ODS document with the report results;

title1 'The CLASS Table';
footnote;

1 ods document name=work.mydoc(write);

proc print data=work.class noobs n label;
 by sex;
 var name age height weight;
run; quit;

ods document close;

* Create the Excel XML and PDF output and associate with the job;

2 filename f_xlxp filesrvc parenturi="&SYS_JES_JOB_URI"
 name='Class.xml'
 contenttype='application/vnd.ms-excel'
 contentdisp='attachment; filename="Class.xml"';

3 filename f_pdf filesrvc parenturi="&SYS_JES_JOB_URI"
 name='Class.pdf'
 contenttype='application/pdf';

ods pdf file=f_pdf style=&_ODSSTYLE;

ods tagsets.ExcelXP file=f_xlxp style=&_ODSSTYLE
 options(embedded_titles='yes'
 suppress_bylines='yes'
 sheet_name='#byval(sex) Students'
 print_header='&C&A');

80

proc document name=work.mydoc;
 replay;
run; quit;

ods pdf close;
ods tagsets.ExcelXP close;

* Create download links;

4 %let EXCEL_LINK=%bquote(Excel);

%let PDF_LINK=%bquote(PDF);

* Create the HTML output for display in the Web browser;

5 filename f_htm filesrvc parenturi="&SYS_JES_JOB_URI"
 name='_webout.htm';

6 ods html5 file=f_htm style=&_ODSSTYLE
 text="^{style systemtitle &EXCEL_LINK^{nbspace 3
 &PDF_LINK}";

proc document name=work.mydoc;
 replay;
run; quit;

ods html5 close;

1 The ODS DOCUMENT statement stores the output components from the PRINT procedure in a document
named MYDOC. You can later use PROC DOCUMENT to display the results using any ODS destination.
This technique is useful when you need to display procedure output several times, but you do not want to
rerun the procedure.

2 FILENAME and ODS statements are not issued by the %JESBEGIN macro because _OUTPUT_TYPE=none
is specified. FILENAME statements are issued to store the Microsoft XML results and the PDF results,
following the general format discussed in “Assigning a FILEREF for Other Types of Output” on page 34.

3 The next FILENAME statement stores PDF output generated by the ODS PDF destination. The
CONTENTTYPE option creates a MIME header that informs the web browser that the content is intended for
a client capable of rendering PDF output. Most web browsers can display PDF output, so the
CONTENTDISP option is not needed.

4 As discussed in “Assigning a FILEREF for HTML Output” on page 33, the FILESRVC access method creates
global macro variables of the form _FILESRVC_fileref_URI, where FILEREF is the fileref used in the
FIENAME statement. This macro variable provides a relative URL that can be used to reference and retrieve
the file using the Files service. These macro variables are used to create the EXCEL_LINK and PDF_LINK
macro variables. Later they are used to create download links.

5 A FILENAME statement is issued to return HTML content to the web browser. See “Assigning a FILEREF for
HTML Output” on page 33 for more information about this statement.

6 The ODS HTML5 destination creates the HTML output using the ODS style specified in the _ODSSTYLE
input parameter. The macro variables created earlier provide download links to the Excel XML and the PDF
versions of the report. The NBSPACE inline formatting function provides extra blank space between the link
text in the output. See SAS Output Delivery System: User’s Guide for more information about the NBSPACE
inline formatting function.

81

Program Description

The %JESBEGIN macro normally performs several tasks before executing your code. In this case, only a list of
global macro variables is displayed because _OUTPUT_TYPE=none is specified.

See SAS Output Delivery System: User’s Guide for more information about ODS ESCAPECHAR.

The SQL procedure selects the data of interest, applies a user-defined format, and then sorts the data.

PROC DOCUMENT executes and replays the PROC PRINT output created earlier and stores it in the XML and
PDF files. The ODS destinations are closed after PROC DOCUMENT creates the output files. See SAS Output
Delivery System: Procedures Guide for more information about PROC DOCUMENT.

PROC DOCUMENT then executes and replays the PROC PRINT output created earlier, and the HTML output is
displayed in the web browser. The %JESEND macro executes after the last line of code, but it does not close all
open ODS destinations because _OUTPUT_TYPE=none is specified. The HTML5 destination must be explicitly
closed.

Simple JSON

This example uses PROC JSON to display the SASHELP.CLASS table in JSON format. Use this technique and
execute the job using direct URL access if you have an application that requires data in JSON format. An HTML
input form provides a basic user interface to the program.

Output

[
 {
 "Name": "Alfred",
 "Sex": "M",
 "Age": 14,
 "Height": 69,
 "Weight": 112.5
 },
 {
 "Name": "Alice",
 "Sex": "F",
 "Age": 13,
 "Height": 56.5,
 "Weight": 84
 },
 {
 "Name": "Barbara",
 "Sex": "F",
 "Age": 13,
 "Height": 65.3,
 "Weight": 98
 }, ...
]

Job Input Parameters

Name Value Description

_ACTION form, execute Displays the HTML input form before
the job is executed

82

Name Value Description

_OUTPUT_TYPE json Specifies that JSON (non-ODS) output
is created by the job

HTML Input Form

<!DOCTYPE html>
<html lang="en">

<head>
<title>Simple JSON</title>
<style type="text/css">

.pointer {
 cursor: pointer;
}

[Other Cascading Style Sheet code here]

</style>

</head>

<body role="main">

<div>SAS^{®} Job Execution</div>

<h1>Simple JSON</h1>

<p>
The JSON procedure creates simple JSON content that returns the data in the SASHELP.CLASS table.

</p>

<hr/>

<form action="/SASJobExecution/" target="_SASResults">
<input type="hidden" name="_program" value="/Folder/Simple JSON"/>
<input type="hidden" name="_action" value="execute"/>
<input type="hidden" name="_output_type" value="json"/>

<input type="submit" value="Run code" class="pointer"/>

83

<input type="checkbox" name="_debug" id="_debug" value="log" class="pointer"/>
<label for="_debug">Show SAS Log</label>

</form>

</body>

</html>

The HTML in this form uses some of the same fields as “Simple ODS HTML” on page 46. See that section for
more information.

For the value of _PROGRAM, specify the path and name of the program to execute.

The value of _OUTPUT_TYPE indicates that non-ODS JSON output is created by the job. The %JESBEGIN
macro issues a FILENAME statement that supports JSON output.

Program

proc json out=_webout nosastags pretty;
 export sashelp.class;
run; quit;

Program Description

The %JESBEGIN macro assigns a FILENAME statement to return JSON output to the web browser because
json is specified as the value for the _OUTPUT_TYPE input parameter.

The JSON procedure converts the SASHELP.CLASS table to JSON format and then writes JSON data to the
_WEBOUT FILEREF that is assigned by the %JESBEGIN macro. The JSON is displayed by the web browser.

The %JESEND macro executes after the last line of code, but it does not close all open ODS destinations
because this sample does not use ODS.

This technique is useful if you have an application such as a JavaScript grid or chart object that requires data in
JSON format. In your application, specify the following URL to retrieve the data in JSON format:

http://host:port/SASJobExecution/?_program=/Folder/Simple JSON&_action=execute

Use the concepts in this example if your application requires data in another format, such as XML or CSV.

Reference

%JESBEGIN and %JESEND AutoCall Macros

Operation of the %JESBEGIN and %JESEND macros is controlled by global macro variables that are created
from job input parameters of the same name. All input parameters are optional.

Name Value Action

_CONTDISP Any valid value Specifies a value for the
CONTENTDISP option in the
FILENAME statement.

84

Name Value Action

_CONTDISP_FILEEXT Specifies the file extension to use in
the CONTENTDISP option in the
FILENAME statement if _CONTDISP
is not specified.

The default value is derived based on
the type of output being generated (the
value of the _OUTPUT_TYPE
parameter).

_CONTDISP_FILENAME Specifies the file name to use in the
CONTENTDISP option in the
FILENAME statement if _CONTDISP
is not specified. The default value is
SASResults.

_CONTTYPE Any valid value Specifies a value for the
CONTENTTYPE option in the
FILENAME statement.

_DEBUG Any valid value for _DEBUG If one of the values for _DEBUG is
trace, then MPRINT is turned on, LS
is set to max, and additional debug
messages are printed in the log.

_ENCODING Any valid SAS encoding Specifies a value for the ENCODING
option in the ODS statement.

_FILEREF_OPTIONS Any valid value for the FILESRVC
FILENAME statement

Specifies a value to add to the end of
the FILENAME statement.

_GOPT_DEVICE Any valid value for the DEVICE
graphic option

Specifies a value to add to a
GOPTIONS statement.

_GOPT_HSIZE Any valid value for the HSIZE graphic
option

Specifies a value to add to a
GOPTIONS statement.

_GOPT_VSIZE Any valid value for the VSIZE graphic
option

Specifies a value to add to a
GOPTIONS statement.

_GOPT_XPIXELS Any valid value for the XPIXELS
graphic option

Specifies a value to add to a
GOPTIONS statement.

_GOPT_YPIXELS Any valid value for the YPIXELS
graphic option

Specifies a value to add to a
GOPTIONS statement.

_GOPTIONS Any value that is valid in a GOPTIONS
statement

Specifies a value to add to a
GOPTIONS statement.

_ODS_DEVICE Any valid graphics device Specifies a value for the OUTPUTFMT
option of the ODS GRAPHICS
statement.

_ODS_EMBED_GRAPHICS N, NO (case–insensitive) Specifies ODS options for embedding
graphics. This macro is valid only for
the HTML5 destination. By default,
these options are turned on.

85

Name Value Action

_ODSOPTIONS Any valid ODS options Specifies a value to add to the ODS
statement.

_ODSSTYLE Any valid ODS style Specifies a value for the STYLE option
in the ODS statement.

_ODSSTYLESHEET_URL Any valid value Specifies a value for the URL
suboption for the STYLESHEET option
in the ODS statement.

Note: If you are accessing a style
sheet outside of the domain, you
must use SAS Environment
Manager to add a new content
security policy. See SAS Viya
Administration: Configuration
Properties for more information.

_OUTPUT_TYPE NONE, ODS_ods-destination, html,
pdf, json, and so on (case–
insensitive)

Specifies a value for the OUTPUT
option in the ODS statement.

Specifying NONE is almost the same
as omitting the macros from the user
code. Global macro variable values
are displayed by the %JESBEGIN
macro and then the macro exits. The
%JESEND macro exits without
performing any tasks.

The default value is ods_html5.

_SUPPRESS_MVARS Y, YES (case–insensitive) Suppresses the display of macro
variables (by the %JESBEGIN macro)
before executing user code.

The %JESBEGIN macro creates the following global macro variables:

Name Value Action

_JOBERROR 0 for success, nonzero for failure Indicates whether the %JESBEGIN
macro executed successfully

ODSDEST Value to the right of ods in the value
of the _OUTPUT_TYPE parameter

Specifies which ODS destination is
used, if any

_STATUS_MESSAGE Any plain text Passes an error message to the SAS
Job Execution Web Application

Reserved Macro Variables

SAS Variable Name Description

_ACTION Specifies the _ACTION job input parameter, if any.

86

SAS Variable Name Description

_APSLIST Specifies a list of job input parameters.

_CONTEXTNAME Specifies the Compute service context name.

_CONTDISP Acts as an input parameter for the %JESBEGIN macro.

_CONTDISP_FILEEXT Acts as an input parameter for the %JESBEGIN macro.

_CONTDISP_FILENAME Acts as an input parameter for the %JESBEGIN macro.

_CONTTYPE Acts as an input parameter for the %JESBEGIN macro.

_CSRF Specifies the Cross-Site Request Forgery token for this
request.

_DEBUG Specifies the _DEBUG job input parameter, if any.

_ENCODING Acts as an input parameter for the %JESBEGIN macro.

_FILEREF_OPTIONS Acts as an input parameter for the %JESBEGIN macro.

_FILESRV_fileref_URI Specifies the URI of a file created by a FILEREF using the
FILESRVC engine.

_GOPT_DEVICE Acts as an input parameter for the %JESBEGIN macro.

_GOPT_HSIZE Acts as an input parameter for the %JESBEGIN macro.

_GOPT_VSIZE Acts as an input parameter for the %JESBEGIN macro.

_GOPT_XPIXELS Acts as an input parameter for the %JESBEGIN macro.

_GOPT_YPIXELS Acts as an input parameter for the %JESBEGIN macro.

_GOPTIONS Acts as an input parameter for the %JESBEGIN macro.

_HTUA Specifies the name of the user agent.

_JOB Specifies a globally unique identifier.

_JOBERROR Acts as an output parameter for the %JESBEGIN macro.

_ODS_DEVICE Acts as an input parameter for the %JESBEGIN macro.

_ODS_EMBED_GRAPHICS Acts as an input parameter for the %JESBEGIN macro.

_ODSDEST Acts as an output parameter for the %JESBEGIN macro.

_ODSOPTIONS Acts as an input parameter for the %JESBEGIN macro.

_ODSSTYLE Acts as an input parameter for the %JESBEGIN macro.

_ODSSTYLESHEET_URL Acts as an input parameter for the %JESBEGIN macro.

87

SAS Variable Name Description

_OMITJSONLISTING Specifies whether an internal JSON listing file is returned.

_OMITJSONLOG Specifies whether an internal JSON log file is returned.

_OMITSESSIONRESULTS Specifies whether any results are returned.

_OMITTEXTLISTING Specifies whether an internal text listing file is returned.

_OMITTEXTLOG Specifies whether an internal text log is returned.

_OUTPUT_TYPE Acts as an input parameter for the %JESBEGIN macro.

_PROGRAM Specifies the path and name of the job.

_REPLAY Reserved for future use.

_RESULTFILE Specifies the output result files to be returned.

_RMTADDR Specifies the Internet Protocol (IP) address of the client that
sent the request.

_RMTHOST Specifies the fully qualified name of the client that sent the
request or the IP address of the client if the name cannot be
determined.

_SAVEFILE Specifies the name of the file for saved output.

_SAVEFOLDER Specifies the name of the folder for saved output.

_STATUS_MESSAGE Specifies the message text that is displayed by the client
after a job executes.

_SUPPRESS_MVARS Acts as an input parameter for the %JESBEGIN macro.

_URL Specifies the URL of the web server middle tier that is used
to access the job.

_USERLOCALE Specifies the locale for the user that was set in the user
preferences. If this value was not set, it contains the locale
sent in the HTTP request Accept-Language header.

_VERSION Specifies the SAS Job Execution Web Application version
number.

_XFORWARD Specifies the host and port of the original HTTP request.

88

SAS Variable Name Description

_WEBIN_CONTENT_LENGTH Contain properties of the file that is being uploaded. See
the Upload a File and Upload a CSV File sections in
“Samples” on page 42 for more information._WEBIN_CONTENT_TYPE

_WEBIN_FILE_COUNT

_WEBIN_FILEEXT

_WEBIN_FILENAME

_WEBIN_FILEURI

_WEBIN_NAME

SYS_COMPUTE_JOB_ID Specifies the Compute service job ID.

SYS_COMPUTE_SESSION_ID Specifies the Compute service session ID.

SYS_JES_JOB_URI Specifies the Job Execution service object URI.

_ACTION Input Parameter Values

The following values are supported by the _ACTION parameter:

Value Description

background Executes the job in the background.

execute Executes the job.

form Displays an HTML input form file stored in the folder
structure before job execution.

json Returns a list of unexpired jobs or sample jobs in JSON
format.

lastjob Displays output from a previous job execution if it has not
yet expired.

schedule Indicates that a job is to be scheduled using SAS
Environment Manager.

wait Displays a wait screen with informational text while the job
is executing. This value works only when _ACTION is used
as a URL parameter.

89

PARAM_LIST Macro

The param_list macro is used to convert the parameter list generated by a multiple–value prompt into a form that
is useful in your SAS code.

Arguments

Name Description

mvar Required. Specifies the name of the macro variable that corresponds to the prompt
name.

outvar Optional. Specifies the name of the macro variable that contains the converted
parameter list. If the name is not specified, an underscore (_) is added to the beginning
of the value specified in mvar.

dlm Optional. Specifies a character that is used to delimit values in the converted parameter
list. A blank space is used by default. If a character is specified, the delimiter followed by
a blank space is used.

quote Optional. Specify y (case-insensitive) to quote the individual values in the converted
parameter list. By default, the value is n.

The value of the macro variable specified in the OUTVAR argument is valid when one or more values are
selected in the prompt. If no values are selected, then the macro variable is assigned a blank value.

Example: Using Prompt Values in a VAR Statement

This example assumes that a prompt is used to specify one or more column names in the SASHELP.CLASS
table using the PRINT procedure:

%param_list(mvar=prompt_vals, outvar=column_list)

proc print data=sashelp.class;
 var &COLUMN_LIST;
run; quit;

The code fails if the prompt_vals macro variable is blank because the column_list macro variable does not have
a value. This might happen if no values were selected in the prompt. One way to avoid this problem is to use the
IFC function:

proc print data=sashelp.class;
 %sysfunc(ifc(%sysfunc(length(&COLUMN_LIST)) gt 0,
 "var &COLUMN_LIST",
));
run; quit;

Example: Using Prompt Values in a SELECT Statement

This example assumes that a prompt is used to specify one or more column names in the SASHELP.CLASS
table using the SQL procedure:

%param_list(mvar=prompt_vals, outvar=column_list, dlm=%str(,))

proc sql;
 create table work.class as

90

 select &COLUMN_LIST
 from sashelp.class;
run; quit;

See the previous example for information about handling missing prompt values.

Example: Using Prompt Values in a WHERE Statement

This example assumes that a prompt is used to select one or more age values (for example, 12, 14, and 16):

%param_list(mvar=prompt_vals, outvar=value_list, dlm=%str(,))

proc print data=sashelp.class;
 where age in (&VALUE_LIST);
run; quit;

This example assumes that a prompt is used to select M, F, or both values (case–sensitive). Specify y for the
quote argument because the values of character variables must be quoted:

%param_list(mvar=prompt_vals, outvar=value_list, dlm=%str(,), quote=y)

proc print data=sashelp.class;
 where sex in (&VALUE_LIST);
run; quit;

Source Code

%macro param_list(mvar=, outvar=, dlm=, quote=n);

%local I PARAMLIST;

%if (%bquote(&MVAR) eq) %then %do;
 %put ERROR: You must specify a value for the MVAR argument.;
 data _null_;
 abort return;
 run;
 %goto exit;
%end;

%if (%symexist(&MVAR) ne 1) %then %do;
 %put ERROR: Macro variable "&MVAR" does not exist.;
 data _null_;
 abort return;
 run;
 %goto exit;
%end;

%if (%bquote(%upcase("E)) ne Y) and
 (%bquote(%upcase("E)) ne N) %then %do;
 %put ERROR: You must specify either Y or N for the QUOTE argument.;
 data _null_;
 abort return;
 run;
 %goto exit;
%end;

%let QUOTE=%upcase("E);

91

%if (%bquote(&OUTVAR) eq)
 %then %let OUTVAR = _&MVAR;

%if (%sysfunc(nvalid(%bquote(&OUTVAR), v7)) ne 1) %then %do;
 %put ERROR: Please specify a valid macro variable name for the OUTVAR argument.;
 data _null_;
 abort return;
 run;
 %goto exit;
%end;

%global &OUTVAR;

%global &MVAR.0;

%if (%bquote(&&&MVAR.0) eq) %then %do;
 %if ("E eq Y)
 %then %let PARAMLIST=%sysfunc(quote(%bquote(&&&MVAR)));
 %else %let PARAMLIST=%bquote(&&&MVAR);
%end;
%else %do I = 1 %to &&&MVAR.0;
 %if (&I eq 1) %then %do;
 %if ("E eq Y)
 %then %let PARAMLIST=%sysfunc(quote(%bquote(&&&MVAR&I)));
 %else %let PARAMLIST=%bquote(&&&MVAR&I);
 %end;
 %else %do;
 %if ("E eq Y)
 %then %let PARAMLIST=&PARAMLIST.&DLM %sysfunc(quote(%bquote(&&&MVAR&I)));
 %else %let PARAMLIST=&PARAMLIST.&DLM %bquote(&&&MVAR&I);
 %end;
%end;

%let &OUTVAR=&PARAMLIST;

%exit:
%mend param_list;

Modifying Your Settings
You can use the Settings window to edit user preferences or customize accessibility settings. Changing these
settings does not impact other users. To access these settings, click your name in the application bar and select
Settings.

General

The General section includes settings that enable users to change the appearance of the web application,
enable warning and confirmation messages to be displayed, and choose a profile picture. Here are the settings:

n You can change the appearance of the web application by using the Theme setting. The default theme is set
by the system administrator. The theme specifies the collection of colors, graphics, and fonts that appear in
the application. You can choose from SAS themes or custom themes, if available.

92

Select Choose a theme, and then select another theme from the drop-down list to change the look of the
applications. The theme changes after you close the Settings window.

SAS themes:

Illuminate
This theme has a clean and uncomplicated color palette that is easy to use.

Inspire
This theme consists of vibrant and cohesive colors that shift the emphasis from the application to the
content.

High Contrast
This theme presents a dark background with high-contrast foreground elements to meet the needs of
users with low vision.

n If you want messages to display that you previously asked not to display, click Reset Messages. By default,
all warnings and confirmation messages are displayed.

n You can select a profile picture to display as an avatar in the application bar, as well as in other places within
the application that use avatars. An avatar is the graphical representation of the user or the user's alter ego
or character.

Click Choose Picture and then select an image file to upload. The image file’s size can be up to 1 MB. The
valid file types are BMP, GIF, JPEG, JPG, and PNG.

Region and Language

The Region and Language section includes settings that enable users to specify the locale for regional formats
and sorting, as well as for offline processes. Here are the settings:

n The Locale for regional formats and sorting setting specifies the locale that is used for sorting data and
formatting values such as dates, times, numbers, and currency. By default, the browser locale is used.
Changes take affect after you sign out and sign back in.

n The Locale for offline processes setting specifies the locale that is used for offline jobs or background
processes such as report distributions or notifications. By default, the locale of the Java Runtime
Environment is used.

Accessibility

Several settings in the Accessibility section can assist people who rely on assistive technologies:

n Select Enable sounds to hear audio indicators for events that occur within the user interface.

n Select Enable visual effects to show visual effects that indicate state changes. For example, when this
setting is enabled, you see a subtle movement in the user interface if you delete an item.

n Select Invert application colors to make the user interface easier to see for users with sensitivity to certain
bright colors (for example, a black-on-white display). You can also use the Ctrl+` (Ctrl+back quote) keyboard
shortcut to invert the application colors.

n The focus indicator is an outline that indicates which user interface component is active. You can make the
focus indicator easier to see by selecting Customize the focus indicator settings and adjusting the color,
thickness, and opacity.

Landmarks are references to the primary areas of an application’s user interface. They provide a quick and easy
way for keyboard users to navigate to these areas of the application. You can access a list of landmarks by
using one of the following keyboard shortcuts:

n For Microsoft Windows, press Ctrl+F6.

93

n For Mac, press Command+F6.

Use the arrow keys to select a landmark, and then press Enter to navigate to that area of the application.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other
brand and product names are trademarks of their respective companies. Copyright © 2018, SAS
Institute Inc., Cary, NC, USA. All Rights Reserved. July 2021 2.0-P1:jobexecug

94

	SAS Job Execution Web Application: User’s Guide
	Overview
	Working with the SAS Job Execution Web Application
	Accessing the Application
	Accessing Content
	Managing Jobs
	Installing the Samples
	Accessing Application Pages through a URL

	Executing Jobs
	Specifying a Job to Run
	Using Job Input Parameters
	Prompting for Input Parameters with HTML Input Forms
	Specifying Output Files
	Using Output Job Parameters
	Modifying the Job Execution
	Specifying SAS System Options
	Job Execution Time-out
	Job Output Expiration
	Background Processing
	Wait Screen
	Retrieving Previous Results
	Scheduling a Job
	Saving Job Output
	Debugging

	Administrative Tasks
	Setting Configuration Properties
	Setting Preset Parameters

	Security for SAS Viya Jobs
	Setting Authorization for a Folder
	Changing Access to Application Functions

	Testing the Installation
	Executing the Ping Program
	Running a Sample Job

	Development Concepts
	Creating Jobs Using the %JESBEGIN and %JESEND Macros
	Overview of %JESBEGIN and %JESEND Macros
	Creating a Simple Job That Uses DATA Step Code
	Executing a Job Using Direct URL Access
	Executing a Job Using the SAS Job Execution Web Application
	Passing User Input to a Job Using the Query String
	Passing User Input to a Job Using a Job Definition Parameter
	Passing User Input to a Job Using an HTML Input Form
	Creating Simple HTML Output Using ODS
	Creating Simple PDF or RTF Output Using ODS
	Using Input Parameters with Multiple Values
	Linking One Job to Another (Drill Down)

	Creating Jobs without Using the %JESBEGIN and %JESEND Macros
	Overview of Jobs without the %JESBEGIN and %JESEND Macros
	Sending ODS Output to an Email Recipient
	Assigning a FILEREF for HTML Output
	Assigning a FILEREF for Other Types of Output

	Advanced Programming
	Sending JSON Data to a Job Using an Input Parameter
	Sending JSON Data to a Job By Uploading a File
	Executing a Job Using JavaScript - Sending Small Data to the
Job
	Executing a Job Using JavaScript - Sending Large Data to the
Job
	Returning JSON Data from a Job
	Returning a List of Output Files in JSON Format
	Working with SAS Viya Services

	Samples
	Accessing the Samples
	Items Common to Most Samples
	Job Input Parameters
	%JESBEGIN and %JESEND Macros
	Cascading Style Sheet Code in HTML Input Forms
	HTML Attributes to Support Accessibility

	Hello World
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Simple ODS HTML
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	ODS Output with Embedded Graphics
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Display Macro Variables
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Multiple Output Formats
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Upload a File
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Upload a CSV File
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Report with Download Links
	Output
	Job Input Parameters
	HTML Input
	Program
	Program Description

	Simple JSON
	Output
	Job Input Parameters
	HTML Input Form
	Program
	Program Description

	Reference
	%JESBEGIN and %JESEND AutoCall Macros
	Reserved Macro Variables
	_ACTION Input Parameter Values
	PARAM_LIST Macro
	Arguments
	Example: Using Prompt Values in a VAR Statement
	Example: Using Prompt Values in a SELECT Statement
	Example: Using Prompt Values in a WHERE Statement
	Source Code

	Modifying Your Settings
	General
	Region and Language
	Accessibility

